NOT RECOMMENDED FOR NEW DESIGNS

FEATURES

- –40°C to +85°C operation
- 16 to 40 VDC input (19 to 40 VDC input for 15 volt output models)
- 50 V for up to 50 ms transient protection
- · Fully isolated
- · Fixed high frequency switching
- Inhibit function
- · Indefinite short circuit protection
- · Up to 83% efficiency

	MODELS VDC OUTPUT						
SINGLE 5	DUAL ±12						
12	±15						
15							

Size (max.): 1.460 x 1.130 x 0.330 inches (37.08 x 28.70 x 8.38 mm)

See case E1 for dimensions.

Weight: 21 grams typical.

Screening: Standard only. See "HR Industrial Non-QML Products

- Environmental Screening" table for screening description.

DESCRIPTION

The HR120 Series[™] of DC/DC converters offers up to 12 watts of power from single or dual outputs in a single package over a -40°C to +85°C temperature range. Thick film hybrid manufacturing technology produces high levels of miniaturization, giving the HR120 Series converters a low profile (0.330 inch), small board area (1.65 square inches), and high power density (22 watt/in3).

The parts are packaged in sealed steel enclosures, making them ideal for use in high reliability applications. Each unit is guaranteed to pass a hermeticity test with a maximum leak rate of 0.001 atm-cc/sec.

DESIGN METHODOLOGY

The HR120 converters are switching regulators which use a quasisquare wave, single ended forward converter design with a nominal switching frequency of 600 kHz. Isolation between input and output circuits is provided with a transformer in the forward power loop and a temperature insensitive optical link in the feedback control loop. Output regulation is accomplished with constant frequency pulse width modulation. Both line and load regulation are typically within 10 mV.

On dual output models, the positive output is independently regulated and the negative output is cross-regulated. Figures 7 and 8 illustrate what effects load changes have on the negative output.

Indefinite short circuit protection and overload protection are provided by sensing output load current and restricting the output current to approximately 125% of full load output current. Since the output current is sensed in the secondary stage, the result is a predictable, constant output current control with no foldback characteristics. HR120 converters are provided with internal filtering elements on both the input and output to help reduce the need for external components.

WIDE VOLTAGE RANGE

The 5 and 12 volt output models provide full power operation over the input voltage range of 16 to 40 volts (19 to 40 volts for 15 volt output models). Operation below 16 volts (or below 19 volts for the 15 volt output models), including operation in MIL-STD-704E emergency power conditions, is possible with derated output power. Please refer to the low voltage drop-out graphs, Figures 9 and 10.

The HR120 Series provides full power operation at case temperatures from –40°C up to +85°C. Depending on operating levels, air flow, and ambient temperature, heat sinking may be required.

INHIBIT FEATURE

An inhibit terminal is provided that can be used to disable internal switching, resulting in a very low quiescent input current. An open collector TTL compatible low (\leq 0.8 V) is required to control the inhibit function. This level may be supplied by an open collector gate since the inhibit pin is provided with an internal pull-up resistor.

DC/DC CONVERTERS

HR120 SERIES 12 WATT

ABSOLUTE MAXIMUM RATINGS

Input Voltage

- 16 to 40 VDC
- 19 to 40 VDC 15 volt outputs

Output Power

• 12 watts (10 watts HR121-2805)

Lead Soldering Temperature (10 sec per pin)

• 300°C

Storage Temperature Range (Case)

• -55°C to +125°C

INHIBIT

Inhibit TTL Open Collector

- Logic low (output disabled)
 Logic low 0.8 V max
 Inhibit pin current 4 mA max
- Referenced to input common
- Logic high (output enabled)
 Open collector

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

150 ppm/°C, typical

Input to Output Capacitance, 50 pF, typical

Current Limit, 125% of full load, typical

Isolation, 100 megohm minimum at 500 V

Conversion Frequency, 600 kHz typical

Inhibit Pin Voltage (unit enabled), 8 to 11 V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range

- 16 to 40 VDC continuous
- 19 to 40 VDC continuous 15 volt outputs
- 50 V for 50 msec transient

Case Operating Temperature (Tc)

• -40°C to +85°C full power

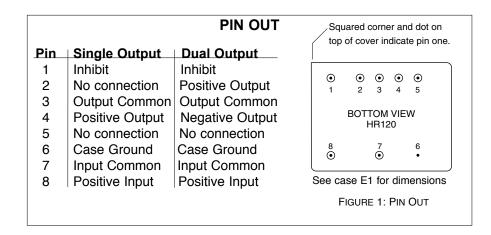
Derating Output Power/Current

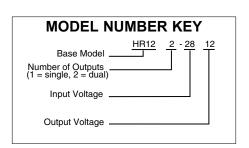
· Linearly from 100% at 85°C to 0% at 115°C

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

DUAL OUTPUT MODELS			HR122-2812			R122-28	UNITS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	011110
OUTPUT VOLTAGE	+ V _{OUT}	11.88	12.0	12.12	14.85	15.0	15.15	VDC
	- V _{OUT}	11.82	12.0	12.18	14.77	15.0	15.23	
OUTPUT CURRENT ^{1, 2}		_	0.5	1.0	_	0.4	0.8	Α
OUTPUT POWER ²	+ V _{OUT}	_	_	10.8	_	_	10.8	\
	- V _{OUT}	_	_	10.8	_	_	10.8	W
	TOTAL	_	_	12	_	_	12	
OUTPUT RIPPLE	10 kHz to 2 MHz	_	30	60	_	30	60	mV p-p
LINE REGULATION	+ V _{OUT}	_	5	50	_	5	50	mV
MIN TO MAX V _{IN}	- V _{OUT}	_	30	150	_	30	150	•
LOAD REGULATION	+ V _{OUT}	_	5	50	_	5	50	mV
NO LOAD TO FULL	- V _{OUT}	_	30	150	_	30	150	
CROSS REGULATION	20% TO 80% LOAD ³	_	5	10	_	4	8	%
	50% load ⁴	_	4	5	_	3	5	,,,
INPUT VOLTAGE	CONTINUOUS	16	28	32	16	28	32	VDC
	TRANSIENT 50 ms	_	_	50	_	_	50	
INPUT CURRENT	NO LOAD	_	25	35	_	25	35	_
	FULL LOAD	_	_	545	_	_	540	mA
	INHIBITED	_	1.9	3	_	1.9	3	
INPUT RIPPLE CURRENT	10 kHz TO 2 MHz	_	175	240	-	175	240	ma p-p
EFFICIENCY		78	81	_	80	83	_	%
LOAD FAULT ⁵	POWER DISSIPATION OVERLOAD	_	_	2.8	_	_	2	W
	SHORT CIRCUIT	_	_	5	_	_	5	
START-UP	DELAY	_	150	250	_	150	250	ms

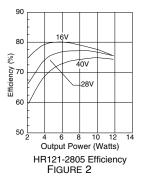
Notes

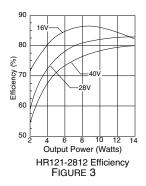

1. Indefinite short circuit protection not guaranteed above 85°C case temperature.

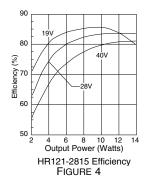

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

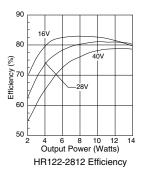
SINGLE OUTPUT MODELS		HR121-2805		HR121-2812			HR121-2815			UNITS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	011110
OUTPUT VOLTAGE		4.95	5.0	5.05	11.88	12	12.12	14.85	15	15.15	VDC
OUTPUT CURRENT		_	-	2.0	_	_	1.0	_	_	0.8	Α
OUTPUT POWER	MIN TO MAX V _{IN}	_	_	10	_	_	12	_	_	12	W
OUTPUT RIPPLE	10 kHz TO 2 MHz	_	40	60	_	30	60	_	25	50	mV p-p
LINE REGULATION	MIN TO MAX V _{IN}	_	10	50	_	10	50	_	10	50	mV
LOAD REGULATION	NO LOAD TO FULL	_	10	50	_	10	50	_	10	50	mV
INPUT VOLTAGE	NO LOAD TO FULL	16	28	40	16	28	40	16	28	40	VDC
	TRANSIENT 50 ms] —	_	50	_	_	50	_	_	50	V B0
INPUT CURRENT	NO LOAD	_	20	30	_	20	30	_	20	30	
	FULL LOAD	_	_	478	_	_	548	_	_	535	mA
	INHIBITED] —	2	3	_	2	3	_	2	3	
INPUT RIPPLE CURRENT	10 kHz TO 2 MHz	_	135	180	_	150	200	_	150	220	mA p-p
EFFICIENCY		74	77	_	77	81	_	80	83	_	%
LOAD FAULT ¹	POWER DISSIPATION OVERLOAD	_	_	5	_	_	5	_	_	5	W
	SHORT CIRCUIT] —	_	3.5	-	_	2.8	—	_	2	
START-UP	DELAY	-	180	300	-	80	200	_	150	250	ms

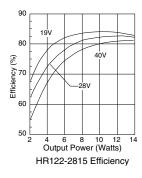
Notes

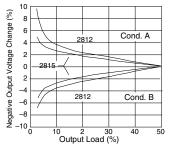
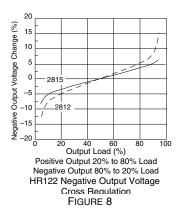

- 1. Applies to both outputs.
- Maximum combined output power is 12 watts. A maximum of 90% is available from either output.
- 3.20% to 80% load on the positive output and 80% to 20% on the negative output. See Figure 8.
- 4.50% load on the positive output and 50% to 20% load on the negative output. 50% load on the negative output and 50% to 20% load on the positive output. See Figure 7.
- 5.Indefinite short circuit protection not guaranteed above 85°C case temperature.

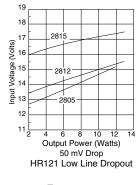





DC/DC CONVERTERS


Typical Performance Curves: 25°C Tc , 28 VDC Vin, 100% load, unless otherwise specified.


FIGURE 5

Condition A: 50% Load Pos. Vout, 50% to 20% Neg. Vou Condition B: 50% Load Neg. Vout, 50% to 20% Pos. Vou HR122 Negative Output Voltage Cross Regulation

FIGURE 7

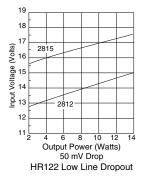
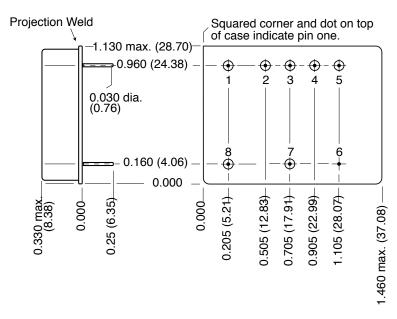



FIGURE 9

FIGURE 10

BOTTOM VIEW CASE E1

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold compression glass seal.

Seal Hole: 0.080 ±0.002 (2.03 ±0.05)

Case E1, Rev D, 20090707

Please refer to the numerical dimensions for accuracy. All information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice.

FIGURE 11: CASE E1

HR INDUSTRIAL (STANDARD, NON-QML) PRODUCTS ENVIRONMENTAL SCREENING

TEST PERFORMED	HR INDUSTRIAL STANDARD NON-QML ¹					
Pre-cap Inspection Method 2017, 2032	yes					
Final Electrical Test MIL-PRF-38534, Group A Subgroups 1 and 4: +25°C case	yes					
Hermeticity Test Gross Leak, Dip (1 x 10 ⁻³)	yes					
Final visual inspection Method 2009	yes					

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes:

1. Standard, non-QML products, do not meet all of the requirements of MIL-PRF-38534.

