## TO－220F Plastic－Encapsulate MOSFETS

## CJPF04N65A N－Channel Power MOSFET

## GENERAL DESCRIPTION

This advanced high voltage MOSFET is designed to stand high energy in the avalanche mode and switch efficiently．This new high energy device also offers a drain－to－source diode fast recovery time．Desighed for high voltage，high speed switching applications such as power supplies，converters，power motor controls and bridge circuits．

## FEATURE

－High Current Rating
－Lower R ${ }_{\text {DS（on）}}$

－Lower Capacitance
－Lower Total Gate Charge
－Tighter $\mathrm{V}_{\text {SD }}$ Specifications
－Avalanche Energy Specified

## 

| Parameter | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| Drain－Source Voltage | $V_{\text {DS }}$ | 650 | V |
| Gate－Source Voltage | $\mathrm{V}_{\text {GSS }}$ | $\pm 30$ |  |
| Continuous Drain Current | ID | 4.0 | A |
| Pulsed Drain Current | IDM | 16 |  |
| Single Pulsed Avalanche Energy（note1） | $\mathrm{E}_{\text {AS }}$ | 280 | mJ |
| Power Dissipation | $\mathrm{P}_{\mathrm{D}}$ | 2 | W |
| Thermal Resistance from Junction to Ambient | $\mathrm{R}_{\text {өJA }}$ | 62.5 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating and Storage Temperature Range | $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | －55～＋150 | ${ }^{\circ} \mathrm{C}$ |
| Maximum lead temperure for soldering purposes ， $1 / 8$＂from case for 5 seconds | TL | 260 |  |

CJPF04N65A

Electrical characteristics（ $\mathrm{T}_{\mathrm{a}} \mathbf{= 2 5 ^ { \circ }} \mathbf{C}$ unless otherwise noted）

| Parameter | Symbol | Test Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Off characteristics |  |  |  |  |  |  |
| Drain－source breakdown voltage | $V_{\text {（BR）}}$ DSS | Vgs $=0 \mathrm{~V}, \mathrm{ld}=250 \mu \mathrm{~A}$ | 650 |  |  | V |
| Drain－source diode forward voltage（note2） | Vsd | $\mathrm{VGS}=0 \mathrm{~V}$ ，Is $=4.0 \mathrm{~A}$ |  |  | 1.5 |  |
| Zero gate voltage drain current | Idss | Vds $=600 \mathrm{~V}$ ，Vgs $=0 \mathrm{~V}$ |  |  | 25 | $\mu \mathrm{A}$ |
| Gate－body leakage current（note2） | $\mathrm{I}_{\text {gSs }}$ | Vos $=0 \mathrm{~V}, \mathrm{Vgs}= \pm 30 \mathrm{~V}$ |  |  | $\pm 100$ | nA |
| On characteristics（note2） |  |  |  |  |  |  |
| Gate－threshold voltage | Vgs（th） | $V_{\text {DS }}=V_{\text {GS }}, \mathrm{ID}=250 \mu \mathrm{~A}$ | 2.0 |  | 4.0 | V |
| Static drain－source on－resistance | Rds（on） | $V_{G S}=10 \mathrm{~V}, \mathrm{ld}=2.0 \mathrm{~A}$ |  |  | 3.0 | $\Omega$ |
| Dynamic characteristics（note 3） |  |  |  |  |  |  |
| Input capacitance | $\mathrm{C}_{\text {iss }}$ | $\mathrm{Vds}=25 \mathrm{~V}, \mathrm{Vgs}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$ |  |  | 760 | pF |
| Output capacitance | Coss |  |  |  | 180 |  |
| Reverse transfer capacitance | $\mathrm{C}_{\text {rss }}$ |  |  |  | 20 |  |
| Switching characteristics（note 3） |  |  |  |  |  |  |
| Total gate charge | $\mathrm{Q}_{\mathrm{g}}$ | $\mathrm{Vds}=480 \mathrm{~V}, \mathrm{Vgs}=10 \mathrm{~V}, \mathrm{ld}=4.0 \mathrm{~A}$ |  | 5.0 | 10 | nC |
| Gate－source charge | $\mathrm{Q}_{\mathrm{gs}}$ |  |  | 2.7 |  |  |
| Gate－drain charge | $\mathrm{Q}_{\mathrm{gd}}$ |  |  | 2.0 |  |  |
| Turn－on delay time（note3） | $\mathrm{td}_{\text {（on）}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \\ & R_{\mathrm{G}}=9.1 \Omega, \mathrm{ID}=4.0 \mathrm{~A} \end{aligned}$ |  |  | 20 | ns |
| Turn－on rise time（note3） | tr |  |  |  | 10 |  |
| Turn－off delay time（note3） | td（off） |  |  |  | 40 |  |
| Turn－off fall time（note3） | tf |  |  |  | 20 |  |

## Notes：

1． $\mathrm{L}=30 \mathrm{mH}, \mathrm{I}_{\mathrm{L}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=25 \Omega$ ，Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ．
2．Pulse Test ：Pulse width $\leq 300 \mu \mathrm{~s}$ ，duty cycle $\leq 2 \%$ ．
3．These parameters have no way to verify．

