

Full - Bridge CoolMOS & Trench + Field Stop® IGBT Power module

3 4 CR1 Q3 CR3 Q3 7 Q4 9 NTC 12

Top switches: Trench + Field Stop IGBT® Bottom switches: CoolMOSTM

Pins 3/4 must be shorted together

Trench & Field Stop® IGBT Q1, Q3: V_{CES} = 600V; I_C = 50A @ Tc = 80°C

CoolMOSTM Q2, Q4:

 $V_{DSS} = 600V$; $I_D = 36A$ @ Tc = 25°C

Application

• Solar converter

Features

• Q2, Q4 CoolMOSTM

- Ultra low R_{DSon}
- Low Miller capacitance
- Ultra low gate charge
- Avalanche energy rated
- Very rugged
- Fast intrinsic diode

• Q1, Q3 Trench & Field Stop IGBT®

- Low voltage drop
- Switching frequency up to 20 kHz
- RBSOA & SCSOA rated
- Low tail current

• SiC Schottky Diode (CR1, CR3)

- Zero reverse recovery
- Zero forward recovery
- Temperature Independent switching behavior
- Positive temperature coefficient on VF
- Very low stray inductance
- Internal thermistor for temperature monitoring
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals both for power and signal for easy PCB mounting
- Low profile
- RoHS Compliant

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

All ratings @ $T_i = 25$ °C unless otherwise specified

APTCV50H60CT1G-Rev 1 October, 2012

www.microsemi.com

1. Top switches

1.1 Top Trench + Field Stop IGBT® characteristics

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		600	V
$I_{\rm C}$	Continuous Collector Current	$T_C = 25^{\circ}C$	80	
1C	Continuous Conector Current	$T_C = 80$ °C	50	Α
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	100	
$ m V_{GE}$	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25^{\circ}C$	176	W
RBSOA	Reverse Bias Safe Operating Area	$T_J = 150$ °C	100A @ 550V	

Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit	
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V$, $V_{CE} =$			250	μΑ	
17	Collector Emitter Saturation Voltage	$V_{GE} = 15V$	$T_j = 25^{\circ}C$		1.5	1.9	V
$V_{CE(sat)}$		$I_C = 50A$ T_j	$T_{j} = 150^{\circ}C$		1.7		V
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_C = 600 \mu A$		5.0	5.8	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20V, V_{CE}$	= 0V			600	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditions	5	Min	Typ	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V$			3150		
C_{oes}	Output Capacitance	$V_{CE} = 25V$			200		pF
C_{res}	Reverse Transfer Capacitance	f = 1MHz			95		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (25°C)			110		
T_{r}	Rise Time	$V_{GE} = \pm 15V$			45		na
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 300V$ $I_{\text{C}} = 50A$			200		ns
T_{f}	Fall Time	$R_{G} = 8.2\Omega$			40		
T _{d(on)}	Turn-on Delay Time	Inductive Switc	hing (150°C)		120		
T _r	Rise Time	$V_{GE} = \pm 15V$			50		
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 300V$ $I_{\text{C}} = 50A$			250		ns
$T_{\rm f}$	Fall Time	$R_G = 8.2\Omega$			60		
E _{on}	Turn-on Switching Energy	$V_{GE} = \pm 15V$	$T_j = 25$ °C		0.3		mJ
Lon	Turn-on Switching Energy	$V_{\text{Bus}} = 300\text{V}$	$T_j = 150$ °C		0.43		1113
E_{off}	Turn-off Switching Energy	$I_{\rm C} = 50A$ $R_{\rm G} = 8.2\Omega$	$T_j = 25$ °C		1.35		mJ
	Tum on a mount Energy	$\kappa_{\rm G}$ – 6.252	$T_j = 150$ °C		1.75		1110
R_{thJC}	Junction to Case Thermal resistance					0.85	°C/W

1.2 Top SiC diode characteristics (CR1, CR3)

Symbol	Characteristic	Test Conditions	Test Conditions			Max	Unit
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			600			V
т	Maximum Reverse Leakage Current	$V_{R} = 600 V$	$T_j = 25^{\circ}C$		50	200	^
I_{RM}	Waximum Reverse Leakage Current	$T_j = T_j$	$T_j = 125^{\circ}C$		100	1000	μΑ
$I_{F(AV)}$	Maximum Average Forward Current	50% duty cycle	Tc = 100°C		10		Α
$V_{\rm F}$	Diode Forward Voltage	$I_F = 10A$	$T_i = 25^{\circ}C$		1.6	1.8	V
* F	Diode 1 of ward voltage		$T_i = 175$ °C		2	2.4	*
Qc	Total Capacitive Charge	$I_F = 10A, V_R = 300V$ di/dt = 500A/ μ s			14		nC
C	Total Capacitance	$f = 1MHz, V_R =$	200V		65		рF
	Total Capacitance	$f = 1MHz, V_R =$	400V		50		hr.
R_{thJC}	Junction to Case Thermal resistance					2.5	°C/W

2. Bottom switches

2.1 Bottom CoolMOSTM characteristics

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
$V_{ m DSS}$	Drain - Source Breakdown Voltage		600	V
т	Continuous Drain Current	$T_c = 25$ °C	36	
I_D	Continuous Diam Current	$T_c = 80$ °C	27	Α
I_{DM}	Pulsed Drain current		115	
V_{GS}	Gate - Source Voltage		±20	V
R_{DSon}	Drain - Source ON Resistance		83	$m\Omega$
P_{D}	Maximum Power Dissipation	$T_c = 25$ °C	250	W
I_{AR}	Avalanche current (repetitive and non repetitive)		20	A
E_{AR}	Repetitive Avalanche Energy		1	mJ
E_{AS}	Single Pulse Avalanche Energy		1800	1113

Electrical Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit	
I_{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 600V$ $T_j = 25^{\circ}C$			100	^	
		$V_{GS} = 0V, V_{DS} = 600V$ $T_j = 125^{\circ}C$			5000	μΑ	
R _{DS(on)}	Drain – Source on Resistance	$V_{GS} = 10V, I_D = 24.5A$			83	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 3mA$	3	4	5	V	
I_{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA	

APTCV50H60CT1G-Rev 1 October, 2012

Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit
C_{iss}	Input Capacitance	$V_{GS} = 0V ; V_{DS} = 25V$		7.2		nF
C_{rss}	Reverse Transfer Capacitance	f = 1MHz		0.041		111
Q_{g}	Total gate Charge	$V_{GS} = 10V$		250		
Q_{gs}	Gate – Source Charge	$V_{\text{Bus}} = 300V$		43		nC
Q_{gd}	Gate – Drain Charge	$I_D = 36A$		135		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (125°C)		21		
$T_{\rm r}$	Rise Time	$V_{GS} = 10V$		30		
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 400V$ $I_{\text{D}} = 36A$		240		ns
T_{f}	Fall Time	$R_G = 5\Omega$		52		
E_{on}	Turn-on Switching Energy	Inductive switching @ 25°C V _{GS} = 10V; V _{Bus} = 400V		531		μJ
E _{off}	Turn-off Switching Energy	$I_D = 36A ; R_G = 5\Omega$		590		μ
Eon	Turn-on Switching Energy	Inductive switching @ 125°C		762		1
E_{off}	Turn-off Switching Energy	$V_{GS} = 10V ; V_{Bus} = 400V$ $I_D = 36A ; R_G = 5\Omega$		725		μJ
R_{thJC}	Junction to Case Thermal resistance				0.5	°C/W

Source - Drain diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
I_S	Continuous Source current		$Tc = 25^{\circ}C$		36		Α
	(Body diode)		$Tc = 80^{\circ}C$		27		A
V_{SD}	Diode Forward Voltage	$V_{GS} = 0V, I_S = -36A$	_			1.2	V
dv/dt	Peak Diode Recovery 1					40	V/ns
+	Reverse Recovery Time		$T_j = 25^{\circ}C$		210		na
t_{rr}		$I_S = -36A$ $V_R = 350V$	$T_j = 125$ °C		350		ns
	Reverse Recovery Charge	$V_R = 350V$ $di_S/dt = 100A/\mu s$	$T_j = 25$ °C		2		C
Qrr		αις αι 1001 με	$T_{j} = 125^{\circ}C$		5.4		μС

• dv/dt numbers reflect the limitations of the circuit rather than the device itself.

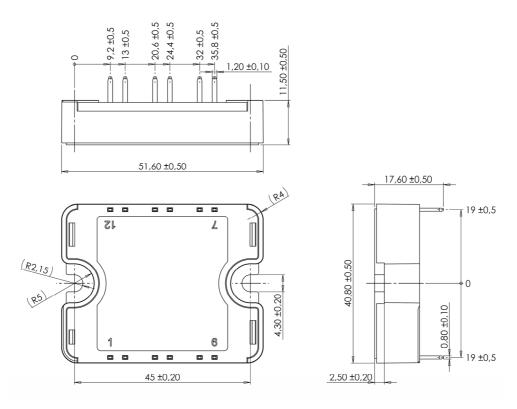
 $I_S \leq \text{--} \ 36 A \qquad di/dt \leq 100 A/\mu s \qquad V_R \leq V_{DSS} \qquad T_j \leq 150 ^{\circ} C$

3. Temperature sensor

NTC (see application note APT0406 on www.microsemi.com for more information).

Symbol	Characteristic	Min	Typ	Max	Unit
R ₂₅	Resistance @ 25°C		50		kΩ
B 25/85	$T_{25} = 298.15 \text{ K}$		3952		K

$$R_{T} = \frac{R_{25}}{\exp \left[B_{25/85} \left(\frac{1}{T_{25}} - \frac{1}{T} \right) \right]} \quad \text{T: Thermistor temperature}$$

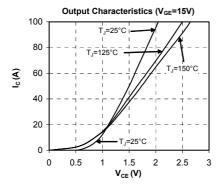

$$R_{T}: \text{ Thermistor value at T}$$

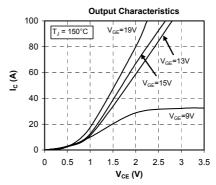
4. Package characteristics

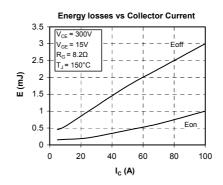
Symbol	Characteristic			Min	Тур	Max	Unit
V_{ISOL}	RMS Isolation Voltage, any terminal to case $t = 1$	MS Isolation Voltage, any terminal to case t=1 min, 50/60Hz					V
T_{J}	Operating junction temperature range			-40		150*	
T_{STG}	Storage Temperature Range			-40		125	°C
$T_{\rm C}$	Operating Case Temperature					100	
Torque	Mounting torque	To heatsink	M4	2		3	N.m
Wt	Package Weight				•	80	g

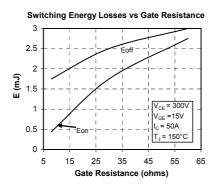
Tj=175°C for Trench & Field Stop IGBT

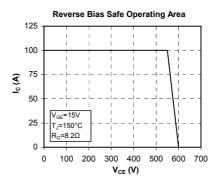
5. SP1 Package outline (dimensions in mm)

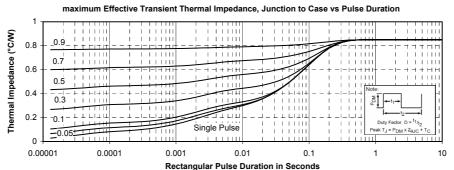


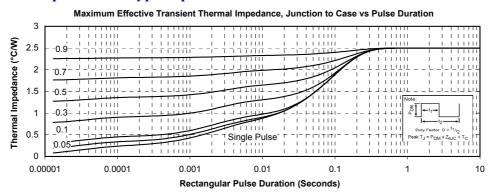

See application note 1904 - Mounting Instructions for SP1 Power Modules on www.microsemi.com

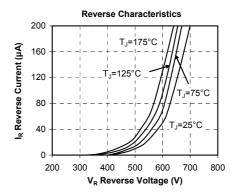

6. Top switches curves

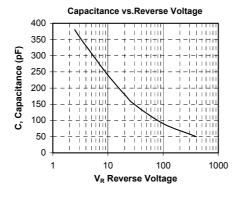

6.1 Top Trench + Field Stop IGBT® typical performance curves



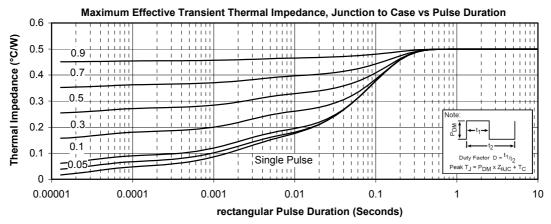


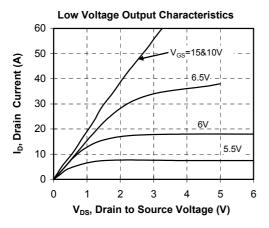


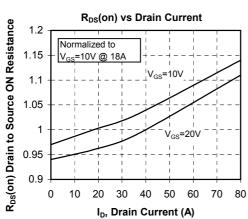


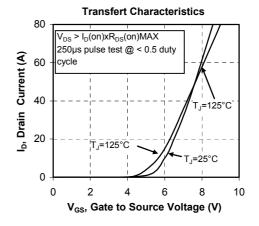


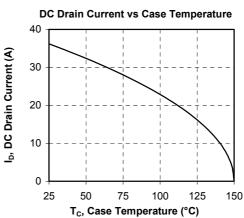
6.2 Top SiC diode typical performance curves

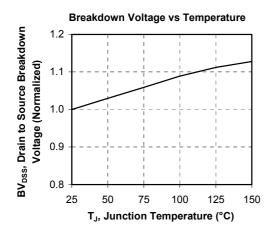


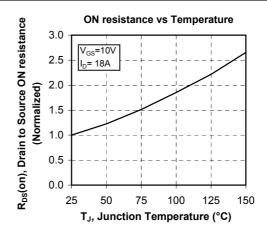


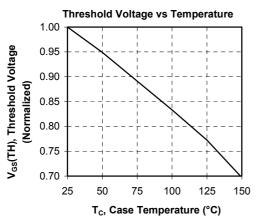


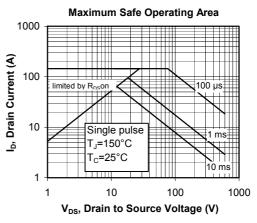

7. Bottom switches curves

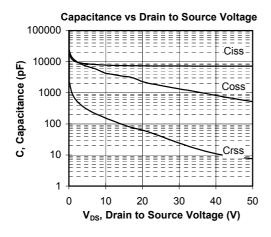

7.1 Bottom CoolMOSTM typical performance curves

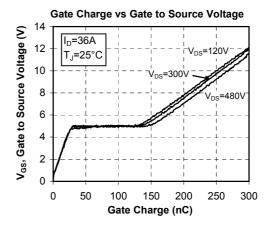


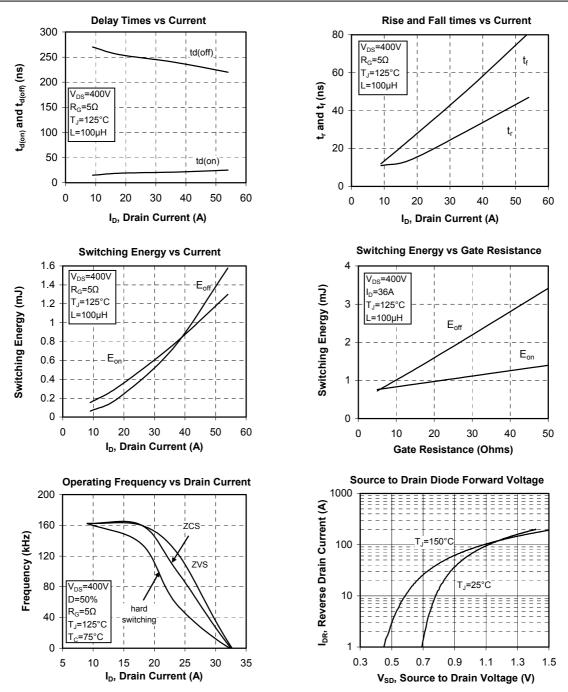












"COOLMOSTM comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon Technologies AG".

DISCLAIMER

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Life Support Application

Seller's Products are not designed, intended, or authorized for use as components in systems intended for space, aviation, surgical implant into the body, in other applications intended to support or sustain life, or for any other application in which the failure of the Seller's Product could create a situation where personal injury, death or property damage or loss may occur (collectively "Life Support Applications").

Buyer agrees not to use Products in any Life Support Applications and to the extent it does it shall conduct extensive testing of the Product in such applications and further agrees to indemnify and hold Seller, and its officers, employees, subsidiaries, affiliates, agents, sales representatives and distributors harmless against all claims, costs, damages and expenses, and attorneys' fees and costs arising, directly or directly, out of any claims of personal injury, death, damage or otherwise associated with the use of the goods in Life Support Applications, even if such claim includes allegations that Seller was negligent regarding the design or manufacture of the goods.

Buyer must notify Seller in writing before using Seller's Products in Life Support Applications. Seller will study with Buyer alternative solutions to meet Buyer application specification based on Sellers sales conditions applicable for the new proposed specific part.

APTCV50H60CT1G-Rev 1 October, 2012