LIGITEK ELECTRONICS CO.,LTD.
Property of Ligitek Only

SURFACE MOUNT LED TAPE AND REEL

Lead-Free Parts

## LG-020DBK-A01

## DATA SHEET

DOC. NO : QW0905-LG-020DBK-A01
REV. : A
DATE : 26-Feb. - 2015

## LIGITEK ELECTRONICS CO.,LTD. <br> Property of Ligitek Only

PART NO. LG-020DBK-A01

## Features:

1. Side view LED.
2. white SMT package.
3. Leadframe package with individual 2 pin.
4.Wide viewing angle.
5.Soldering methods:IR reflow soldering.
6.Feature of the device:more light due to higher optical efficiency;extremely wide viewing angle;ideal for backlighting and coupling in light guide.

## Descriptions:

The LG-020 SMD has wide viewing angle and optimized light coupling by inter reflector, The low current requirement makes this device ideal for portable equipment or any other application where power is at a premium.

## Applications:

1. Telecommunication: indicator and backlighting in telephone and fax.
2. Indicators.
3. Switch lights.

## Device Selection Guide:

| PART NO | COLOR |  |  |
| :---: | :---: | :---: | :---: |
|  |  | Emitted | Lens |
| LG-020DBK-A01 | InGaN | Blue | Water Clear |

## LIGITEK ELECTRONICS CO.,LTD. <br> Property of Ligitek Only



Cathode


Andoe
Polarity

Note : 1.All dimension are in millimeter tolerance is $\pm 0.2 \mathrm{~mm}$ unless otherwise noted. 2.Specifications are subject to change without notice.

## Recommended Soldering Pad Dimensions



LIGITEK ELECTRONICS CO.,LTD.
Property of Ligitek Only

## Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

| Parameter | Symbol | Ratings | UNIT |
| :--- | :---: | :---: | :---: |
| Forward Current | IF | 30 | mA |
| Peak Forward Current <br> Duty 1/11@10KHz | IFP | 100 | mA |
| Power Dissipation | PD | 108 | mW |
| Reverse Current @5V | Ir | 50 | $\mu \mathrm{~A}$ |
| Electrostatic Discharge | ESD | 500 | V |
| Operating Temperature | Topr | $-40 \sim+85$ | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | Tstg | $-40 \sim+100$ | ${ }^{\circ} \mathrm{C}$ |
| LED junction Temperature | Tj | 115 | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance | $\mathrm{R}_{\text {th } j-\mathrm{s}}$ | 60 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Typical Electrical \& Optical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Items | Symbol | Min. | Typ. | Max. | UNIT | CONDITION |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Luminous Intensity | Iv | 80 | 125 | ---- | mcd | $\mathrm{IF}=20 \mathrm{~mA}$ |
| Dominant Wavelength | $\lambda \mathrm{D}$ | 444 | ---- | 456 | nm | $\mathrm{IF}=20 \mathrm{~mA}$ |
| Spectral Line Half-Width | $\triangle \lambda$ | --- | 30 | ---- | nm | $\mathrm{IF}=20 \mathrm{~mA}$ |
| Forward Voltage | $\mathrm{V}_{\mathrm{F}}$ | 2.8 | --- | 3.6 | V | $\mathrm{IF}=20 \mathrm{~mA}$ |
| Viewing Angle | $2 \theta 1 / 2$ | ---- | 120 | --- | deg | $\mathrm{IF}=20 \mathrm{~mA}$ |

Note : 1.The forward voltage data did not including $\pm 0.1 \mathrm{~V}$ testing tolerance.
2. The luminous intensity data did not including $\pm 15 \%$ testing tolerance.
3. The dominant wavelength data did not including $\pm 1 \mathrm{~nm}$ testing tolerance.

LIGITEK ELECTRONICS CO.,LTD. Property of Ligitek Only

Luminous Intensity Classification

| BIN CODE | Iv(mcd) at20mA |  |
| :---: | :---: | :---: |
|  | Min. | Max. |
| Q | 80 | 125 |
| R | 125 | 200 |
| S | 200 | 320 |
| T | 320 | 500 |

Dominant Wavelength Classification

| BIN CODE | $\lambda \mathrm{D}(\mathrm{nm})$ at 20 mA |  |
| :---: | :---: | :---: |
|  | Min. | Max. |
| OK | 444 | 447 |
| OJ | 447 | 450 |
| OI | 450 | 453 |
| OH | 453 | 456 |

Forward Voltage Classification

| BIN CODE | $\mathrm{Vf}(\mathrm{v})$ at20mA |  |
| :---: | :---: | :---: |
|  | Min. | Max. |
| 1 | 2.8 | 3.0 |
| 2 | 3.0 | 3.2 |
| 3 | 3.2 | 3.4 |
| 4 | 3.4 | 3.6 |

Typical Electro-Optical Characteristics Curve DBK CHIP

Fig. 1 Forward current vs. Forward Voltage


Fig. 3 Forward Voltage vs. Temperature


Fig. 5 Relative Intensity vs. Wavelength


Fig. 2 Relative Intensity vs. Forward Current


Fig. 4 Relative Intensity vs. Temperature


Fig. 6 Directive Radiation


## LIGITEK ELECTRONICS CO.,LTD. <br> Property of Ligitek Only

## Carrier Type Dimensions



Note: The tolerances unless mentioned is $\pm 0.1 \mathrm{~mm}$, Unit $=\mathrm{mm}$.

## - Packing Specifications



| Part No. | Description | Quantity/Reel |
| :---: | :---: | :---: |
| LG-020DBK-A01 | 12.0 mm tape,7"reel | 3000 PCS |

Property of Ligitek Only

## Label Explanation

|  | LIGITEK ELECTRONICS CO., LTD. \|||||||||||||||||||||||||||||||||||||||||||||||||||| |  |
| :---: | :---: | :---: |
| PART : | LG-020 |  |
|  | \||||||||||||||| |  |
| LOT : | GS113B |  |
| QTY(PCS) : | \||I||||||| |  |
|  | 3000 |  |
|  | \|||||||||||||||| | \||||||||||||||||||||||| |
| BIN/HUE : | R/0J | VF: 2.8 - 3.0 |

BIN : Luminous Intensity
HUE : Dominant Wavelength

VF : Forward Voltage

Reel Dimensions



Property of Ligitek Only

## Box Explanation

1. 4 BAG / INNER BOX
2. INNER BOX SIZE : L X W X H $23 \mathrm{~cm} \times 8.5 \mathrm{~cm} \times 26 \mathrm{~cm}$

3. 10 INNER BOXES / CARTON
4. CARTON SIZE : L X W X H $58 \mathrm{~cm} \times 34 \mathrm{~cm} \times 35 \mathrm{~cm}$


Recommended Soldering Conditions

1. Hand Solder

Basic spec is $\leqq 320^{\circ} \mathrm{C} 3$ sec one time only.
3. PB-Free Reflow Solder


Note:
1.Reflow soldering should not be done more than two times.
2.When soldering, do not put stress on the LEDs during heating.
3.After soldering, do not warp the circuit board.

## Precautions For Use:

Storage time:
1.The operation of Temperatures and RH are : $5^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}, \mathrm{RH} 60 \%$.
2.Once the package is opened, the products should be used within a week. Otherwise, they should be kept in a damp proof box with descanting agent.
Considering the tape life, we suggest our customers to use our products within a year(from production date).
3.If opened more than one week in an atmosphere $5^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}, \mathrm{RH} 60 \%$, they should be treated at $60^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{Cfor} 24 \mathrm{hrs}$.

## Drive Method:

LED is a current operated device, and therefore, requirer some kind of current limiting incorporated into the driver circuit. This current limiting typically takes the form of a current limiting resistor placed in series with the LED.
Consider worst case voltage variations than could occur across the current limiting resistor. The forwrd current should not be allowed to change by more than $40 \%$ of its desired value.

Circuit model A


Circuit model B

(A) Recommended circuit.
(B) The difference of brightness between LED could be found due to the VF-IF characteristics of LED.

## Cleaning:

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED.

## ESD(Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing these LED. All devices, equipment and machinery must be properly grounded.

Property of Ligitek Only
PART NO. LG-020DBK-A01

Reliability Test:

| Classification | Test Item | Test Condition | Sample Size |
| :---: | :---: | :---: | :---: |
| Endurance Test | Operating Life Test | $\begin{aligned} & \text { 1. } \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \text { 2. } 1 \mathrm{f}=20 \mathrm{~mA} \\ & \text { 3. } \mathrm{t}=1000 \mathrm{hrs}(-24 \mathrm{hrs},+72 \mathrm{hrs}) \end{aligned}$ | 22 |
|  | High Temperature Storage Test | $\begin{aligned} & \text { 1. } \mathrm{Ta}=100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \text { 2.t }=1000 \mathrm{hrs}(-24 \mathrm{hrs},+72 \mathrm{hrs}) \end{aligned}$ | 22 |
|  | Low Temperature Storage Test | $\begin{aligned} & \text { 1. } \mathrm{Ta}=-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & \text { 2. } \mathrm{t}=1000 \mathrm{hrs}(-24 \mathrm{hrs},+72 \mathrm{hrs}) \end{aligned}$ | 22 |
|  | High Temperature High Humidity Storage Test | $\begin{aligned} & \text { 1. } \mathrm{Ta}=85^{\circ} \mathrm{C} \\ & \text { 2. } \mathrm{RH}=85 \% \\ & \text { 3. } \mathrm{t}=1000 \mathrm{hrs}(-24 \mathrm{hrs},+72 \mathrm{hrs}) \end{aligned}$ | 22 |
| Environmental Test | Thermal Shock Test | $\begin{aligned} & \text { 1.Ta }=100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \sim-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & 20 \mathrm{~min} / 10 \mathrm{sec} / 20 \mathrm{~min} \\ & \text { 2.total } 100 \mathrm{cycles} \end{aligned}$ | 22 |
|  | Temperature Cycling | $1.100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \sim-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ $30 \mathrm{mins} / 5 \mathrm{mins} / 30 \mathrm{mins}$ 2.100 Cyeles | 22 |
|  | IR Reflow | 1. $\mathrm{T}=260^{\circ} \mathrm{C}$ Max. 10sec.Max. <br> 2. 6 Min | 22 |

