Zibo Seno Electronic Engineering Co., Ltd.

KBP3005 - KBP310 ©
3.0A BRIDGE RECTIFIER

Features

- Diffused Junction
- Low Forward Voltage Drop
- High Current Capability
- High Reliability
- High Surge Current Capability
- Ideal for Printed Circuit Boards

Mechanical Data

- Case: Molded Plastic
- Terminals: Plated Leads Solderable per MIL-STD-202, Method 208
- Polarity: As Marked on Body
- Weight: 1.7 grams (approx.)
- Mounting Position: Any
- Marking: Type Number

KBP		
Dim	Min	Max
A	14.22	15.24
B	10.60	11.68
C	15.20	-
D	3.40	4.20
E	3.60	4.10
G	1.27	-
H	0.70	0.9
I	1.52	-
J	11.68	12.70
K	12.7	-
L	$3.2 \times 45^{\circ}$ Typical	
All Dimensions in mm		

- Lead Free: For RoHS / Lead Free Version

Maximum Ratings and Electrical Characteristics $@ T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Single Phase, half wave, 60 Hz , resistive or inductive load.
For capacitive load, derate current by 20%.

Characteristic	Symbol	$\begin{aligned} & \text { KBP } \\ & 3005 \end{aligned}$	$\begin{aligned} & \text { KBP } \\ & 301 \end{aligned}$	$\begin{gathered} \text { KBP } \\ 302 \end{gathered}$	$\begin{gathered} \text { KBP } \\ 304 \end{gathered}$	$\begin{aligned} & \text { KBP } \\ & 306 \end{aligned}$	$\begin{gathered} \text { KBP } \\ 308 \end{gathered}$	$\begin{aligned} & \text { KBP } \\ & 310 \end{aligned}$	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM Vrwm VR	50	100	200	400	600	800	1000	V
RMS Reverse Voltage	Vr(RMS)	35	70	140	280	420	560	700	v
Average Rectified Output Current (Note 1) $@ T_{A}=50^{\circ} \mathrm{C}$	Io	3.0							A
Non-Repetitive Peak Forward Surge Current 8.3 ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	60							A
Forward Voltage (per element) \quad @ $\mathrm{I}_{\mathrm{F}}=2.0 \mathrm{~A}$	Vfm	1.1							V
Peak Reverse Current $@ T_{A}=25^{\circ} \mathrm{C}$ At Rated DC Blocking Voltage $@ T_{A}=100^{\circ} \mathrm{C}$	IRM	$\begin{gathered} 5 \\ 500 \end{gathered}$							$\mu \mathrm{A}$
Typical Thermal Resistance (Note 3)	R ${ }_{\text {J }}$	30							K/W
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j}, \mathrm{Tsta}}$	-55 to +150							${ }^{\circ} \mathrm{C}$

Note: 1. Leads maintained at ambient temperature at a distance of 9.5 mm from the case.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 V D.C.
3. Thermal resistance junction to ambient mounted on PC board with $12 \mathrm{~mm}^{2}$ copper pad.

