

120mA 4-Channel Charge Pump White LED Driver with Low Dropout Current Source

GENERAL DESCRIPTION

The SGM3131 is a high performance white LED driver. It integrates current sources and automatic mode selection charge pump. The part maintains the high efficiency by utilizing a 1×/1.5× fractional charge pump and low dropout current sources. The small equivalent 1× mode open loop resistance and ultra-low dropout voltage of current source extend the operating time of 1× mode and optimize the efficiency of Li-lon battery in white LED applications.

The SGM3131 supports up to 4 white LEDs and regulates a constant current which the initial value can be set by an external resistor. The part implements a 4-bit DAC for brightness control. Users can easily configure the LED current from 0.5mA to 30mA by a serial pulse. The dimming of white LEDs current can be achieved by applying a pulse signal to the EN pin. There are totally 16 steps of current could be set by users. The operating voltage range is 2.7V to 5.5V. Internal soft start circuitry effectively reduces the in-rush current while both start-up and mode transition. The load is disconnected from VIN while shutdown and the shutdown current is less than $1\mu A$.

SGM3131 is available in Green TQFN-3×3-16L package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Input Voltage Range: 2.7V to 5.5V
- Drives up to 4 LEDs at 30mA Each
- LED Brightness Control Through Single Wire Interface
- 16-Step Brightness Control
- High Efficiency by Fractional Conversion with 1× and 1.5× Modes

SGM3131

- Switching Frequency: 1MHz
- Regulated Output Current with 1% Matching
- Internal Soft-Start Limits Inrush Current
- Low Input Ripple and Low EMI
- Over-Current and Over-Temperature Protected
- Under-Voltage Lockout with Hysteresis
- Operating Temperature Range: -40°C to +85°C
- Available in Green TQFN-3×3-16L Package

APPLICATIONS

Mobile Phone, DSC, MP3 White LED Backlighting LCD Display Supply

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM3131	TQFN-3×3-16L	-40°C to +85°C	SGM3131YTQ16G/TR	3131TQ XXXXX	Tape and Reel, 3000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Range	0.3V to 6V
The Other Pins to GND	0.3V to V _{IN}
Power Dissipation, $P_D @ T_A = +25^{\circ}C$	
TQFN-3×3-16L	1.47W
Storage Temperature Range	65°C to +150°C
Junction Temperature	+160°C
Operating Temperature Range	40°C to +85°C
Lead Temperature (Soldering 10 sec)	+260°C
ESD Susceptibility	
HBM	2000V
MM	200V

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


ESD SENSITIVITY CAUTION

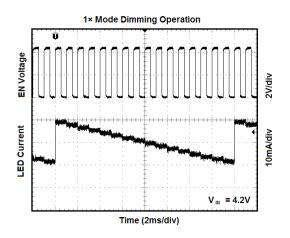
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

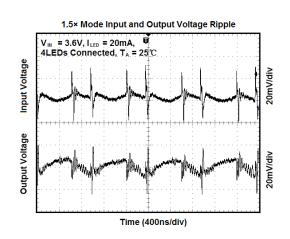
DISCLAIMER

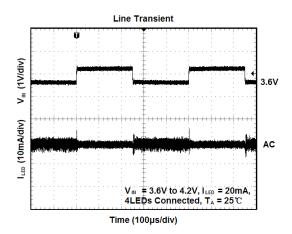
SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATION

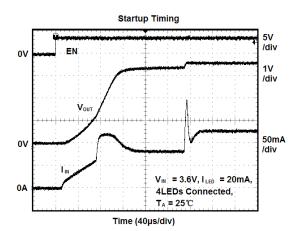
PIN DESCRIPTION

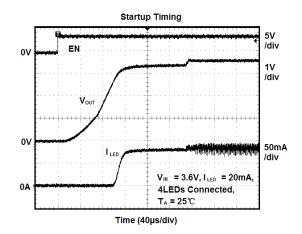

PIN	NAME	I/O	FUNCTION
1	ISET	I	Connect a resistor between this pin and GND to set the maximum current through the LEDs.
2, 16	N.C.	-	No Internal Connection.
3, 4, 5, 6	LED4-LED1	I	Current Sink Input. Connect the cathode of the white LEDs to these inputs.
7	PGND	-	Power Ground.
8	VOUT	0	Connect the output capacitor and the anode of the LEDs to this pin.
9	C2P	-	Positive Terminal of Bucket Capacitor 2.
10	C1P	-	Positive Terminal of Bucket Capacitor 1.
11	C1N	-	Negative Terminal of Bucket Capacitor 1.
12	C2N	-	Negative Terminal of Bucket Capacitor 2.
13	VIN	I	Supply Voltage Input.
14	AGND	-	Analog Ground.
15	EN	I	Chip Enable (Active High), and connects to GPIO pin of MCU.
Exposed Pad	GND	-	Exposed pad should be soldered to PCB board and connected to GND.

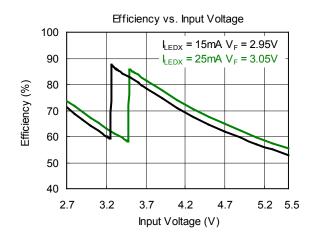

ELECTRICAL CHARACTERISTICS


 $(V_{IN} = 3.6V, EN = V_{IN}, T_A = +25^{\circ}C, unless otherwise noted.)$

PAR	AMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY VOULTAG	GE AND CURRENT						
Input Voltage Rang	е	V _{IN}		2.7		5.5	V
		ΙQ	$V_{IN} = 4.2V$, 1× Mode, EN = 1, $I_{SET} = 0\mu A$		100		μA
Quiescent Power S	upply Current		V _{IN} = 4.2V, 1× Mode, EN= 1, I _{SET} = 20μA		200		μA
		lα	I _{OUT} = 0mA, 1.5× Mode		2		mA
Shutdown Supply C	Current	I _{SHDN}	EN = GND			1	μA
CHARGE PUMP S	TAGE			•	•		•
Over-Voltage Limit		V _{out}	LEDx unconnected, V _{IN} = 4.2V		5.7		V
Start-Up Time			$C_{OUT} = 1\mu F$, $I_{LEDx} \ge 0.9 \times I_{LEDx-SET}$		235		μs
Soft-Start Duration					220		μs
Switching Frequence	су	f		0.6	1	1.4	MHz
Efficiency		η	V _{IN} = 3.25V, I _{LEDx} = 15mA each, V _{LEDx} =2.95V		88		%
Thermal Shutdown	Temperature		Temperature rising		150		°C
Hysteresis Tempera	ature				15		°C
Input Current Limit			EN = 1, I _{SET} = 100μA		270		mA
CURRENT SINKS							
Recommended Ma: Current Sink	•	I _{LEDx}	$3.2V \le V_{IN} \le 5.5V$		30		mA
Current into Each C when ISET is Short	ed to GND	I _{LEDx}	3.0V ≤ V _{IN} ≤ 5.5V, ISET shorted to GND		40		mA
Current Matching b Two Outputs	etween Any		V _{LEDx} = 3.1V, T _A =25°C	-3	1	+3	%
Line Regulation			$3V < V_{IN} < 5.5V$, $V_{LEDx} = 3.1V$, $EN = 1$, $I_{SET} = 80\mu A$		2		%
Reference Voltage	for Current Set	V _{ISET}	EN = 1	580	600	620	mV
Recommended ISE	T Pin Current Range	I _{SET}		2		130	μΑ
I _{LEDx} to I _{SET} Current	Ratio	K	EN = 1, I _{SET} = 80μA	230	260	280	
Voltage at LEDx to	GND	V _{SOURCE}	EN = 1, I _{LEDx} = 30mA		400		mV
Enable							
EN Low Time for Sh	nutdown	T _{SHDN}		3			ms
EN Low Time for Di	imming	T _{LO}		0.5		500	μs
EN High Time for D	rimming	T _{HI}		0.5			μs
EN Threshold	Logic-High Voltage	V _{IH}		1.2			V
EN THESHOU	Logic-Low Voltage	V _{IL}				0.6	V


TYPICAL PERFORMANCE CHARACTERISTICS





TYPICAL PERFORMANCE CHARACTERISTICS (continued)

FUNCTIONAL BLOCK DIAGRAM

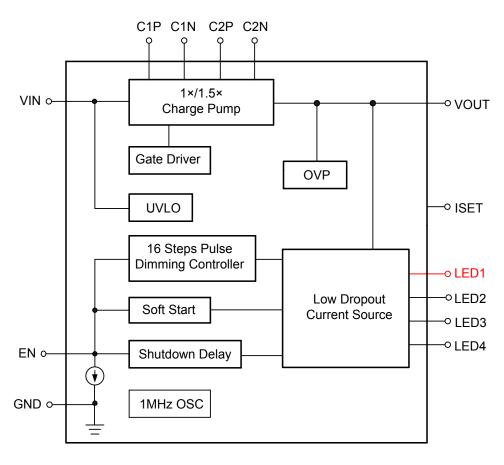


Figure 1. Block Diagram

TYPICAL APPLICATION CIRCUITS

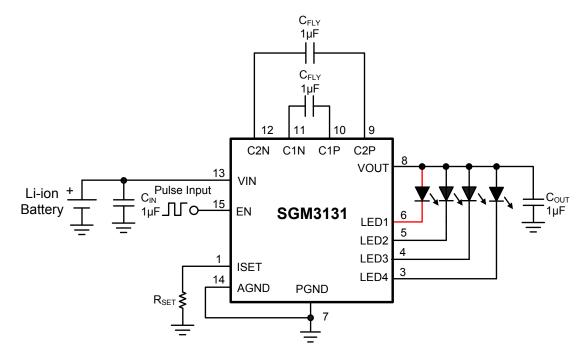


Figure 2. For 4-WLEDs Application Circuit

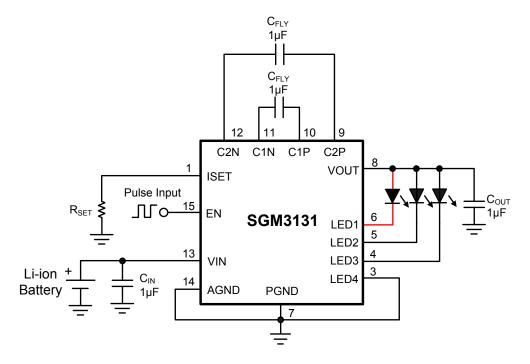


Figure 3. For 3-WLEDs Application Circuit

APPLICATION INFORMATION

The SGM3131 uses a fractional switched capacitor charge pump to power up to four white LEDs with a programmable current for uniform intensity. The part integrates current sources and automatic mode selection charge pump. It maintains the high efficiency by utilizing a 1×/1.5× fractional charge pump and current sources. The small equivalent 1× mode open loop resistance and ultra-low dropout voltage of current source extend the operating time of 1× mode and optimize the efficiency in white LED applications.

Input UVLO

The input operating voltage range of the SGM3131 is 2.7V to 5.5V. An input capacitor at the VIN pin could reduce ripple voltage. It is recommended to use a ceramic $1\mu F$ or larger capacitance as the input capacitor. This IC provides an under-voltage lockout (UVLO) function to prevent it from unstable issue when startup. The UVLO threshold of input rising voltage is set at 2.15V typically with a hysteresis 50mV.

Soft-Start

The SGM3131 employs a soft start feature to limit the inrush current. The soft-start circuit prevents the excessive inrush current and input voltage droop. The soft-start clamps the input current over a typical period of 200µs.

Mode Decision

The SGM3131 uses a smart mode selection method to decide the working mode for optimizing the efficiency. Mode decision circuit senses the output and LED voltage for up/down selection. The SGM3131 automatically switches to 1.5× mode whenever the dropout condition is detected from the current source and returns to 1× mode whenever the dropout condition releases.

LED Connection

The SGM3131 supports up to 4 white LEDs. The four LEDs are connected from VOUT to pin 3, 4, 5 and 6 respectively (Figure 2). If the LED is not used, the LED pin can be connected to GND or be floating. But the pin LED1 is always required to be connected to LED load. Figure 3 shows the connection for 3-WLEDs application.

LED Current Adjustment (ISET)

A resistor programs a reference current, which is current mirrored to set the LED current. The 100% current (16/16) in each LED is typically 260 times the current through the resistor at ISET (see Table 1).

$$R_{SET} = \frac{V_{ISET}}{I_{IED}} \times K$$

V_{ISET} — Voltage from ISET pin (0.6V) to GND
I_{LED} — 100% Current per LED from LEDx pin to GND
K — LEDx to ISET current ratio (typically 260)

The LED current varies linearly from 0mA to I_{LED} (100%) by the single wire interface, totally 16-step brightness dimming.

Table 1. R_{SET} Values

SET DRIVE CURRENT (100%)	R _{SET} COMPUTATION VALUE (kΩ)	STANDARD RESISTOR VALUE (kΩ) (1%)
30mA	5.2	5.1
25mA	6.24	6.19
20mA	7.8	7.68
10mA	15.6	15.4
5mA	31.2	30.9

APPLICATION INFORMATION (continued)

Selecting Capacitors

To get the better performance of SGM3131, the selection of peripherally appropriate capacitor and value is very important. These capacitors determine some parameters such as input/output ripple voltage, power efficiency, and maximum supply current by charge pump. To reduce the input and output ripple effectively, the low ESR ceramic capacitors are recommended. For LED driver applications, the input voltage ripple is more important than output ripple. Input ripple is controlled by input capacitor C_{IN}, increasing the value of input capacitance can further reduce the ripple. Practically, the input voltage ripple depends on the power supply impedance. The flying capacitors (C_{FLY}) determine the supply current capability of the charge pump and to influence the overall efficiency of system. The lower value will improve efficiency, but it will limit the LED's current at low input voltage. For 4×30 mA load over the entire input range of 2.7V to 5.5V, it is recommended to use a 1μ F ceramic capacitor on the flying capacitors.

Brightness Control

The SGM3131 implements a pulse dimming method to control the brightness of white LEDs. Users can easily configure the LED current from 0.5mA to 30mA by a serial pulse. The dimming of white LEDs' current can be achieved by applying a pulse signal to the EN pin. There are totally 16 steps of current could be set by users. The detail operation of brightness dimming is showed in the Figure 4.

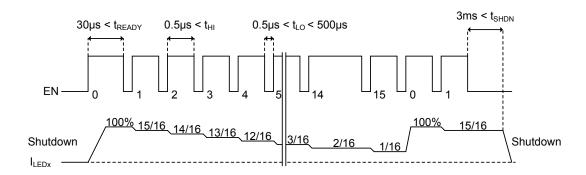
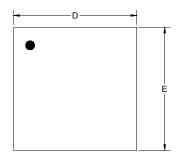
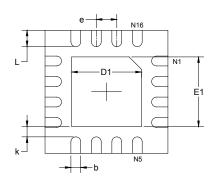
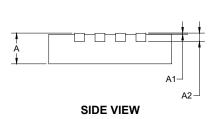
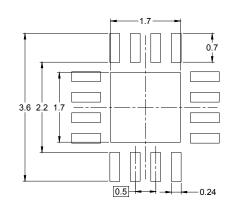




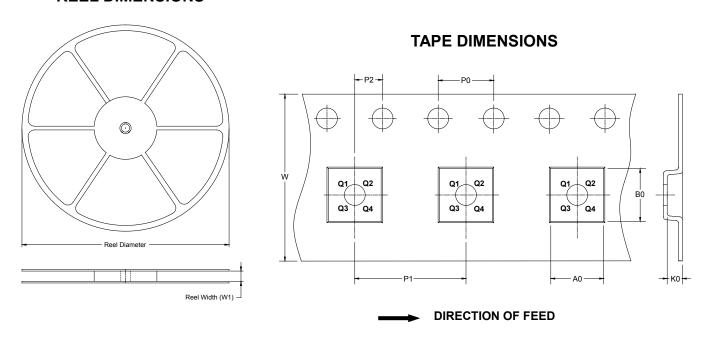
Figure 4. Brightness Control by Pulse Dimming


PACKAGE OUTLINE DIMENSIONS TQFN-3×3-16L



TOP VIEW

BOTTOM VIEW

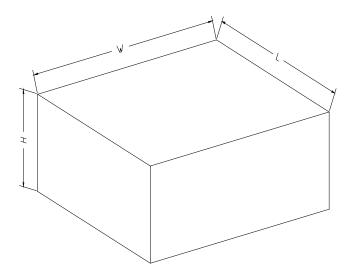


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimer In Milli	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008 REF		
D	2.900	3.100	0.114	0.122	
D1	1.600	1.800	0.063	0.071	
Е	2.900	3.100	0.114	0.122	
E1	1.600	1.800	0.063	0.071	
k	0.200	MIN	0.008	MIN	
b	0.180	0.300 0.007		0.012	
е	0.500	TYP	0.020	TYP	
L	0.300	0.500 0.012		0.020	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-3×3-16L	13"	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Reel Type Length (mm)		Height (mm)	Pizza/Carton	
13″	386	280	370	5	