CYPRESS EMBEDDED IN TOMORROW

MB96610 Series

F²MC-16FX,16-bit Proprietary Microcontroller

MB96610 series is based on Cypress advanced F²MC-16FX architecture (16-bit with instruction pipeline for RISC-like performance). The CPU uses the same instruction set as the established F²MC-16LX family thus allowing for easy migration of F²MC-16LX Software to the new F²MC-16FX products. F²MC-16FX product improvements compared to the previous generation include significantly improved performance - even at the same operation frequency, reduced power consumption and faster start-up time.For high processing speed at optimized power consumption an internal PLL can be selected to supply the CPU with up to 32MHz operation frequency from an external 4MHz to 8MHz resonator. The result is a minimum instruction cycle time of 31.2ns going together with excellent EMI behavior. The emitted power is minimized by the on-chip voltage regulator that reduces the internal CPU voltage. A flexible clock tree allows selecting suitable operation frequencies for peripheral resources independent of the CPU speed.

Features

Technology

0.18µm CMOS

CPU

- F²MC-16FX CPU
- Optimized instruction set for controller applications (bit, byte, word and long-word data types, 23 different addressing modes, barrel shift, variety of pointers)
- 8-byte instruction queue
- Signed multiply (16-bit × 16-bit) and divide (32-bit/16-bit) instructions available

System clock

- On-chip PLL clock multiplier (×1 to ×8, ×1 when PLL stop)
- 4MHz to 8MHz crystal oscillator (maximum frequency when using ceramic resonator depends on Q-factor)
- Up to 8MHz external clock for devices with fast clock input feature
- 32.768kHz subsystem quartz clock
- 100kHz/2MHz internal RC clock for quick and safe startup, clock stop detection function, watchdog
- Clock source selectable from mainclock oscillator, subclock oscillator and on-chip RC oscillator, independently for CPU and 2 clock domains of peripherals
- The subclock oscillator is enabled by the Boot ROM program controlled by a configuration marker after a Power or External reset
- Low Power Consumption 13 operating modes (different Run, Sleep, Timer, Stop modes)

On-chip voltage regulator

Internal voltage regulator supports a wide MCU supply voltage range (Min=2.7V), offering low power consumption

Low voltage detection function

Reset is generated when supply voltage falls below programmable reference voltage

Code Security

Protects Flash Memory content from unintended read-out

DMA

Automatic transfer function independent of CPU, can be assigned freely to resources

Interrupts

- Fast Interrupt processing
- 8 programmable priority levels
- Non-Maskable Interrupt (NMI)

CAN

- Supports CAN protocol version 2.0 part A and B
- ISO16845 certified
- Bit rates up to 1Mbps
- 32 message objects
- Each message object has its own identifier mask
- Programmable FIFO mode (concatenation of message objects)
- Maskable interrupt
- Disabled Automatic Retransmission mode for Time Triggered CAN applications
- Programmable loop-back mode for self-test operation

USART

- Full duplex USARTs (SCI/LIN)
- Wide range of baud rate settings using a dedicated reload timer
- Special synchronous options for adapting to different synchronous serial protocols

198 Champion Court

• San Jose, CA 95134-1709

- LIN functionality working either as master or slave LIN device
- Extended support for LIN-Protocol to reduce interrupt load

A/D converter

- SAR-type
- 8/10-bit resolution
- Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- Range Comparator Function

Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23bit Main clock timer, 17-bit Sub clock timer)

Hardware Watchdog Timer

- Hardware watchdog timer is active after reset
- Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

Reload Timers

- 16-bit wide
- Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- Event count function

Free-Running Timers

- Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4)
- Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency

Input Capture Units

- 16-bit wide
- Signals an interrupt upon external event
- Rising edge, Falling edge or Both (rising & falling) edges sensitive

Output Compare Units

- 16-bit wide
- Signals an interrupt when a match with Free-running Timer occurs
- A pair of compare registers can be used to generate an output signal

Programmable Pulse Generator

- 16-bit down counter, cycle and duty setting registers
- Can be used as 2 ×8-bit PPG
- Interrupt at trigger, counter borrow and/or duty match
- PWM operation and one-shot operation

- Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- Can be triggered by software or reload timer
- Can trigger ADC conversion
- Timing point capture

Quadrature Position/Revolution Counter (QPRC)

- Up/down count mode, Phase difference count mode, Count mode with direction
- 16-bit position counter
- 16-bit revolution counter
- Two 16-bit compare registers with interrupt
- Detection edge of the three external event input pins AIN, BIN and ZIN is configurable

Real Time Clock

- Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- Read/write accessible second/minute/hour registers
- Can signal interrupts every half second/second/minute/hour/day
- Internal clock divider and prescaler provide exact 1s clock

External Interrupts

- Edge or Level sensitive
- Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- Selected USART channels SIN have an external interrupt for wake-up

Non Maskable Interrupt

- Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
- Once enabled, can not be disabled other than by reset
- High or Low level sensitive
- Pin shared with external interrupt 0

I/O Ports

- Most of the external pins can be used as general purpose I/O
- All push-pull outputs
- Bit-wise programmable as input/output or peripheral signal
- Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- Bit-wise programmable pull-up resistor

Built-in On Chip Debugger (OCD)

- One-wire debug tool interface
- Break function:
 - □ Hardware break: 6 points (shared with code event)
 - □ Software break: 4096 points
- Event function
 - □ Code event: 6 points (shared with hardware break)
 - Data event: 6 points
 - Event sequencer: 2 levels + reset
- Execution time measurement function
- Trace function: 42 branches
- Security function

Flash Memory

- Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
- Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- Supports automatic programming, Embedded Algorithm
- Write/Erase/Erase-Suspend/Resume commands
- A flag indicating completion of the automatic algorithm
- Erase can be performed on each sector individually
- Sector protection
- Flash Security feature to protect the content of the Flash
- Low voltage detection during Flash erase or write

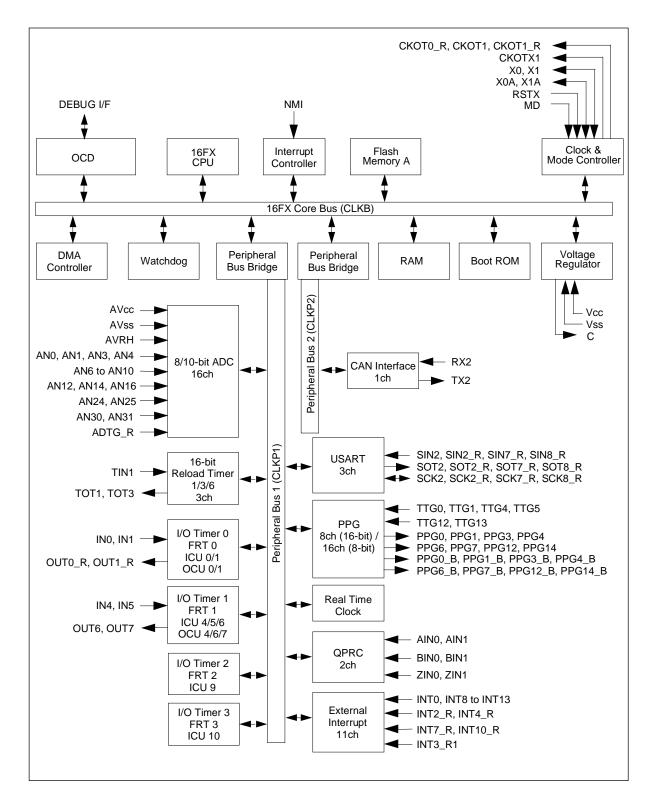
Contents

1.	Product Lineup	
2.	Block Diagram	
3.	Pin Assignment	
4.	Pin Description	
5.	Pin Circuit Type	
6.	I/O Circuit Type	13
7.	Memory Map	18
8.	RAMstart Addresses	
9.	User ROM Memory Map for Flash Devices	
10.	Serial Programming Communication Interface	
11.	Interrupt Vector Table	22
12.	Handling Precautions	26
12.1	Precautions for Product Design	
12.2	Precautions for Package Mounting	27
12.3	Precautions for Use Environment	
13.	Handling Devices	30
13.1	Latch-up prevention	30
13.2	Unused pins handling	
13.3	External clock usage	30
	1 Single phase external clock for Main oscillator	
	2 Single phase external clock for Sub oscillator	
13.3.	3 Opposite phase external clock	31
13.4	Notes on PLL clock mode operation	
13.5	Power supply pins (Vcc/Vss)	31
13.6	Crystal oscillator and ceramic resonator circuit	31
13.7	Turn on sequence of power supply to A/D converter and analog inputs	
13.8	Pin handling when not using the A/D converter	32
13.9	Notes on Power-on	
13.10) Stabilization of power supply voltage	32
	1 Serial communication	
	2 Mode Pin (MD)	
14.	Electrical Characteristics	
14.1	Absolute Maximum Ratings	
14.2	Recommended Operating Conditions	
14.3	DC Characteristics	
	1 Current Rating	
14.3.	2 Pin Characteristics	39
14.4	AC Characteristics	40
	1 Main Clock Input Characteristics	
	2 Sub Clock Input Characteristics	
	3 Built-in RC Oscillation Characteristics	
	4 Internal Clock Timing	
14.4.	5 Operating Conditions of PLL	43
	6 Reset Input	
	7 Power-on Reset Timing	
	8 USART Timing	
14.4.	9 External Input Timing	
14.5	A/D Converter	
14.5.	1 Electrical Characteristics for the A/D Converter	48
Docu	ment Number: 002-04709 Rev.*C	Pag

14.5.	.2 Accuracy and Setting of the A/D Converter Sampling Time	
14.5.	.3 Definition of A/D Converter Terms	
	Low Voltage Detection Function Characteristics	
	Flash Memory Write/Erase Characteristics	
	Example Characteristics	
	Ordering Information	
	Package Dimension	
	Major Changes	
	ument History	
		-

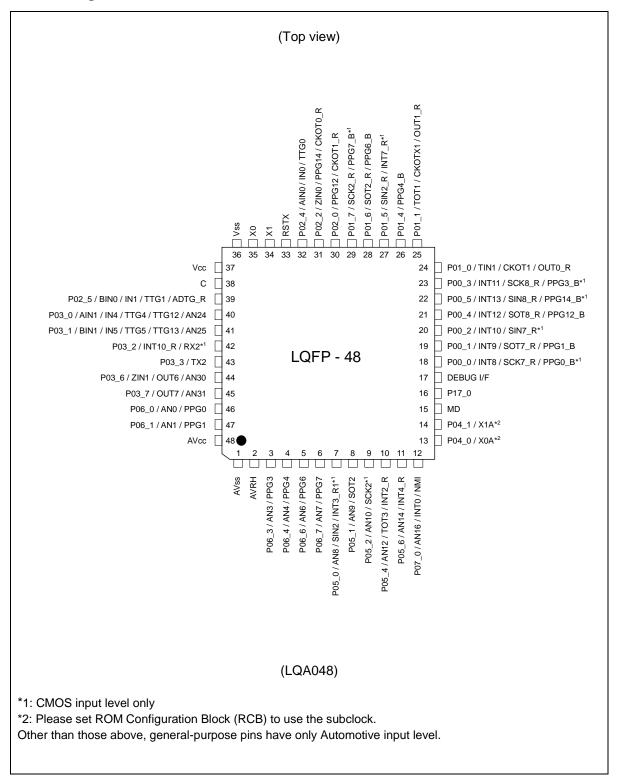
1. Product Lineup

Features			MB96610	Remark
Product Type			Flash Memory Product	
Subclock		Subclock can be set by software		
Dual Operati	ion Flash Memory	RAM	-	
32.5KB + 32		4KB	MB96F612R, MB96F612A	Product Options
64.5KB + 32	KB	10KB	MB96F613R, MB96F613A	R: MCU with CAN
128.5KB + 3	2KB	10KB	MB96F615R, MB96F615A	A: MCU without CAN
Package			LQFP-48	
гаскауе			LQA048	
DMA			2ch	
USART			3ch	LIN-USART 2/7/8
	with automatic LIN-He transmission/reception		Yes (only 1ch)	LIN-USART 2
	with 16 byte RX- and TX-FIFO		No	
8/10-bit A/D	Converter		16ch	AN 0/1/3/4/6 to 10/ 12/14/16/24/25/30/31
	with Data Buffer		No	
	with Range Comparat	or	Yes	
	with Scan Disable		No	
	with ADC Pulse Detect	tion	No	
16-bit Reloa	d Timer (RLT)		3ch	RLT 1/3/6
16-bit Free-Running Timer (FRT)		4ch	FRT 0 to 3 FRT 0 to 3 does not have external clock input pin	
16-bit Input Capture Unit (ICU)		7ch (3 channels for LIN-USART)	ICU 0/1/4 to 6/9/10 (ICU 6/9/10 for LIN-USART)	
16-bit Outpu	t Compare Unit (OCU)		5ch	OCU 0/1/4/6/7 (OCU 4 for FRT clear)
8/16-bit Proc	grammable Pulse Gener	ator (PPG)	8ch (16-bit) / 16ch (8-bit)	PPG 0/1/3/4/6/7/12/14
	with Timing point capt		Yes	
	with Start delay		No	
	with Ramp		No	
Quadrature I (QPRC)	Position/Revolution Cou	nter	2ch	QPRC 0/1
CAN Interfac	ce		1ch	CAN 2 32 Message Buffers
External Inte	errupts (INT)		11ch	INT 0/2/3/4/7 to 13
Non-Maskab	ble Interrupt (NMI)		1ch	
Real Time C	lock (RTC)		1ch	
I/O Ports			35 (Dual clock mode)	
			37 (Single clock mode)	
Clock Calibration Unit (CAL)			1ch	
Clock Output Function			2ch	
Low Voltage Detection Function		Yes	Low voltage detection function can be disabled by software	
Hardware W	atchdog Timer		Yes	
On-chip RC-oscillator			Yes	
On-chip Debugger				


Note:

_

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the general I/O port according to your function use.



2. Block Diagram

3. Pin Assignment

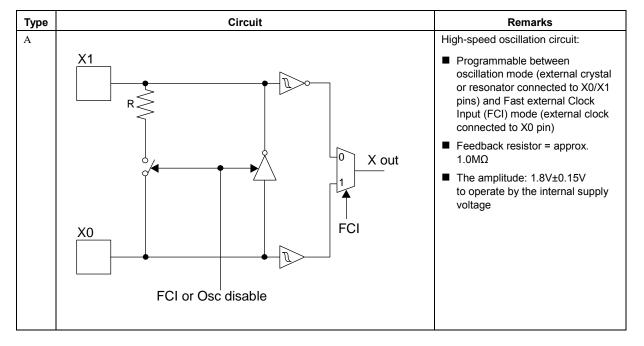
4. Pin Description

Pin name	Feature	Description	
ADTG_R	ADC	Relocated A/D converter trigger input pin	
AINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin	
ANn	ADC	A/D converter channel n input pin	
AVcc	Supply	Analog circuits power supply pin	
AVRH	ADC	A/D converter high reference voltage input pin	
AVss	Supply	Analog circuits power supply pin	
BINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin	
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin	
CKOTn	Clock Output function	Clock Output function n output pin	
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin	
CKOTXn	Clock Output function	Clock Output function n inverted output pin	
DEBUG I/F	OCD	On Chip Debugger input/output pin	
INn	ICU	Input Capture Unit n input pin	
INTn	External Interrupt	External Interrupt n input pin	
INTn_R	External Interrupt	Relocated External Interrupt n input pin	
INTn_R1	External Interrupt	Relocated External Interrupt n input pin	
MD	Core	Input pin for specifying the operating mode	
NMI	External Interrupt	Non-Maskable Interrupt input pin	
OUTn	OCU	Output Compare Unit n waveform output pin	
OUTn_R	OCU	Relocated Output Compare Unit n waveform output pin	
Pnn_m	GPIO	General purpose I/O pin	
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)	
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)	
RSTX	Core	Reset input pin	
RXn	CAN	CAN interface n RX input pin	
SCKn	USART	USART n serial clock input/output pin	
SCKn_R	USART	Relocated USART n serial clock input/output pin	
SINn	USART	USART n serial data input pin	
SINn_R	USART	Relocated USART n serial data input pin	
SOTn	USART	USART n serial data output pin	
SOTn_R	USART	Relocated USART n serial data output pin	
TINn	Reload Timer	Reload Timer n event input pin	
TOTn	Reload Timer	Reload Timer n output pin	
TTGn	PPG	Programmable Pulse Generator n trigger input pin	
TXn	CAN	CAN interface n TX output pin	
V _{cc}	Supply	Power supply pin	
Vss	Supply	Power supply pin	
X0	Clock	Oscillator input pin	
X0A	Clock	Subclock Oscillator input pin	
X1	Clock	Oscillator output pin	
X1A	Clock	Subclock Oscillator output pin	

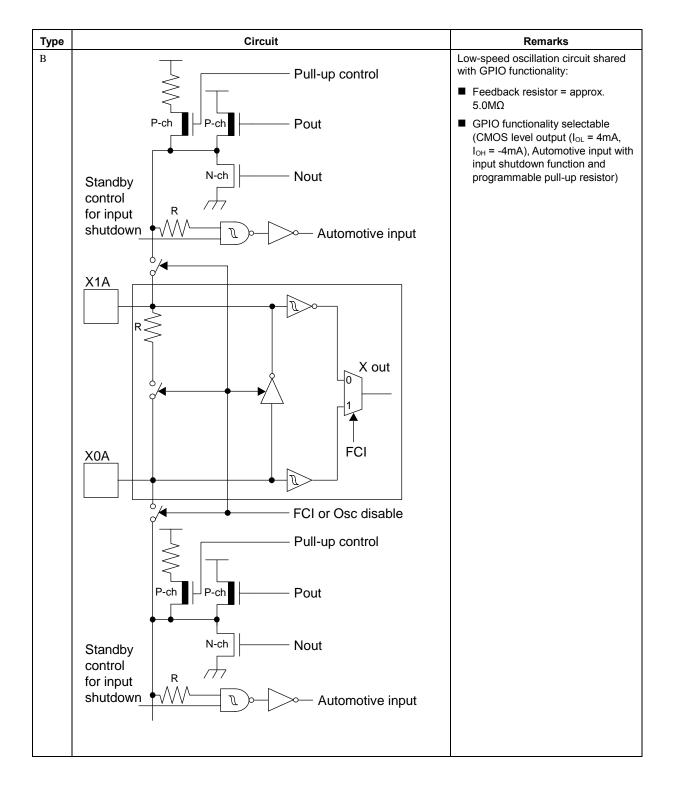
Pin name	Feature	Description
ZINn	QPRC	Quadrature Position/Revolution Counter Unit n input pin

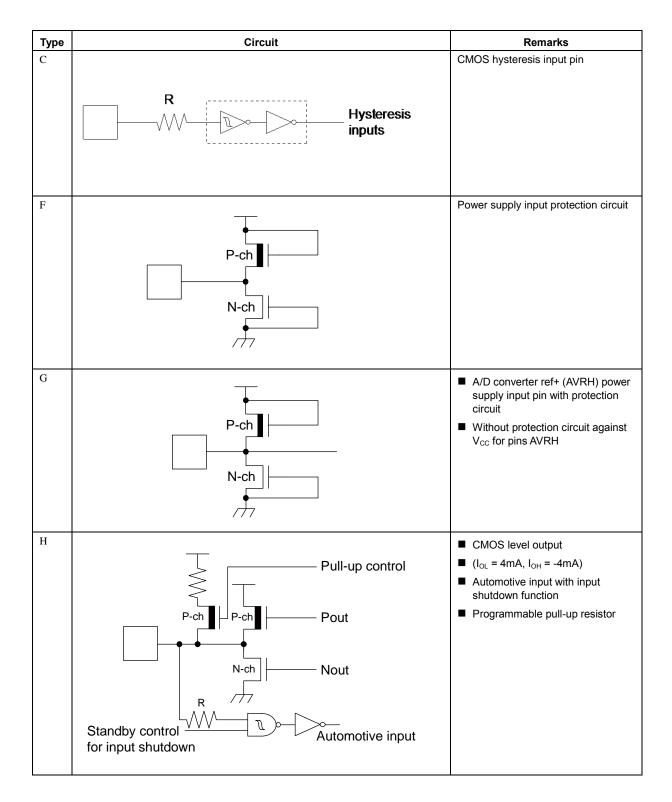
5. Pin Circuit Type

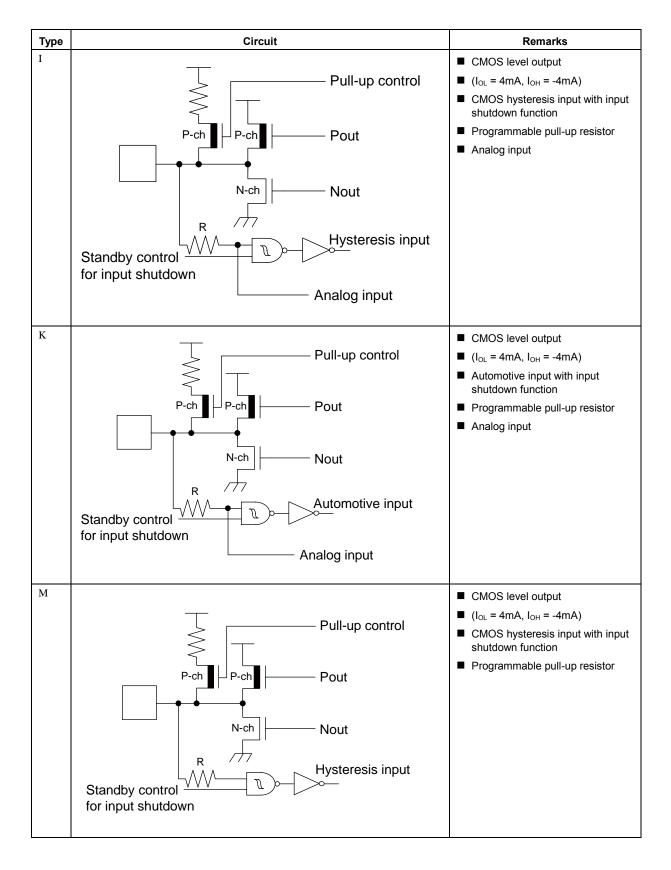
Pin no.	I/O circuit type*	Pin name	
1	Supply	AVss	
2	G	AVRH	
3	К	P06_3 / AN3 / PPG3	
4	К	P06_4 / AN4 / PPG4	
5	К	P06_6 / AN6 / PPG6	
6	К	P06_7 / AN7 / PPG7	
7	I	P05_0 / AN8 / SIN2 / INT3_R1	
8	К	P05_1 / AN9 / SOT2	
9	I	P05_2 / AN10 / SCK2	
10	К	P05_4 / AN12 / TOT3 / INT2_R	
11	К	P05_6 / AN14 / INT4_R	
12	К	P07_0 / AN16 / INT0 / NMI	
13	В	P04_0 / X0A	
14	В	P04_1 / X1A	
15	С	MD	
16	Н	P17_0	
17	0	DEBUG I/F	
18	М	P00_0 / INT8 / SCK7_R / PPG0_B	
19	н	P00_1 / INT9 / SOT7_R / PPG1_B	
20	М	P00_2 / INT10 / SIN7_R	
21	Н	P00_4 / INT12 / SOT8_R / PPG12_B	
22	М	P00_5 / INT13 / SIN8_R / PPG14_B	
23	М	P00_3 / INT11 / SCK8_R / PPG3_B	
24	н	P01_0 / TIN1 / CKOT1 / OUT0_R	
25	Н	P01_1 / TOT1 / CKOTX1 / OUT1_R	
26	Н	P01_4 / PPG4_B	
27	М	P01_5 / SIN2_R / INT7_R	
28	Н	P01_6 / SOT2_R / PPG6_B	
29	М	P01_7 / SCK2_R / PPG7_B	
30	Н	P02_0 / PPG12 / CKOT1_R	
31	Н	P02_2 / ZIN0 / PPG14 / CKOT0_R	
32	Н	P02_4 / AIN0 / IN0 / TTG0	

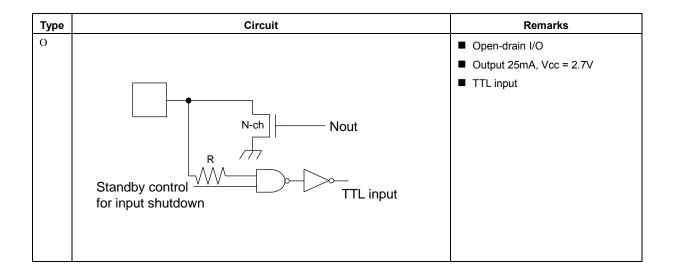


Pin no.	I/O circuit type*	Pin name
33	C	RSTX
34	A	X1
35	A	X0
36	Supply	Vss
37	Supply	Vcc
38	F	С
39	н	P02_5 / BIN0 / IN1 / TTG1 / ADTG_R
40	К	P03_0 / AIN1 / IN4 / TTG4 / TTG12 / AN24
41	К	P03_1 / BIN1 / IN5 / TTG5 / TTG13 / AN25
42	М	P03_2 / INT10_R / RX2
43	н	P03_3 / TX2
44	К	P03_6 / ZIN1 / OUT6 / AN30
45	К	P03_7 / OUT7 / AN31
46	К	P06_0 / AN0 / PPG0
47	К	P06_1 / AN1 / PPG1
48	Supply	AVcc


*: See I/O Circuit Type" for details on the I/O circuit types.

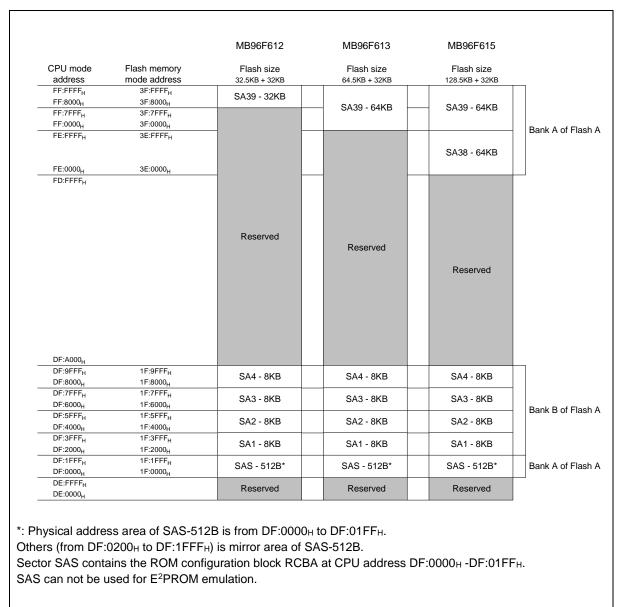

6. I/O Circuit Type





7. Memory Map

	FF:FFFF _H]
		USER ROM*1	
	DE:0000 _H		
	DD:FFFF _H		
		Reserved	
	10:0000 _Н		
		Boot-ROM	-
	0F:C000 _H		-
	0E:9000 _H	Peripheral	
		Reserved	
	01:0000 _H		
	<u></u>	ROM/RAM	-
	00:8000 _H	MIRROR	
		Internal RAM	
	RAMSTART0*2	bank0	
		Reserved	
	00:0C00 _H		
		Peripheral	1
	00:0380 _H		-
	00:0180 _H	GPR*3	-
	00:0100 _H	DMA	
	<u>00:00F0_H</u> 00:0000 _H	Reserved Peripheral	ļ
		- i criprierai]
*1: For details about USER F	ROM area, see "		
	Flash Devices" on the follow		
*2: For RAMSTART address		t page.	
*3: Unused GPR banks can			
GPR: General-Purpose R	Register		
The DMA area is only availa	ble if the device contains the	corresponding reso	urce.
The available RAM and ROM	A area depends on the devic	e.	



8. RAMstart Addresses

Devices	Bank 0 RAM size	RAMSTART0
MB96F612	4KB	00:7200 _H
MB96F613, MB96F615	10KB	00:5А00 _Н

9. User ROM Memory Map for Flash Devices

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

	MB96610						
Pin Number	USART Number	Normal Function					
7		SIN2					
8	USART2	SOT2					
9		SCK2					
20		SIN7_R					
19	USART7	SOT7_R					
18		SCK7_R					
22		SIN8_R					
21	USART8	SOT8_R					
23		SCK8_R					

11. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	ЗF8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _H	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _H	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _H	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3B8 _H	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _H	-	-	18	Reserved
19	3B0 _H	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3A8 _H	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	-	-	22	Reserved
23	3A0 _H	-	-	23	Reserved
24	39C _H	EXTINT7	Yes	24	External Interrupt 7
25	398 _H	EXTINT8	Yes	25	External Interrupt 8
26	394 _H	EXTINT9	Yes	26	External Interrupt 9
27	390 _Н	EXTINT10	Yes	27	External Interrupt 10
28	38C _H	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _H	EXTINT13	Yes	30	External Interrupt 13
31	380 _H	-	-	31	Reserved
32	37C _H	-	-	32	Reserved
33	378 _H	-	-	33	Reserved
34	374 _H	-	-	34	Reserved
35	370 _H	CAN2	No	35	CAN Controller 2
36	36C _H	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360 _H	PPG1	Yes	39	Programmable Pulse Generator 1

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
40	35C _H	-	-	40	Reserved
41	358 _H	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _H	PPG4	Yes	42	Programmable Pulse Generator 4
43	350 _Н	-	-	43	Reserved
44	34C _H	PPG6	Yes	44	Programmable Pulse Generator 6
45	348 _H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344 _H	-	-	46	Reserved
47	340 _H	-	-	47	Reserved
48	33C _H	-	-	48	Reserved
49	338 _H	-	-	49	Reserved
50	334 _H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330 _Н	-	-	51	Reserved
52	32C _H	PPG14	Yes	52	Programmable Pulse Generator 14
53	328 _H	-	-	53	Reserved
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318 _н	-	-	57	Reserved
58	314 _H	-	-	58	Reserved
59	310 _H	RLT1	Yes	59	Reload Timer 1
60	30C _H	-	-	60	Reserved
61	308 _H	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _H	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _H	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6
72	2DC _H	-	-	72	Reserved
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	ICU9	Yes	74	Input Capture Unit 9
75	2D0 _н	ICU10	Yes	75	Input Capture Unit 10
76	2CC _H	-	-	76	Reserved
77	2C8 _H	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _H	-	-	79	Reserved
80	2BC _H	-	-	80	Reserved

Vector Offset in number vector table		Vector name	Cleared by DMA	Index in ICR to program	Description		
81	2B8 _H	OCU4	Yes	81	Output Compare Unit 4		
82	2B4 _H	-	-	82	Reserved		
83	2B0 _H	OCU6	Yes	83	Output Compare Unit 6		
84	2AC _H	OCU7	Yes	84	Output Compare Unit 7		
85	2A8 _H	-	-	85	Reserved		
86	2A4 _H	-	-	86	Reserved		
87	2A0 _H	-	-	87	Reserved		
88	29C _H	-	-	88	Reserved		
89	298 _H	FRT0	Yes	89	Free-Running Timer 0		
90	294 _H	FRT1	Yes	90	Free-Running Timer 1		
91	290 _H	FRT2	Yes	91	Free-Running Timer 2		
92	28C _H	FRT3	Yes	92	Free-Running Timer 3		
93	288 _H	RTC0	No	93	Real Time Clock		
94	284 _H	CAL0	No	94	Clock Calibration Unit		
95	280 _H	-	-	95	Reserved		
96	27C _H	-	-	96	Reserved		
97	278 _H	-	-	97	Reserved		
98	274 _H	ADC0	Yes	98	A/D Converter 0		
99	270 _H	-	-	99	Reserved		
100	26C _H	-	-	100	Reserved		
101	268 _H	-	-	101	Reserved		
102	264 _H	-	-	102	Reserved		
103	260 _H	-	-	103	Reserved		
104	25C _н	-	-	104	Reserved		
105	258 _H	LINR2	Yes	105	LIN USART 2 RX		
106	254 _H	LINT2	Yes	106	LIN USART 2 TX		
107	250 _Н	-	-	107	Reserved		
108	24C _H	-	-	108	Reserved		
109	248 _H	-	-	109	Reserved		
110	244 _H	-	-	110	Reserved		
111	240 _H	-	-	111	Reserved		
112	23C _H	-	-	112	Reserved		
113	238 _H	-	-	113	Reserved		
114	234 _H	-	-	114	Reserved		
115	230 _H	LINR7	Yes	115	LIN USART 7 RX		
116	22C _H	LINT7	Yes	116	LIN USART 7 TX		
117	228 _H	LINR8	Yes	117	LIN USART 8 RX		
118	224 _H	LINT8	Yes	118	LIN USART 8 TX		
119	220 _H	-	-	119	Reserved		
120	21C _H	-	-	120	Reserved		
121	218 _H	-	-	121	Reserved		

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208 _H	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _н	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _н	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quad Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quad Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	-	-	140	Reserved
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _н	-	-	143	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■ Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION:

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■ Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). *CAUTION:*

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION:

When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ).Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styro foam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION:

Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

13. Handling Devices

Special care is required for the following when handling the device:

- Latch-up prevention
- Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (Vcc/Vss)
- Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- Pin handling when not using the A/D converter
- Notes on Power-on
- Stabilization of power supply voltage
- Serial communication
- Mode Pin (MD)

13.1 Latch-up prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{CC} or lower than V_{SS} is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pins and Vss pins.
- The AV_{CC} power supply is applied before the V_{CC} voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed

the digital power-supply voltage.

13.2 Unused pins handling

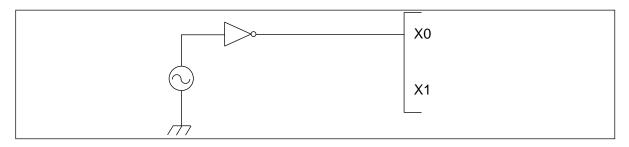
Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent

damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

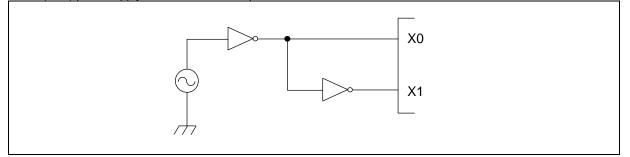
13.3 External clock usage


The permitted frequency range of an external clock depends on the oscillator type and configuration. See

AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single phase external clock for Main oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.



13.3.2 Single phase external clock for Sub oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and X0A/P04_0 pin must be driven. X1A/P04 1 pin can be configured as GPIO.

13.3.3 Opposite phase external clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

13.4 Notes on PLL clock mode operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.5 Power supply pins (Vcc/Vss)

It is required that all V_{cc} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{cc} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1µF between Vcc and Vss pins as close as possible to Vcc and Vss pins.

13.6 Crystal oscillator and ceramic resonator circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

13.7 Turn on sequence of power supply to A/D converter and analog inputs

It is required to turn the A/D converter power supply (AV_{cc}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{cc}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable)

13.8 Pin handling when not using the A/D converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC} AV_{SS} = AVRH = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than $50\mu s$ from 0.2V to 2.7V.

13.10Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

13.11 Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

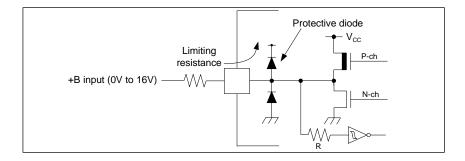
Demonstern			R	ating	11		
Parameter	Symbol	Condition	Min Max		Unit	Remarks	
Power supply voltage ^[1]	V _{cc}	-	V _{SS} - 0.3	V _{SS} + 6.0	V		
Analog power supply voltage ^[1]	AV _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{[2]}$	
Analog reference voltage ^[1]	AVRH	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥ AVRH, AVRH ≥ AV _{SS}	
Input voltage ^[1]	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{I} \le V_{CC} + 0.3 V^{[3]}$	
Output voltage ^[1]	Vo	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_0 \le V_{CC} + 0.3 V^{[3]}$	
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins [4]	
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	13	mA	Applicable to general purpose I/O pins [4]	
"L" level maximum output current	I _{OL}	-	-	15			
"L" level average output current	I _{OLAV}	-	-	4	mA		
"L" level maximum overall output current	ΣI _{OL}	-	-	32	mA		
"L" level average overall output current	ΣΙ _{ΟLAV}	-	-	16	mA		
"H" level maximum output current	I _{OH}	-	-	-15	mA		
"H" level average output current	I _{OHAV}	-	-	-4	mA		
"H" level maximum overall output current	ΣI _{OH}	-	-	-32	mA		
"H" level average overall output current	Σι _{οнаν}	-	-	-16	mA		
Power consumption ^[5]	PD	T _A = +125°C	-	284 ^[6]	mW		
Operating ambient temperature	T _A	-	-40	+125 ^[7]	°C		
Storage temperature	T _{STG}	-	-55	+150	°C		

[1]: This parameter is based on V_{SS} = AV_{SS} = 0V.

[2]: AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

[3]: V_1 and V_0 should not exceed V_{CC} + 0.3V. V_1 should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_1 rating. Input/Output voltages of standard ports depend on V_{CC} .

[4]:


- Applicable to all general purpose I/O pins (Pnn_m).
- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.

Sample recommended circuits:

[5]: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

 $P_D = P_{IO} + P_{INT}$

 $P_{IO} = \Sigma (V_{OL} \times I_{OL} + V_{OH} \times I_{OH})$ (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_A is the analog current consumption into AV_{CC}.

[6]: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

[7]: Write/erase to a large sector in flash memory is warranted with $T_A \leq +105^{\circ}C$.

WARNING:

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0V)$

Barrantan	0h.al	Value			11	Dementer		
Parameter	Symbol	Min	Тур	Мах	Unit	Remarks		
Power supply voltage	V_{cc} , AV_{cc}	2.7	-	5.5	V			
Power supply voltage		2.0	-	5.5	V	Maintains RAM data in stop mode		
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0 \mu F \mbox{ (Allowance within \pm 50\%) \\ 3.9 \mu F \mbox{ (Allowance within \pm 20\%) \\ Please use the ceramic capacitor or the capacitor of the frequency response of this level. The smoothing capacitor at V_{cc} must use the one of a capacity value that is larger than C_{s}. \end{array}$		

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

14.3 DC Characteristics

14.3.1 Current Rating

 $(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, Vss = AVss = 0V, T_A = - 40°C to + 125°C)

Parameter	Symbol	Pin	O and this ma	Value			Unit	Remarks
	Symbol	name	Conditions	Min	Тур	Мах	Unit	Remarks
	ICCPLL		PLL Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32MHz Flash 0 wait (CLKRC and CLKSC stopped)	-	25	-	mA	T _A = +25°C
				-	-	34	mA	T _A = +105°C
				-	-	35	mA	T _A = +125°C
	Iccmain		Main Run mode with CLKS1/2 = CLKB = CLKP1/2 = 4MHz Flash 0 wait (CLKPLL, CLKSC and CLKRC stopped)	-	3.5	-	mA	T _A = +25°C
				-	-	7.5	mA	T _A = +105°C
				-	-	8.5	mA	T _A = +125°C
	I _{CCRCH} V		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC =	-	1.7	-	mA	T _A = +25°C
Power supply current in Run modes ^[1]		Vcc	2MHz Flash 0 wait (CLKMC, CLKPLL and CLKSC	-	-	5.5	mA	T _A = +105°C
			stopped)	-	-	6.5	mA	T _A = +125°C
	Iccrcl		RC Run mode with CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz Flash 0 wait (CLKMC, CLKPLL and CLKSC stopped)	-	0.15	-	mA	T _A = +25°C
				-	-	3.2	mA	T _A = +105°C
				-	-	4.2	mA	T _A = +125°C
	I _{CCSUB}		Sub Run mode with CLKS1/2 = CLKB = CLKP1/2 = 32kHz Flash 0 wait (CLKMC, CLKPLL and CLKRC	-	0.1	-	mA	T _A = +25°C
				-	-	3	mA	T _A = +105°C
			stopped)	-	-	4	mA	T _A = +125°C

_		Pin			Value			
Parameter	Symbol	name	Conditions	Min	Тур	Мах	Unit	Remarks
			PLL Sleep mode with	-	6.5	-	mA	T _A = +25°C
			CLKS1/2 = CLKP1/2 = 32MHz (CLKRC and CLKSC stopped)	-	-	13	mA	T _A = +105°C
				-	-	14	mA	T _A = +125°C
			Main Sleep mode with	-	0.9	-	mA	T _A = +25°C
	I _{CCSMAIN}		CLKS1/2 = CLKP1/2 = 4MHz, SMCR:LPMSS = 0	-	-	4	mA	T _A = +105°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	5	mA	T _A = +125°C
	Iccsrch		RC Sleep mode with CLKS1/2 = CLKP1/2 = CLKRC = 2MHz, SMCR:LPMSS = 0 (CLKMC, CLKPLL and CLKSC stopped)	-	0.5	-	mA	T _A = +25°C
Power supply current in Sleep modes ^[1]		Vcc		-	-	3.5	mA	T _A = +105°C
				-	-	4.5	mA	T _A = +125°C
			RC Sleep mode with CLKS1/2 =	-	0.06	-	mA	T _A = +25°C
	I _{CCSRCL}		CLKP1/2 = CLKRC = 100kHz (CLKMC, CLKPLL and CLKSC	-	-	2.7	mA	T _A = +105°C
			stopped)	-	-	3.7	mA	T _A = +125°C
	I _{CCSSUB}		Sub Sleep mode with CLKS1/2 = CLKP1/2 = 32kHz, (CLKMC, CLKPLL and CLKRC	-	0.04	-	mA	T _A = +25°C
				-	-	2.5	mA	T _A = +105°C
			stopped)	-	-	3.5	mA	T _A = +125°C

Demonster	Cumula al	Pin	Conditions	Value			11	Domorika
Parameter	Symbol	name	Conditions	Min	Тур	Max	Unit	Remarks
				-	1800	2245	μΑ	T _A = +25°C
	ICCTPLL		PLL Timer mode with CLKPLL = 32MHz (CLKRC and CLKSC stopped)	-	-	3165	μA	T _A = +105°C
				-	-	3975	μΑ	T _A = +125°C
			Main Timer mode with	-	285	325	μA	T _A = +25°C
	I _{CCTMAIN}		CLKMC = 4MHz, SMCR:LPMSS = 0	-	-	1085	μA	T _A = +105°C
			(CLKPLL, CLKRC and CLKSC stopped)	-	-	1930	μΑ	T _A = +125°C
_	Icctrch		RC Timer mode with	-	160	210	μA	T _A = +25°C
Power supply current in Timer modes ^[2]		Vcc	CLKRC = 2MHz, SMCR: I PMSS = 0 (CLKPL)	-	-	1025	μA	T _A = +105°C
			SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)	-	-	1840	μA	T _A = +125°C
			RC Timer mode with CLKRC = 100kHz (CLKPLL,	-	35	75	μA	T _A = +25°C
				-	-	855	μA	T _A = +105°C
			CLKMC and CLKSC stopped)	-	-	1640	μA	T _A = +125°C
	I _{CCTSUB}		Sub Timer mode with CLKSC = 32kHz (CLKMC,	-	25	65	μA	T _A = +25°C
				-	-	830	μA	T _A = +105°C
			CLKPLL and CLKRC stopped)	-	-	1620	μA	T _A = +125°C
Power supply				-	20	55	μA	T _A = +25°C
current in Stop	I _{CCH}		-	-	-	825	μA	T _A = +105°C
mode ^[3]				-	-	1615	μA	T _A = +125°C
Flash Power Down current	ICCFLASHPD		-	-	36	70	μA	
Power supply current		Vcc		-	5	-	μA	T _A = +25°C
for active Low Voltage detector ^[4]			Low voltage detector enabled	-	-	12.5	μA	T _A = +125°C
Flash Write/		1		-	12.5	-	mA	T _A = +25°C
Erase current ^[5]	ICCFLASH		-	-	-	20	mA	T _A = +125°C

[1]: The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. See chapter "Standby mode and voltage regulator control circuit" of the Hardware Manual for further details about voltage regulator control. Current for "On Chip Debugger" part is not included. Power supply current in Run mode does not include Flash Write / Erase current.

[2]: The power supply current in Timer mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

The power supply current is measured with a 4MHz external clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator. The current for "On Chip Debugger" part is not included.

[3]: The power supply current in Stop mode is the value when Flash is in Power-down / reset mode.

When Flash is not in Power-down / reset mode, ICCFLASHPD must be added to the Power supply current.

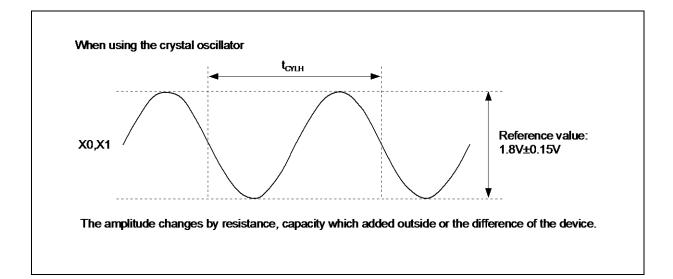
[4]: When low voltage detector is enabled, I_{CCLVD} must be added to Power supply current.

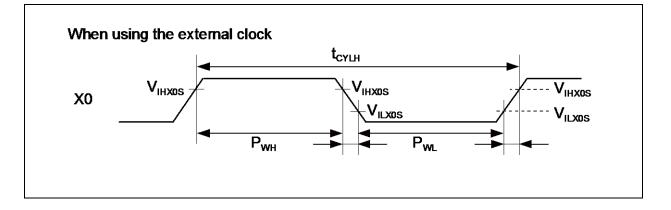
[5]: When Flash Write / Erase program is executed, ICCFLASH must be added to Power supply current.

14.3.2 Pin Characteristics

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = - 40°C to + 125°C)

-			A 1 ¹¹ 1		Value			_
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
			-	V _{CC} ×0.7	-	V _{cc} + 0.3	V	CMOS Hysteresis input
	V _{IH}	Port inputs Pnn_m	-	V _{CC} ×0.8	-	V _{CC} + 0.3	V	AUTOMOTIVE Hysteresis input
"H" level input	VIHXOS	XO	External clock in "Fast Clock Input mode"	VD×0.8	-	VD	v	VD=1.8V±0.15V
voltage	VIHXOAS	X0A	External clock in "Oscillation mode"	V _{CC} ×0.8	-	V _{cc} + 0.3	V	
	VIHR	RSTX	-	V _{CC} ×0.8	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIHM	MD	-	V _{cc} - 0.3	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	V _{IHD}	DEBUG I/F	-	2.0	-	V _{CC} + 0.3	V	TTL Input
			-	V _{SS} - 0.3	-	$V_{CC} \times 0.3$	V	CMOS Hysteresis input
		Port inputs Pnn_m	-	V _{SS} - 0.3	-	V _{CC} ×0.5	V	AUTOMOTIVE Hysteresis input
"L" level input voltage	VILX0S	X0	External clock in "Fast Clock Input mode"	V _{SS}	-	VD×0.2	v	VD=1.8V±0.15V
	VILXOAS	X0A	External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{CC} ×0.2	V	
	V _{ILR}	RSTX	-	V _{SS} - 0.3	-	V _{CC} ×0.2	V	CMOS Hysteresis input
	VILM	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input
	VILD	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input
"H" level output voltage	V _{OH4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OH} = -4mA$ $2.7V \le V_{CC} < 4.5V$ $I_{OH} = -1.5mA$	- V _{cc} - 0.5	-	V _{cc}	v	
"L" level output voltage	V _{OL4}	4mA type	$4.5V \le V_{CC} \le 5.5V$ $I_{OL} = +4MA$ $2.7V \le V_{CC} < 4.5V$ $I_{OL} = +1.7mA$		-	0.4	v	
	V _{OLD}	DEBUG I/F	V _{CC} = 2.7V I _{OL} = +25mA	0	-	0.25	V	
Input leak current	IIL	Pnn_m	$V_{SS} < V_I < V_{CC}$ A $V_{SS} < V_I < AV_{CC}$, AVRH	- 1	-	+ 1	μA	
Pull-up resistance value	R _{PU}	Pnn_m	V _{CC} = 5.0V ±10%	25	50	100	kΩ	
Input capacitance	C _{IN}	Other than C, Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF	

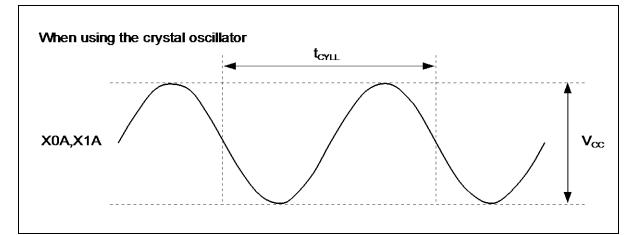


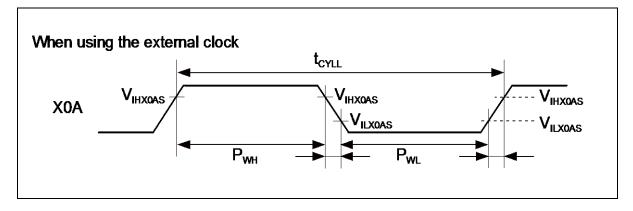

14.4 AC Characteristics

14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD = 1.8V \pm 0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Demonster	Symbol	Pin	Value			11-14	Remarks	
Parameter		name	Min	Тур	Мах	Unit	Remarks	
			4	-	8	MHz	When using a crystal oscillator, PLL off	
Input frequency	f _C	X0, X1	-	-	8	MHz	When using an opposite phase external clock, PLL off	
			4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on	
		XO	-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off	
Input frequency	f _{FCI}		4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on	
Input clock cycle	t _{CYLH}	-	125	-	-	ns		
Input clock pulse width	P _{WH} , P _{WL}	-	55	-	-	ns		





14.4.2 Sub Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Demonster	Symbol	Pin name	Conditions		Value		11	Remarks
Parameter				Min	Тур	Мах	Unit	Remarks
	f _{CL}	X0A, X1A	-	-	32.768	-	kHz	When using an oscillation circuit
Input frequency			-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs	
Input clock pulse width	-	-	$\begin{array}{l} {P_{WH}}/{t_{CYLL}},\\ {P_{WL}}/{t_{CYLL}} \end{array}$	30	-	70	%	

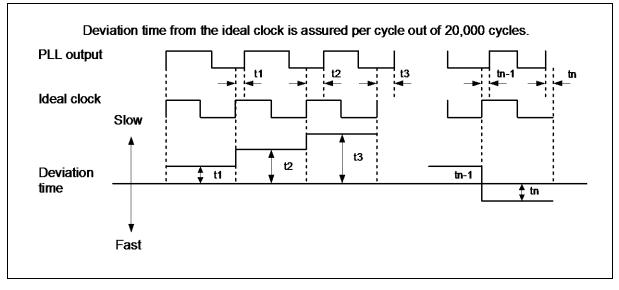
14.4.3 Built-in RC Oscillation Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Damanatan	0 milest		Value		1114	Demerika	
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Clock frequency	f _{BC}	50	100	200	kHz	When using slow frequency of RC oscillator	
	IRC	1	2	4	MHz	When using fast frequency of RC oscillator	
	t _{rcstab}	80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)	
RC clock stabilization time		64	128	256	μS	When using fast frequency of RC oscillator (256 RC clock cycles)	

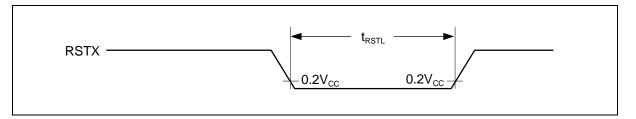
14.4.4 Internal Clock Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


Devenueter	Symbol	Va	Unit	
Parameter	Symbol	Min	Мах	Unit
Internal System clock frequency (CLKS1 and CLKS2)	f_{CLKS1}, f_{CLKS2}	-	54	MHz
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	f _{clkb} , f _{clkp1}	-	32	MHz
Internal peripheral clock frequency (CLKP2)	f _{CLKP2}	-	32	MHz

14.4.5 Operating Conditions of PLL

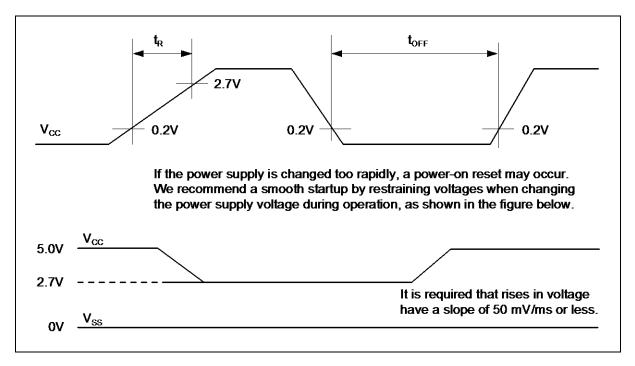
 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$


Demanden	Symbol	Value			Unit	Dementer
Parameter	Symbol	Min	Тур	Мах	Unit	Remarks
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz
PLL input clock frequency	f _{PLLI}	4	-	8	MHz	
PLL oscillation clock frequency	f _{CLKVCO}	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz

14.4.6 Reset Input

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parameter	Symbol	Pin name	Va	Unit		
Farameter	Symbol	Pin name	Min	Max	Unit	
Reset input time	t _{RSTL}	RSTX	10	-	μs	
Rejection of reset input time		RSIX	1	-	μs	



14.4.7 Power-on Reset Timing

1			T. 40%C to 1 125%C)
($v_{CC} = Av_{CC} = 2.7 v \ 10 \ 5.5$	v, vss = Avss = 0v,	$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Demonstern	0. makest	Dia anna		11-24			
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	
Power on rise time	t _R	Vcc	0.05	-	30	ms	
Power off time	t _{OFF}	Vcc	1	-	-	ms	

14.4.8 USART Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to} + 125^{\circ}\text{C}, C_L=50\text{pF})$

Parameter	Symbol	Pin name	Conditions	$4.5V \le V_{CC} < 10^{-1}$	5.5V	$2.7V \le V_{CC}$	<4.5V	Uni
Falamelei	Symbol	Finname	Conditions	Min	Max	Min	Max	t
Serial clock cycle time	t _{SCYC}	SCKn		4t _{CLKP1}	-	4t _{CLKP1}	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	t _{SLOVI}	SCKn, SOTn		- 20	+ 20	- 30	+ 30	ns
$SOT \to SCK \uparrow delay time$	t _{ovsHI}	SCKn, SOTn	Internal shift clock mode	N×t _{CLKP1} – 20 [*]	-	N×tclkp1– 30 [*]	-	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHI}	SCKn, SINn		tclkp1+ 45	-	t _{CLKP1} + 55	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXI}	SCKn, SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKn, SOTn	External	-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \to SCK \uparrow setup time$	t _{IVSHE}	SCKn, SINn	shift clock mode	t _{CLKP1} /2+ 10	-	t _{CLKP1} /2 + 10	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	t _{SHIXE}	SCKn, SINn		tclkp1+ 10	-	tclkp1 + 10	-	ns
SCK fall time	t _F	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns

Notes:

- AC characteristic in CLK synchronized mode

- C_L is he load capacity value of pins when testing.

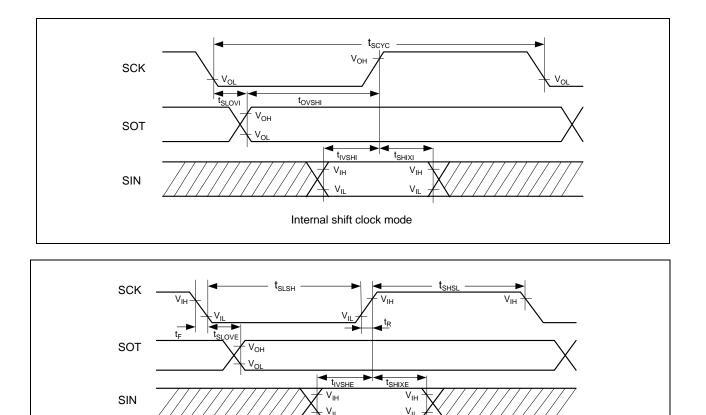
 Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "MB96600 series HARDWARE MANUAL".

 t_{CLKP1} indicates the peripheral clock 1 (CLKP1), Unit: ns These characteristics only guarantee the same relocate port number.

For example, the combination of SCKn and SOTn_R is not guaranteed.

*: Parameter N depends on t_{SCYC} and can be calculated as follows:

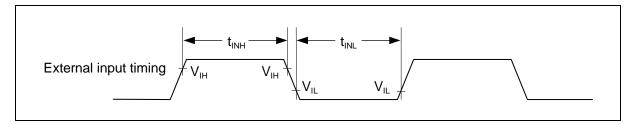
If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2


If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1

Examples:

tscyc	Ν
4 xtclkp1	2
5 xt _{CLKP1} , 6 xt _{CLKP1}	3
7 xtclkp1, 8 xtclkp1	4

External shift clock mode



14.4.9 External Input Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Devenueter	Cumple of	Din nome	Value		11	Demerke			
Parameter	Parameter Symbol	Pin name	Min	Мах	Unit	Remarks			
	Pnn_m				General Purpose I/O				
		ADTG_R	2t _{CLKP1} +200 (t _{CLKP1} =1/f _{CLKP1})*					A/D Converter trigger input	
		TINn						1	
		TTGn		-	ns	PPG trigger input			
Input pulse	+ +	INn		(I _{CLKP1} =1/I _{CLKP1})"	(t _{CLKP1} =1/t _{CLKP1})"	$CLKP1 = 1/T_{CLKP1}$		Input Capture	
width	t _{INH} , t _{INL}	AINn, BINn, ZINn					Quadrature Position/Revolutio Counter		
		INTn, INTn_R, INTn_R1		-	ns	External Interrupt			
		NMI				Non-Maskable Interrupt			

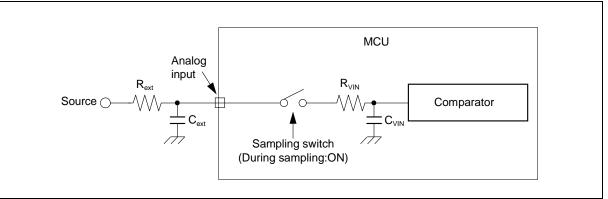
*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

- /			Value				
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	10	bit	
Total error	-	-	- 3.0	-	+ 3.0	LSB	
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB	
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB	
Zero transition voltage	V _{OT}	ANn	Тур - 20	AV _{ss} + 0.5LSB	Тур + 20	mV	
Full scale transition voltage	V _{FST}	ANn	Тур - 20	AVRH- 1.5LSB	Тур + 20	mV	
0			1.0	-	5.0	μs	$4.5V \le AV_{CC} \le 5.5V$
Compare time*	-	-	2.2	-	8.0	μs	$2.7V \le AV_{CC} < 4.5V$
O and the setting at			0.5	-	-	μs	$4.5V \le AV_{CC} \le 5.5V$
Sampling time*	-	-	1.2	-	-	μs	$2.7V \le AV_{CC} < 4.5V$
	I _A		-	2.0	3.1	mA	A/D Converter active
Power supply current	I _{AH}	AV _{cc}	-	-	3.3	μA	A/D Converter not operated
Reference power supply current	I _R		-	520	810	μA	A/D Converter active
(between AVRH and AV_{SS})	I _{RH}	AVRH	-	-	1.0	μA	A/D Converter not operated
Analog input capacity	C _{VIN}	ANn	-	-	15.6	pF	
	D	ANIa	-	-	2050	Ω	$4.5V \le AV_{CC} \le 5.5V$
Analog impedance	R _{VIN}	ANn	-	-	3600	Ω	$2.7V \le AV_{CC} < 4.5V$
Analog port input current (during conversion)	I _{AIN}	ANn	- 0.3	-	+ 0.3	Ω	AV _{SS} <v<sub>AIN <av<sub>CC, AVRH</av<sub></v<sub>
Analog input voltage	V _{AIN}	ANn	AVss	-	AVRH	V	
Reference voltage range	-	AVRH	AV _{cc} - 0.1	-	AV _{cc}	V	
Variation between channels	-	ANn	-	-	4.0	LSB	


*: Time for each channel.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

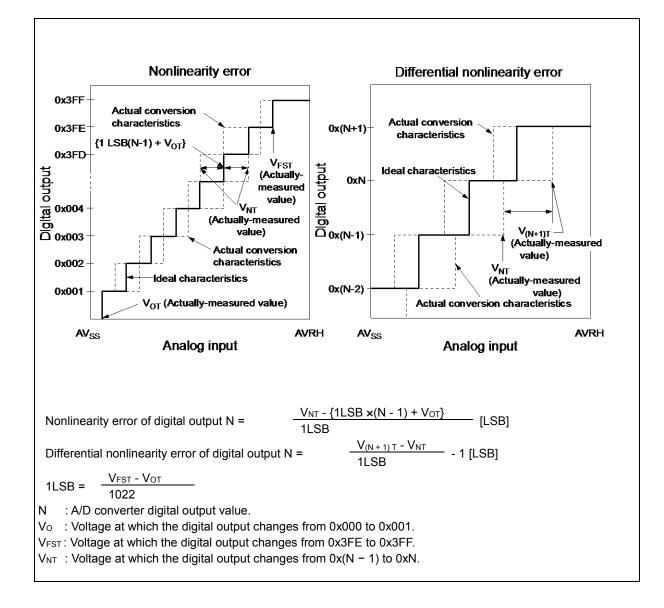
To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (Tsamp) depends on the external driving impedance R_{ext}, the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

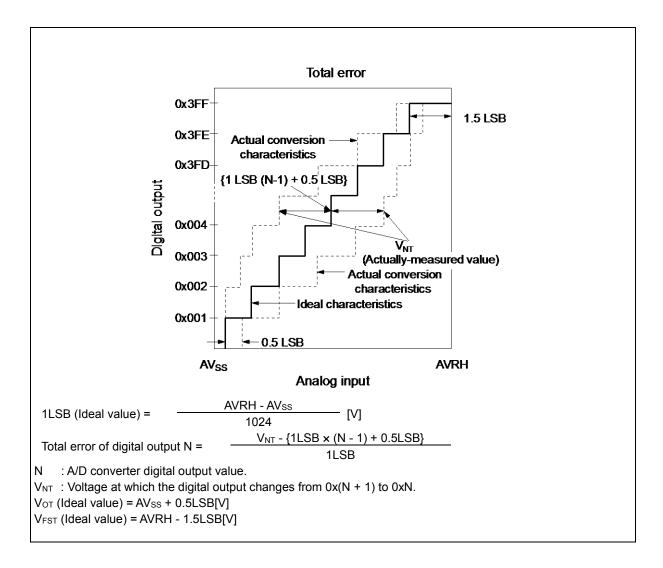
Cext: Capacitance of PCB at A/D converter input

C_{VIN}: Analog input capacity (I/O, analog switch and ADC are contained)

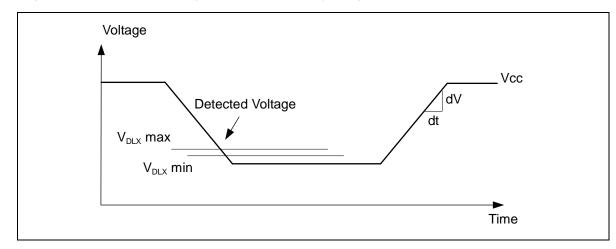
Rvin: Analog input impedance (I/O, analog switch and ADC are contained)


The following approximation formula for the replacement model above can be used: Tsamp = $7.62 \times (\text{Rext} \times \text{Cext} + (\text{Rext} + \text{R}_{VIN}) \times \text{C}_{VIN})$

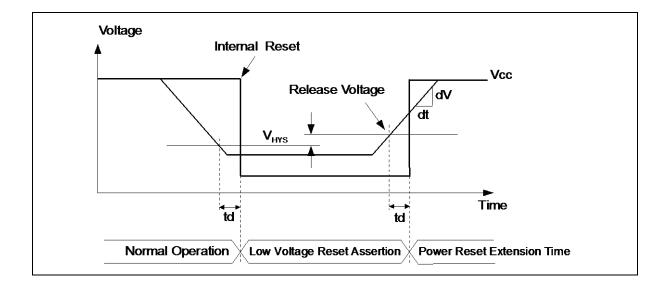
- Do not select a sampling time below the absolute minimum permitted value. (0.5µs for 4.5V ≤ AV_{CC} ≤ 5.5V, 1.2µs for 2.7V ≤ AV_{CC} < 4.5V)</p>
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1μF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

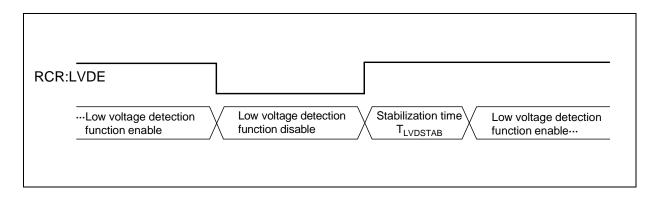

14.5.3 Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b0000000000 ←→ 0b000000001) to the full-scale transition point (0b1111111110 ←→ 0b111111111).
- Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to change the output code by 1LSB.
- Total error : Difference between the actual value and the theoretical value. The total error includes zero transition error, full-scale transition error and nonlinearity error.
- Zero transition voltage: Input voltage which results in the minimum conversion value.
- Full scale transition voltage: Input voltage which results in the maximum conversion value.


14.6 Low Voltage Detection Function Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


- (A 1111		Value			
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
	V _{DL0}	$CILCR:LVL = 0000_B$	2.70	2.90	3.10	V	
	V _{DL1}	CILCR:LVL = 0001 _B	2.79	3.00	3.21	V	
	V _{DL2}	CILCR:LVL = 0010 _B	2.98	3.20	3.42	V	
Detected voltage ^[1]	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V	
	V _{DL4}	CILCR:LVL = 0100 _B	3.45	3.70	3.95	V	
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V	
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V	
Power supply voltage change rate ^[2]	dV/dt	-	- 0.004	-	+ 0.004	V/µs	
Libertana da sudalib		CILCR:LVHYS=0	-	-	50	mV	
Hysteresis width	V _{HYS}	CILCR:LVHYS=1	80	100	120	mV	
Stabilization time	T _{LVDSTAB}	-	-	-	75	μs	
Detection delay time	t _d	-	-	-	30	μs	


[1]: If the power supply voltage fluctuates within the time less than the detection delay time (t_d), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

[2]: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

14.7 Flash Memory Write/Erase Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Barra		O an distance		Value		1114	Demender	
Parar	meter Conditions		Min	Тур	Max	Unit	Remarks	
	Large Sector	Ta ≤ + 105°C	-	1.6	7.5	s		
Sector erase time	Small Sector	-	-	0.4	2.1	s	Includes write time prior to internal erase.	
	Security Sector	-	-	0.31	1.65	s		
Word (16-bit) write	Large Sector	Ta ≤ + 105°C	-	25	400	μs	Not including system-level	
time	Small Sector	-	-	25	400	μs	overheadtime.	
Chip erase time		Ta ≤ + 105°C	-	5.11	25.05	s	Includes write time prior to internal erase.	

Note:

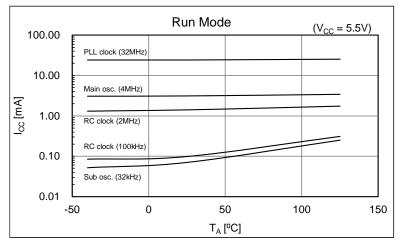
While the Flash memory is written or erased, shutdown of the external power (V_{cc}) is prohibited. In the application system where the external power (V_{cc}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

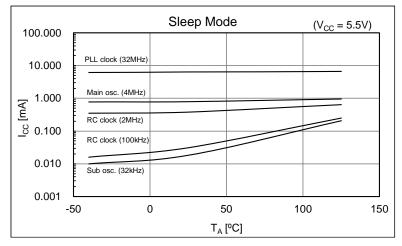
To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})^{*1}.

Write/Erase cycles and data hold time

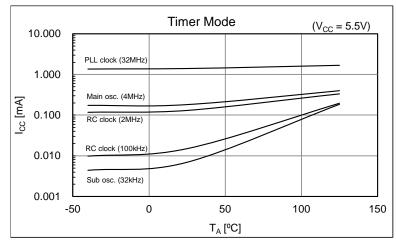
Write/Erase cycles (cycle)	Data hold time (year)
1,000	20 [2]
10,000	10 [2]
100,000	5 [2]

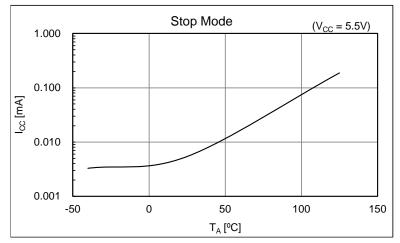
[1]:See "14.6 Low Voltage Detection Function Characteristics".


[2]: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+ 85^{\circ}$ c).



15. Example Characteristics


This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value. MB96F615



MB96F615

Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings	
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz	
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz	
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz	
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz	
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz	
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz	
		Regulator in High Power Mode, (CLKB is stopped in this mode)	
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz	
		Regulator in High Power Mode, (CLKB is stopped in this mode)	
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz	
		Regulator in High Power Mode, (CLKB is stopped in this mode)	
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz	
		Regulator in Low Power Mode, (CLKB is stopped in this mode)	
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz	
		Regulator in Low Power Mode, (CLKB is stopped in this mode)	
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz	
		(System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode	
	Main osc.	CLKMC = 4MHz	
		(System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode	
	RC clock fast	CLKMC = 2MHz	
		(System clocks are stopped in this mode) Regulator in High Power Mode, FLASH in Power-down / reset mode	
	RC clock slow	CLKMC = 100kHz	
		(System clocks are stopped in this mode) Regulator in Low Power Mode, FLASH in Power-down / reset mode	
	Sub osc.	CLKMC = 32 kHz	
		(System clocks are stopped in this mode)	
		Regulator in Low Power Mode, FLASH in Power-down / reset mode	
Stop mode	stopped	(All clocks are stopped in this mode)	
		Regulator in Low Power Mode, FLASH in Power-down / reset mode	

16.Ordering Information

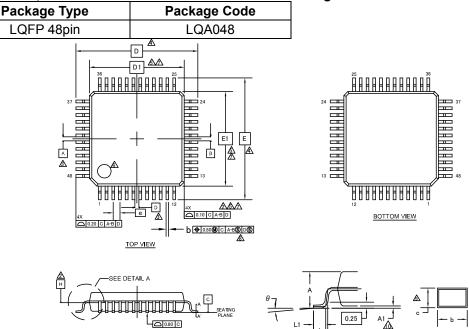
MCU with CAN controller

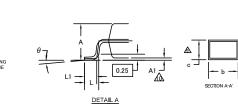
Part number	Flash memory	Package*	
MB96F612RBPMC-GSE1			
MB96F612RBPMC-GS-UJE1			
MB96F612RBPMC-GSE2	Flash A (64.5KB)	48-pin plastic LQFP (LQA048)	
MB96F612RBPMC-GS-UJE2			
MB96F612RBPMC-GTE1			
MB96F613RBPMC-GSE1			
MB96F613RBPMC-GS-UJE1			
MB96F613RBPMC-GSE2	Flash A (96.5KB)	48-pin plastic LQFP (LQA048)	
MB96F613RBPMC-GS-UJE2			
MB96F613RBPMC-GTE1			
MB96F615RBPMC-GSE1			
MB96F615RBPMC-GS-UJE1			
MB96F615RBPMC-GSE2	Flash A (160.5KB)	48-pin plastic LQFP (LQA048)	
MB96F615RBPMC-GS-UJE2			
MB96F615RBPMC-GTE1			

*: For details about package, see "Package Dimension".

MCU without CAN controller

Part number	Flash memory	Package*		
MB96F612ABPMC-GSE1				
MB96F612ABPMC-GS-UJE1				
MB96F612ABPMC-GSE2	Flash A (64.5KB)	48-pin plastic LQFP (LQA048)		
MB96F612ABPMC-GS-UJE2	(******)			
MB96F612ABPMC-GTE1				
MB96F613ABPMC-GSE1				
MB96F613ABPMC-GS-UJE1				
MB96F613ABPMC-GSE2	Flash A (96.5KB)	48-pin plastic LQFP (LQA048)		
MB96F613ABPMC-GS-UJE2				
MB96F613ABPMC-GTE1				
MB96F615ABPMC-GSE1				
MB96F615ABPMC-GS-UJE1	Flash A	48-pin plastic LQFP (LQA048)		
MB96F615ABPMC-GSE2	(160.5KB)	40-pin plastic LQI F (LQA040)		
MB96F615ABPMC-GTE1				


*: For details about package, see "Package Dimension".



17. Package Dimension

SIDE VIEW

SYMBOL	DIN	I EN SIOI	٧S	
STMBUL	MIN.	NOM.	MAX.	
А	—	—	1.70	
A1	0.00	—	0.20	
b	0.15		0.27	
с	0.09		0.20	
D	9.00 BSC			
D1	7.00 BSC			
е	0.50 BSC			
E	9.00 BSC			
E1	7.00 BSC			
L	0.45	0.60	0.75	
L1	0.30	0.50	0.70	
θ	0°	—	8°	

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETERS.

- \triangle DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.

 \triangle TO BE DETERMINED AT SEATING PLANE C.

- A DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- A DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- A DIMENSION & DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-13731 **

PACKAGE OUTLINE, 48 LEAD LQFP 7.0X7.0X1.7 MM LQA048 REV**

18. Major Changes

Spansion Publication Number: MB96610_DS704-00007

Page	Section	Change Results
Revision 3	.0	
	■FEATURES	Changed the description of "External Interrupts"
4		Interrupt mask and pending bit per channel
		Interrupt mask bit per channel
23 to 26	■HANDLING PRECAUTIONS	Added a section
	■ELECTRICAL CHARACTERISTICS	Changed the Conditions for I _{CCSRCH}
	3. DC Characteristics	CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 2MHz,
24	(1) Current Rating	CLKS1/2 = CLKP1/2 = CLKRC = 2MHz,
34		Changed the Conditions for I _{CCSRCL}
		CLKS1/2 = CLKB = CLKP1/2 = CLKRC = 100kHz
		CLKS1/2 = CLKP1/2 = CLKRC = 100kHz
		Changed the Conditions for I _{CCTPLL}
		PLL Timer mode with CLKP1 = 32MHz
		PLL Timer mode with CLKPLL = 32MHz
		Changed the Value of "Power supply current in Timer modes"
		ICCTPLL
		Typ: 2480 μ A \rightarrow 1800 μ A (T _A = +25°C)
35		Max: 2710 μ A \rightarrow 2245 μ A (T _A = +25°C)
33		Max: 3985 μ A \rightarrow 3165 μ A (T _A = +105°C)
		Max: 4830 μ A \rightarrow 3975 μ A (T _A = +125°C)
		Changed the Conditions for I _{CCTRCL}
		RC Timer mode with CLKRC = 100kHz,
		SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)
		RC Timer mode with CLKRC = 100kHz
		(CLKPLL, CLKMC and CLKSC stopped)
		Changed the annotation *2
		Power supply for "On Chip Debugger" part is not included.
36		Power supply current in Run mode does not include
		Flash Write / Erase current.
		The current for "On Chip Debugger" part is not included.
47	5. A/D Converter(2) Accuracy and Setting of the A/D ConverterSampling Time	Deleted the unit "[Min]" from approximation formula of Sampling time
	7. Flash Memory Write/Erase Characteristics	Changed the condition
52		$ (V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD = 1.8V \pm 0.15V, V_{SS} = AV_{SS} = 0V, \\ T_A = -40^{\circ}C \text{ to } + 125^{\circ}C) $
		$(V_{CC}$ = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_{A} = - 40°C to + 125°C)

Page	Section	Change Results
	■ELECTRICAL CHARACTERISTICS	Changed the Note
52	7. Flash Memory Write/Erase Characteristics	While the Flash memory is written or erased, shutdown of the external power ($V_{\rm CC}$) is prohibited. In the application system where the external power ($V_{\rm CC}$) might be shut down while writing, be sure to turn the power off by using an external voltage detector.
		While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.
	■ORDERING INFORMATION	Deleted the Part number
		MCU with CAN controller
		MB96F612RBPMC-GTE2
		MB96F613RBPMC-GTE2
56		MB96F615RBPMC-GTE2
		MCU without CAN controller
		MB96F612ABPMC-GTE2
		MB96F613ABPMC-GTE2
		MB96F615ABPMC-GTE2
Revision 3	.1	
-	-	Company name and layout design change
Rev.*B		·
	1. Product Lineup	
6, 8, 58,	3. Pin Assignment	Package description modified to JEDEC description.
59	16. Ordering Information	$FPT-48P-M26 \rightarrow LQA048$
	17. Package Dimension	
		Added the following part number.
		MB96F612RBPMC-GS-UJE1,
		MB96F612RBPMC-GS-UJE2,
		MB96F613RBPMC-GS-UJE1,
		MB96F613RBPMC-GS-UJE2,
		MB96F615RBPMC-GS-UJE1,
58	16. Ordering Information	MB96F615RBPMC-GS-UJE2,
		MB96F612ABPMC-GS-UJE1,
		MB96F612ABPMC-GS-UJE2
		MB96F613ABPMC-GS-UJE1,
		MB96F613ABPMC-GS-UJE2
		MB96F615ABPMC-GS-UJE1,
		MB96F615ABPMC-GS-UJE2
Rev.*C		
58	16. Ordering Information	Deleted the Part number
		MCU without CAN controller

Document History

Document Title: MB96610 Series, F²MC, 16FX, 16-bit Proprietary Microcontroller Document Number: 002-04709

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	KSUN	01/31/2014	Migrated to Cypress and assigned document number 002-04709. No change to document contents or format.
*A	5146534	KSUN	02/29/2016	Updated to Cypress template
*B	5735123	KUME	05/15/2017	Updated the Ordering Information and the Package Dimension For details, please see 18. Major Changes.
*C	5809040	MIYH	07/11/2017	Updated the Ordering Information For details, please see 18. Major Changes.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.