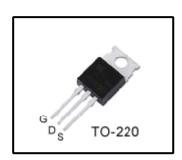


Silicon N-Channel MOSFET


Features

- 12A,650V,Rps(on)(Max0.78Ω)@Vgs=10V
- Ultra-low Gate Charge(Typical 51.7nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's advanced planar stripe, VDMOS technology. This latest technology has been especially designed to minimize on-state resistance, have a high rugged avalanche characteristics. This devices is specially well suited for AC-DCswitching power supplies, DC-DCpower converters, high voltage H-bridge motor drive PWM

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{DSS}	Drain Source Voltage	650	V
	Continuous Drain Current(@Tc=25℃)	12	А
ΙD	Continuous Drain Current(@Tc=100℃)	7.6	А
Ірм	Drain Current Pulsed (Note	21) 48	А
Vgs	Gate to Source Voltage	±30	V
Eas	Single Pulsed Avalanche Energy (Note	990	mJ
Ear	Repetitive Avalanche Energy (Note	e 1) 22	mJ
dv/dt	Peak Diode Recovery dv/dt (Not	e 3) 4.5	V/ns
D-	Total Power Dissipation(@Tc=25°C)	250	W
Po	Derating Factor above 25℃	2.0	W/°C
TJ, Tstg	Junction and Storage Temperature	-55~150	°C
T∟	Channel Temperature	300	°C

Thermal Characteristics

Cymbol	Darameter		Value	Linito	
Symbol	Parameter	Min	Тур	Max	Units
Raic	Thermal Resistance, Junction-to-Case	-	-	0.5	°C/W
Rocs	Thermal Resistance, Case-to-Sink	-	-	-	°C/W
RQJA	Thermal Resistance, Junction-to-Ambient	-	-	62.5	°C/W

Electrical Characteristics (Tc = 25° C)

Charac	teristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage cu	rrent	lgss	V _G S = ±30 V, V _D S = 0 V	-	-	±100	nA
Gate-source bre	eakdown voltage	V(BR)GSS	I _G = ±10 μA, V _{DS} = 0 V	±30	-	-	٧
Drain cut-off cu	umant las		V _{DS} = 650 V, V _{GS} = 0 V	-	-	10	μA
Drain cut-on cui	rent	IDSS	V _{DS} = 480 V, Tc = 125 °C	-	-	100	μA
Drain-source breakdown voltage		V(BR)DSS	ID = 250 μA, VGS = 0 V	650	-	-	٧
Gate threshold voltage		V _{GS} (th)	V _{DS} = 10 V, I _D =250 μA	3	-	4.5	٧
Drain-source ON resistance		RDS(ON)	V _G S = 10 V, I _D = 6A	-	0.64	0.78	Ω
Forward Transconductance		gfs	V _{DS} = 50 V, I _D = 6A	-	6.4	-	S
Input capacitance		Ciss	V _{DS} = 25 V,	-	1830	-	
Reverse transfer capacitance		C _{rss}	V _{GS} = 0 V,	-	2.2	-	pF
Output capacita	Output capacitance		f = 1 MHz	-	155	-	
	Rise time	tr	V _{DD} =325 V,	-	50	-	ns
Outlitude in a time of	Turn-on time	ton	ID =12A	-	49	-	
Switching time	Fall time	tf	R _G =25 Ω	-	310	-	
	Turn-off time	toff	(Note4,5)	-	54	-	
Total gate charge (gate-source		0~	V _{DD} = 520 V,		F4.7		
plus gate-drain)		Qg	V _G S = 10 V,		51.7		nC
Gate-source charge		Qgs	ID = 12 A		9.6	-	
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	18.6	-	

Source-Drain Ratings and Characteristics (Ta = 25° C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Un it
Continuous drain reverse current	IDR	-	-	-	12	А
Pulse drain reverse current	IDRP	-	-	-	48	Α
Forward voltage (diode)	VDSF	IDR = 12 A, VGS = 0 V	-	-	1.4	>
Reverse recovery time	trr	IDR = 12 A, VGS = 0 V,	-	450	-	ns
Reverse recovery charge	Qrr	dlor / dt = 100 A / μs	-	5.0	-	μC

Note 1. Repeativity rating :pulse width limited by junction temperature

- 2.L=14mH,las=12A,Vdd=95V,Rg=25 Ω ,Starting TJ=25 $^{\circ}$ C
- $3.I_{SD}\!\!\leq\!12A,\!di/dt\!\!\leq\!200A/us,\ V_{DD}\!\!<\!BV_{DSS},\!STARTING\ T_{J}\!=\!25^{\circ}\!\!C$
- 4.Pulse Test: Pulse Width≤300us,Duty Cycle≤2%
- 5. Essentially independent of operating temperature.

This transistor is an electrostatic sensitive device

Please handle with caution

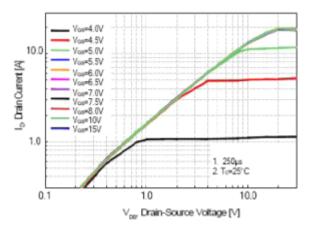
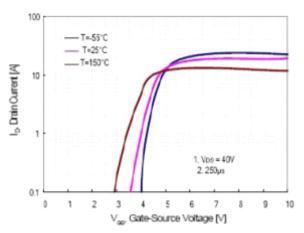



Fig.1 On-State Characteristics

Fig.2 Transfer Current Characteristics

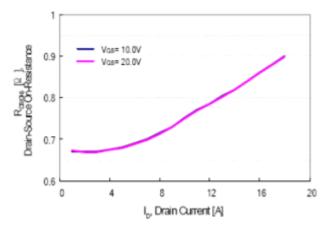


Fig.3 On-Resistance variation vs Drain Current

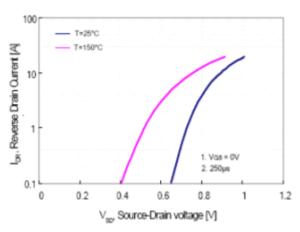


Fig.4 Body Diode Forward Voltage Variation with Source Current and Temperature

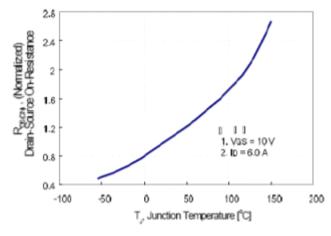


Fig.8 On-Resistance Variation vs Junction Temperature

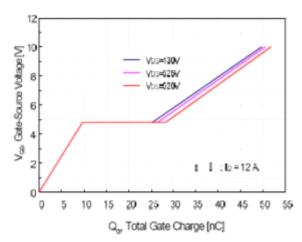
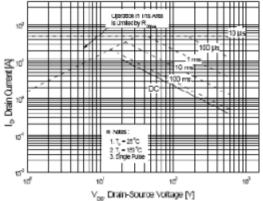



Fig.6 Gate Charge Characteristics

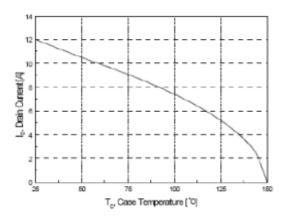


Fig.8 Maximum Drain Current vs Case Temperature

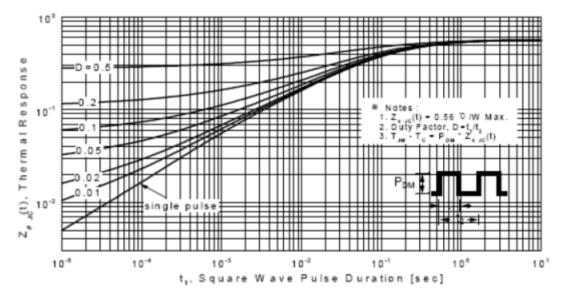


Fig.9 Transient Thermal Response curve

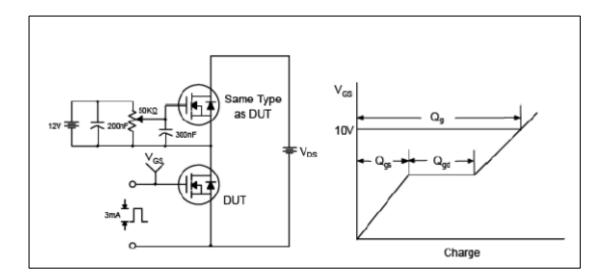


Fig.10 Gate Test circuit & Waveform

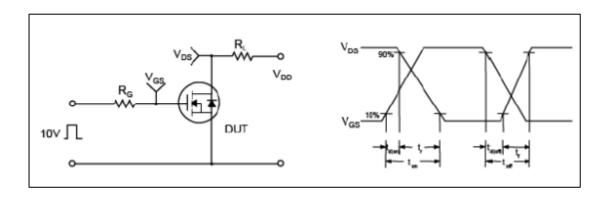


Fig.11 Resistive Switching Test Circuit & Waveform

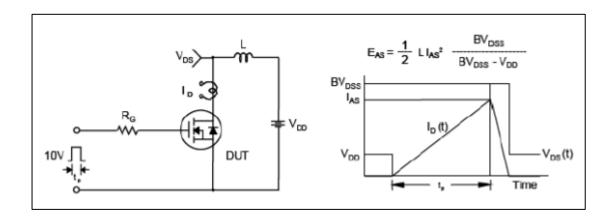


Fig.12 Uncamped Inductive Switching Test Circuit & Waveform

W

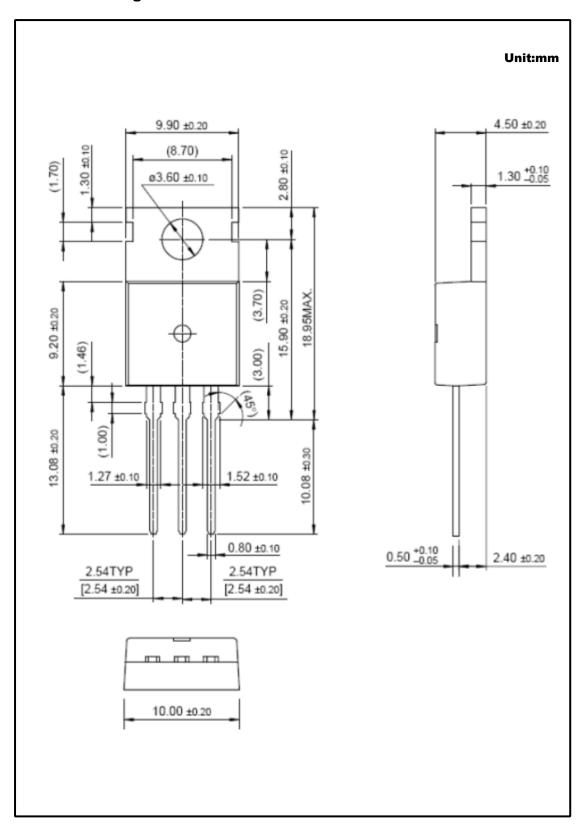


Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

П

TO-220 Package Dimension

