

MPQ6400-AEC1

Low Quiescent Current Programmable-Delay Supervisory Circuit Available in AEC-Q100

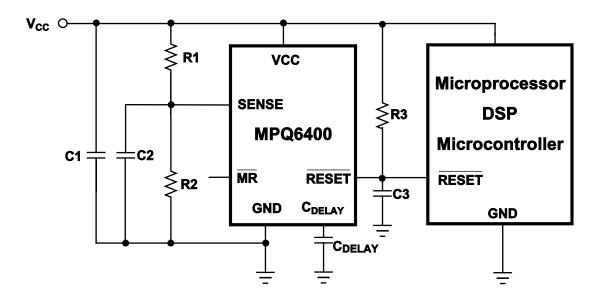
DESCRIPTION

The MPQ6400 family is the microprocessor (μP) supervisory circuit which can monitor and provide reset function for system voltages from 0.4V. When either the SENSE voltage falls below its threshold (V_{IT}) or the voltage of manual reset (\overline{MR}) is pulled to a logic low, the RESET signal will be asserted. The reset voltage can be factory-set for standard voltage rails from 0.9V to 5V, while the MPQ6400DG-01 reset voltage is adjustable with an external resistor divider. When SENSE voltage and \overline{MR} exceed their thresholds, \overline{RESET} is driven to a logic high after a user-programmable delay time.

The MPQ6400 has a very low quiescent current of 1.6µA typically, which makes it ideal suitable for battery-powered applications. It provides a precision reference to achieve $\pm 1\%$ threshold accuracy. The reset delay time can be selected by a capacitor which is connected between C_{DELAY} and GND, allowing the user to select any delay time from 2.1ms to 10s. 380ms delay time is selected by connecting the C_{DELAY} pin to V_{CC}, while 24ms delay time by leaving the C_{DELAY} pin float. MPQ6400 is available in 2mm×2mm 6-pin QFN package.

FEATURES

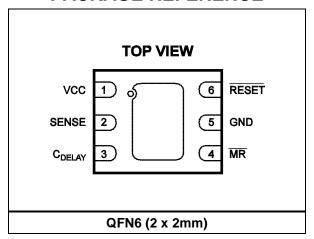
- Guaranteed Industrial/Automotive Temp Range Limits
- Fixed Threshold Voltages for Standard Voltage Rails From 0.9V to 5V and Adjustable Voltage From 0.4V are Available
- Low Quiescent Current: 1.6µA Typ
- Power-On Reset Generator with Adjustable Delay Time: 2.1ms to 10s
- High Threshold Accuracy: ±1% Typ
- Manual Reset (MR) Input
- Open-Drain RESET Output
- Immune to Short Negative SENSE Voltage
- Guaranteed Reset Valid to V_{CC}=0.8V
- 2x2mm QFN
- AEC-Q100 Qualified


APPLICATIONS

- DSP or Micro controller Applications
- Laptop/Desktop Computers
- PDAs/Hand-Held Products
- Portable/Battery-Powered Products
- FPGA/ASIC Applications

For MPS green status, please visit MPS website under Quality Assurance. "MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION



ORDERING INFORMATION

Part Number*	Package	T_J
MPQ6400DG-33**	QFN6 (2x2mm)	-40°C to +125°C
MPQ6400DG-33-AEC1	QFN6 (2x2mm)	-40°C to +125°C

*For Tape & Reel, add suffix –Z (e.g. MPQ6400DG–XX-Z); For RoHS compliant packaging, add suffix –LF (e.g. MPQ6400DG–XX-LF–Z). ** Check factory for availability in other options.

PACKAGE REFERENCE

ABSOL	HTF	ΜΔΥΙ	мим	RAT	INGS	(1)
ADJUL				RAI	IIVGO	

Supply Voltage V_{CC}-0.3 to 6.0V C_{DELAY} Voltage V_{CDELAY} -0.3V to V_{CC} + 0.3V

SENSE Voltage V_{SENSE}--0.3V to 6V

All Other Pins	0.3V to +6.0V
RESET Current I _{RESET}	5mA
Continuous Power Dissipation	$(T_A = +25^{\circ}C)^{(2)}$
QFN6 (2mmx2mm)	2.5W
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	
Recommended Operating	Conditions ⁽³⁾
Supply Voltage V _{CC}	
Maximum Junction Temp. (T _J)	

Thermal Resistance (4)	$oldsymbol{ heta}_{JA}$	$oldsymbol{ heta}_{JC}$	
QFN6 (2x2mm)	50	12°0	C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature T_J(MAX), the junction-to-ambient thermal resistance θ_{JA}, and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)-T_A)/θ_{JA}. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7 4-layer board.

ELECTRICAL CHARACTERISTICS

1.8V≤V_{CC}≤5.5V, R₃ = 100k Ω , C₃ = 47pF, T_J= -40°C to +125°C, Typical values are at T_j=+25°C, unless otherwise noted.

Parameters	Symbol	Condition	Min	Тур	Max	Units
Input Supply Range	Vcc		1.8		5.5	V
Supply Current		V_{CC} = 3.3V, \overline{RESET} not asserted. \overline{MR} , \overline{RESET} , C_{DELAY} open		1.6	5	μΑ
(current into V _{CC} pin)	I _{CC}	V_{CC} = 5.5V, $\overline{\text{RESET}}$ not asserted. $\overline{\text{MR}}$, $\overline{\text{RESET}}$, C_{DELAY} open		1.85	15	μΑ
Low-level Output Voltage	V_{OL}	$1.3V \le V_{CC} < 1.8V$, $I_{OL} = 0.4mA$			0.3	V
Low-level Output Voltage	VOL	$1.8V \le V_{CC} \le 5.5V$, $I_{OL} = 1.0mA$			0.4	V
Power-up Reset Voltage ⁽⁵⁾		V_{OL} (max) = 0.2V, $I_{\overline{RESET}}$ = 15uA $T_{rise(Vcc)}$ ≥15 μ s/V			0.8	V
Negative-going Input Threshold	V	-40°C to +85°C	-2.5	±1.0	1.5	0.4
Accuracy (7)	V_{IT}	-40°C to +125°C	-3		1.7	%
Hysteresis on V _{IT} Pin	V _{HYS}			1.5	4	V _{IT} %
MR Internal Pull-up Resistance	$R_{\overline{MR}}$		50	110		kΩ
Input Current at SENSE Pin	I _{SENSE}	Fixed versions V _{SENSE} = 6V		2.4		μΑ
RESET Leakage Current		$V_{\overline{RESET}}$ = 5.5V, \overline{RESET} not asserted			500	nA
MR Logic Low Input	V _{IL}				0.25V _{CC}	V
MR Logic High Input	V_{IH}		0.7V _{CC}			V
SENSE Maximum Transient Duration	t _w	$V_{IH} = 1.05 \ V_{IT},$ $V_{IL} = 0.95 \ V_{IT}$		17.5		μs
	t _d	C _{DELAY} = Open	15	24	34	ms
		$C_{DELAY} = V_{CC}^{(6)}$	230	380	530	ms
RESET Delay Time		C _{DELAY} = 150pF	1.3	2.1	3	ms
		$C_{DELAY} = 10nF^{(6)}$	61	102	142	ms
MR to RESET Propagation Delay	t _{pHL1}	$V_{IH} = 0.7 V_{CC},$ $V_{IL} = 0.25 V_{CC}$		160		ns
High to Low Level RESET Delay, SENSE to RESET	t _{pHL2}	$V_{IH} = 1.05 \ V_{IT}, \ V_{IL} = 0.95 \ V_{IT}$		17.5		μs

Note:

⁵⁾ The lowest supply voltage (V_{CC}) at which \overline{RESET} becomes active.

⁶⁾ Guaranteed by design.

⁷⁾ V_{SENSE} Falling Slowly

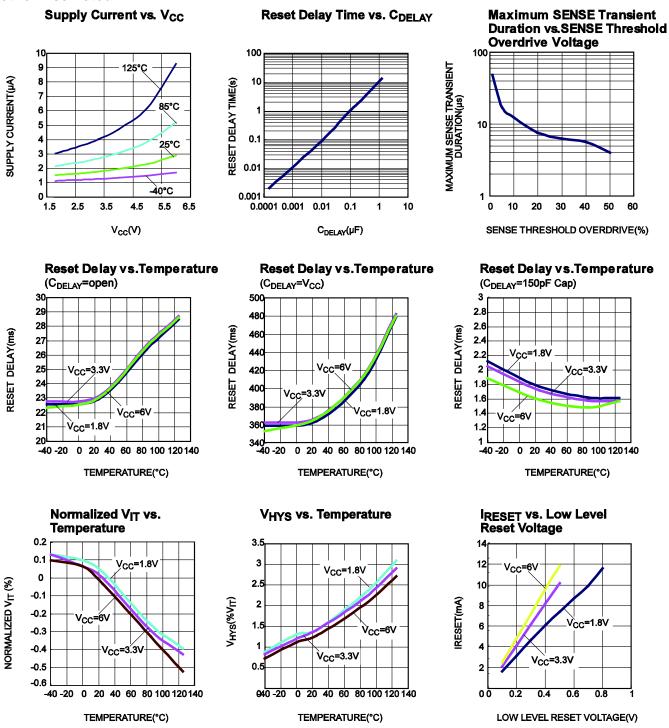
ORDERING INFORMATION

Product	Package	Top Mark	Nominal Supply Voltage	Threshold Voltage (VIT)
MPQ6400DG-33	QFN		3.3V	3.07V

PIN FUNCTIONS

QFN Pin #	Name	Description
1	V_{CC}	Supply voltage. A 0.1uF decoupling ceramic capacitor should be put close to this pin.
2	SENSE	SENSE pin is connected to the monitored system voltage. When the monitored voltage is below desired threshold, $\overline{\text{RESET}}$ is asserted.
3	C_{DELAY}	Programmable reset delay time pin. When C_{DELAY} connected to V_{CC} through a resistor between $50k\Omega$ and $200k\Omega$, a $380ms$ delay time is selected. When C_{DELAY} floated, the delay time is 24ms. A capacitor bigger than 150pF connected C_{DELAY} to GND could be used to get the user's programmable time from 2.1ms to 10s.
4	MR	The manual reset ($\overline{\text{MR}}$) can introduce another logic signal to control the $\overline{\text{RESET}}$. It is internally connected to V_{CC} through a 90k Ω resistor.
5	GND	Ground.
6	RESET	$\overline{\text{RESET}}$ is an open drain signal which will be asserted when the SENSE voltage drops below a preset threshold or when the manual reset ($\overline{\text{MR}}$) pin drops to a logic low. The $\overline{\text{RESET}}$ delay time is programmable from 2.1ms to 10s by using external capacitors. A pull-up resistor bigger than 10k should be connected this pin to supply line, and the $\overline{\text{RESET}}$ outputting a higher voltage than V_{CC} is allowable.

DETAIL DESCRIPTION


The MPQ6400 product family asserts a $\overline{\text{RESET}}$ signal when either the SENSE pin voltage is lower than V_{IT} or the manual reset ($\overline{\text{MR}}$) is driven low. The MPQ6400-XX family, other than the MPQ6400DG-01, can monitor a fixed voltage from 0.9V to 5.0V. The MPQ6400DG-01 can monitor any voltage above 0.4V by adjusting the external resistor divider. After both the manual reset ($\overline{\text{MR}}$) and SENSE voltages exceed their thresholds, the RESET

output remains asserted for a user's programmable delay time. Two fixed $\overline{\text{RESET}}$ delay times are user-selectable: 380ms delay time by connecting the C_{DELAY} pin to V_{CC} , and 24ms delay time by leaving the C_{DELAY} pin float. Any delay time from 2.1ms to 10s could be gotten by connecting a capacitor between C_{DELAY} and GND. The wide monitor voltage and programmable reset delay time make MPQ6400 product family suitable for a broad array of applications.

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{CC} =3.3V, R_3 = 100k Ω , C_3 = 47pF, T_A = -40°C to +125°C, Typical values are at T_A =+25°C, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAM

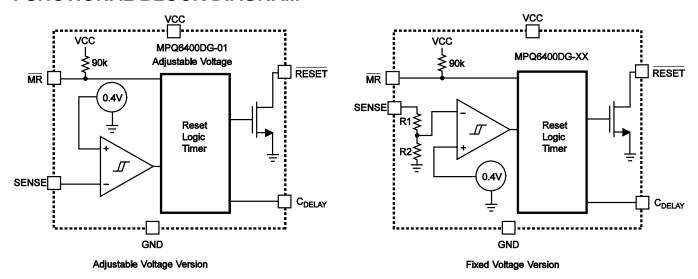


Figure 1—Functional Block Diagram

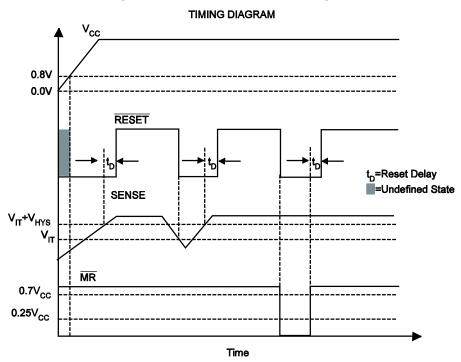


Figure 2—MPQ6400 Timing Diagram

TRUTH TABLE

\overline{MR}	SENSE > V _{IT}	RESET
L	0	L
L	1	L
Н	0	L
Н	1	Н

APPLICATION INFORMATION

Reset Output Function

MPQ6400 RESET The output is typically connected to the RESET input of a microprocessor, as shown in Figure 3. When RESET is not asserted, a pull up resistor must be connected to hold this signal high. The voltage of reset signal is allowed to be higher than V_{CC} (up to 6V) through a resistor pulling up from supply line. If the voltage is below 0.8V, RESET output is undefined. This condition can be ignored generally because that most microprocessors do not function at this state. When both SENSE and MR are higher than their threshold voltage, RESET output holds logic high. Once either of the two drops below their threshold, RESET will be asserted.

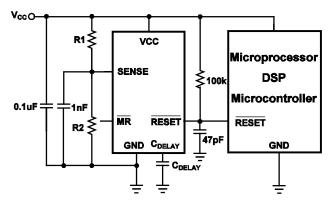


Figure 3—Typical Application of MPQ6400 with Microprocessor

From the point that MR is again logic high and SENSE is above V_{IT} + V_{HYS} (the threshold hysteresis), RESET will be driven to a logic high after a reset delay time. The reset delay time is programmable by C_{DELAY} pin. Due to the finite impedance of RESET pin, the pull up resistor should be bigger than $10k\Omega$.

Monitor a Voltage

The SENSE input pin is connected to the monitored system voltage directly or through a resistor network (on MPQ6400DG-01). When the voltage on the pin is below V_{IT} , \overline{RESET} is asserted. A threshold hysteresis will prevent the chip from responding perturbation on SENSE pin. A 1nF to 10nF bypass capacitor should be put on this pin to increase its immunity to noise. A typical application of the MPQ6400DG-01 is shown in Figure 4. Two external resistors form a voltage

divider from monitored voltage to GND. Its tap connects to the SENSE pin. The circuit can be used to monitor any voltage higher than 0.4V.

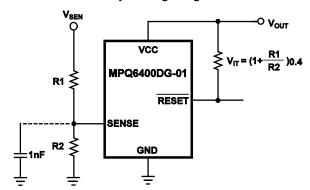


Figure 4—MPQ6400DG-01 Monitoring a User-**Defined Voltage**

Monitor Multiple System Voltages

The manual reset (MR) can introduce another logic signal to control the \overline{RESET} . When \overline{MR} is a logic low (0.25V_{CC}), RESET will be asserted. After both SENSE and MR are above their thresholds, RESET will be driven to a logic high after a reset delay time. The \overline{MR} is internally connected to V_{CC} through a $90k\Omega$ resistor so this pin can float. See how multiple system voltages are monitored by \overline{MR} in Figure 5. If the signal on \overline{MR} isn't up to V_{CC} , there will be an additional current through internal $90k\Omega$ pull up resistor. A logic-level FET can be used to minimize the leakage, as shown in Figure 6.

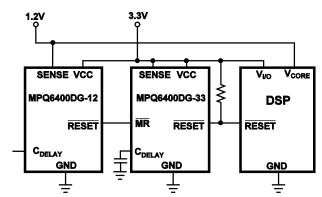


Figure 5— MPQ6400 Family Monitoring **Multiple System Voltages**

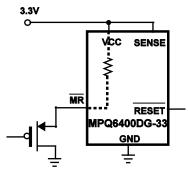


Figure 6—Minimizing I_{CC} When $\overline{\it MR}$ Signal isn't over V_{CC} by External MOSFET

Programmable Reset Delay Time

The reset delay time can be programmed by C_{DELAY} configure. When C_{DELAY} is connected to VCC through a resistor between $50k\Omega$ and $200k\Omega$, the delay time is 380ms. When C_{DELAY} floated, the delay time is 24ms. In addition, a capacitor connected C_{DELAY} to GND could be used to get the user's programmable delay time from 2.1ms to 10s. The three configures can be found in Figure 7(a)(b)(c).

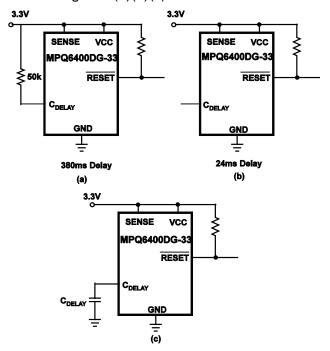
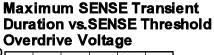
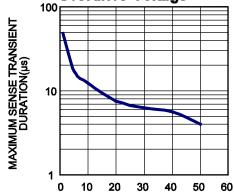


Figure 7—Programmable Configurations to the Reset Delay Time

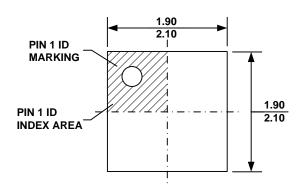

The external capacitor C_{DELAY} must be larger than 150pF. For a given delay time, the capacitor value can be calculated using the following equation:

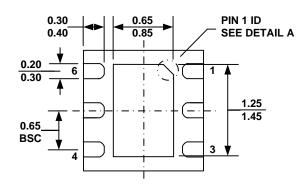

$$C_{DELAY}(nF) = [t_D(s) - 4.99 \times 10^{-4}(s)] \times 10^{7}$$

The reset delay time is determined by the charge time of external capacitor. While SENSE is above V_{IT} and \overline{MR} is a logic high, the internal 140nA current source is enabled and starts to charge the capacitor to set the delay time. When the capacitor voltage rises to 1.13V, the RESET is deasserted. The capacitor will be discharged when the RESET is again asserted. Stray capacitance may cause errors of the delay time. A ceramic capacitor with low leakage is strongly recommended.

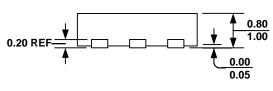
SENSE Voltage Transients Immunity

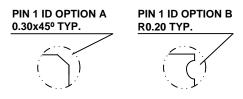
The MPQ6400 can be immune to SENSE pin short negative transient. The maximum immune duration is 17us while overdrive is 5%. A shorter negative transient can not assert the $\overline{\text{RESET}}$ output. The effective duration is relative to the threshold overdrive, as shown in Figure 8.


SENSE THRESHOLD OVERDRIVE(%)

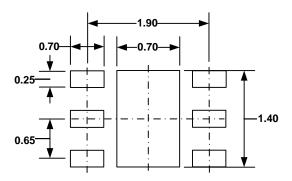

Figure 8—Maximum Transient Duration vs. Sense Threshold Overdrive Voltage

PACKAGE INFORMATION


QFN6 (2 x 2mm)



TOP VIEW


BOTTOM VIEW

SIDE VIEW

DETAIL A

RECOMMENDED LAND PATTERN

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH.
- 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.
- 4) JEDEC REFERENCE IS MO-229, VARIATION VCCC.
- 5) DRAWING IS NOT TO SCALE.

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.