

Description

The ACE3926E utilize a high cell density trench process to provide low r_{DS}(on) and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

Features

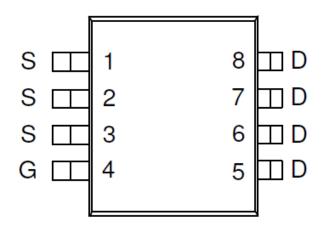
- Low r_{DS}(on) trench technology
- Low thermal impedance
- Fast switching speed

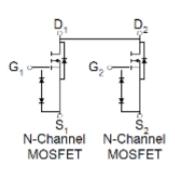
Applications

- Power Routing
- Li Ion Battery Packs
- Level Shifting and Driver Circuits

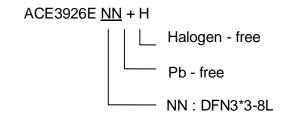
Absolute Maximum Ratings

Parameter	Symbol	Limit	Units		
Drain-Source Volta	V_{DS}	20	V		
Gate-Source Volta	V_{GS}	±12	V		
Continuous Drain Current ^a	T _A =25°C		13	A	
Continuous Diam Current	T _A =70°C	· I _D	10		
Pulsed Drain Curre	I _{DM}	50	Α		
Continuous Source Current (Dio	Is	7	Α		
Power Dissipation ^a	T _A =25°C	P _D	2.5	W	
Power Dissipation	T _A =70°C	r _D	1.5		
Operating temperature / storage	T _J /T _{STG}	-55~150	$^{\circ}\mathbb{C}$		


THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
Maximum Junction-to-Ambient ^a	t <= 10 sec	$R_{\theta JA}$	83	0000		
	Steady State		120	°C/W		


Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

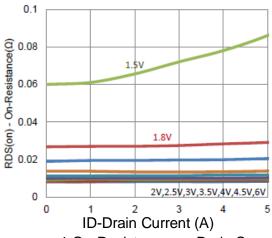


Packaging Type DFN3*3-8L

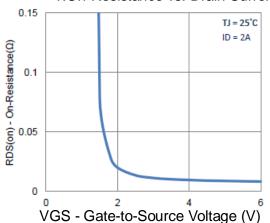
Ordering information

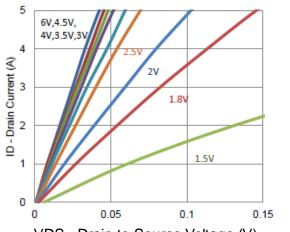
Electrical Characteristics

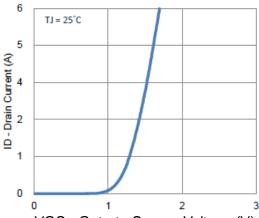
 T_A =25°C, unless otherwise specified.

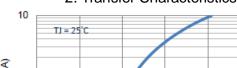

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
	· -	Static	<u> </u>			
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \text{ uA}$	0.4			V
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			±10	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA
Zero Gate Voltage Brain Garrent		$V_{DS} = 16V, V_{GS} = 0 V, T_{J} = 55$ °C			10	
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	20			Α
Drain-Source On-Resistance ^A	R _{DS(ON)}	$V_{GS} = 4.5 \text{ V } I_{D} = 2 \text{ A}$	10		10	
		$V_{GS} = 2.5 \text{ V}, I_D = 1.6 \text{ A}$			14	mΩ
Forward Transconductance ^A	g FS	$V_{DS} = 15 \text{ V}, I_{D} = 2 \text{ A}$		3		S
Diode Forward Voltage	V _{SD}	$I_{S} = 3.5 \text{ A}, V_{GS} = 0 \text{ V}$		0.8		V
		Dynamic ^b				
Total Gate Charge	Q_g			15		nC
Gate-Source Charge	Q_{gs}	$V_{DS} = 10V$, $V_{GS} = 4.5 V$, $I_D = 2 A$		1.9		
Gate-Drain Charge	Q_{gd}			3.7		
Turn-On Delay Time	t _{d(on)}			178		
Rise Time	t _r	$V_{DS} = 10 \text{ V}, R_{L} = 5 \Omega,$		332		ns
Turn-Off Delay Time	t _{d(off)}	$I_D = 2 \; A, \; V_{GEN} = 4.5 \; V \; , \; R_{GEN} = 6 \; \Omega, \label{eq:ideal_loss}$		1939		
Fall Time	t _f			902		
Input Capacitance	C _{iss}			1225		
Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ Mhz}$		151		pF
Reverse Transfer Capacitance	C _{rss}			123		

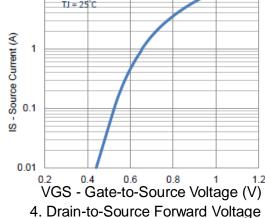
Note:

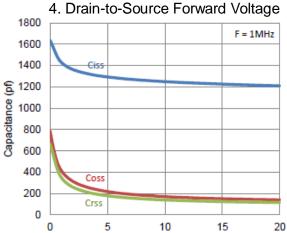

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing


Typical Performance Characteristics

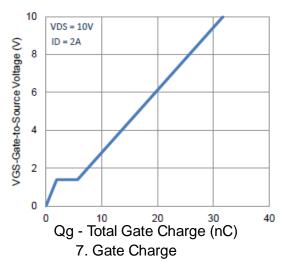

1.On-Resistance vs. Drain Current

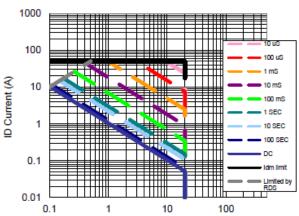

3. On-Resistance vs. Gate-to-Source Voltage



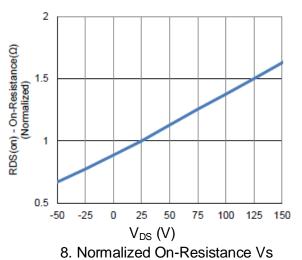

VDS - Drain-to-Source Voltage (V) 5. Output Characteristics

VGS - Gate-to-Source Voltage (V) 2. Transfer Characteristics

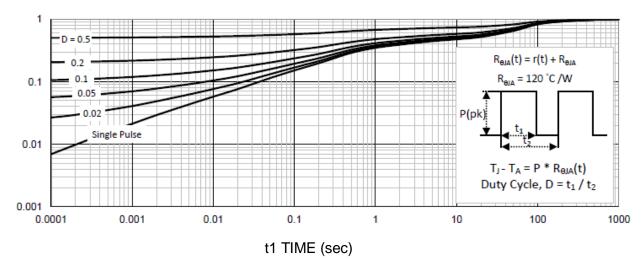



VDS-Drain-to-Source Voltage (V) 6. Capacitance

4

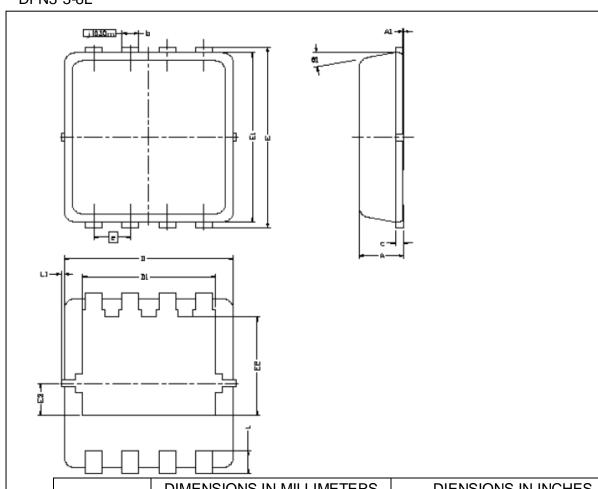


Typical Performance Characteristics



VDS Drain to Source Voltage (V) 9. Safe Operating Area

t1 TIME (sec)
10.Single Pulse Maximum Power Dissipation


11. Normalized Thermal Transient Junction to Ambient

5

Packing Information

DFN3*3-8L

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIENSIONS IN INCHES			
3 TIVIDULS	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.700	0.80	0.900	0.0276	0.0315	0.0354	
A1	0.00		0.05	0.000		0.002	
b	0.24	0.30	0.35	0.009	0.012	0.014	
С	0.08	0.152	0.25	0.003	0.006	0.010	
D	2.90BSC			0.114BSC			
E	2.80BSC			0.110BSC			
E1	2.30BSC			0.091BSC			
е	0.65BSC			0.026BSC			
L	0.20	0.375	0.450	0.008	0.0148	0.0177	
L1	0		0.100	0		0.004	
Θ1	0	10	12	0	10	12	

Unit: mm

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/