SOLID STATE DEVICES, INC. 14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773 ### **DESIGNER'S DATA SHEET** #### **FEATURES:** - BV_{CBO} 600V. - Fast Switching. - · Low Leakage. - Low Saturation Voltage. - 200°C Operating, Gold Eutectic Die Attach. - Designed for Complementary Use with STX7905. # STX6905 ## 1 AMP 600 VOLTS PNP TRANSISTOR | MAXIMUM RATINGS | SYMBOL | VALUE | UNITS | |--|--------------------------------------|-------------|----------------| | Collector-Emitter Voltage
R _{BE} = 1 kOhms | V _{CEO}
V _{CER} | 450
600 | Volts | | Collector-Base Voltage | V _{CBO} | 600 | Volts | | Emitter-Base Voltage | V _{EBO} | 6 | Volts | | Collector Current | I _C | 1 | Amps | | Base Current | I _B | 0.5 | Amps | | Total Device Dessipation @ T _C = 25°C
Derate above 25°C | P _D | 20
133 | Watts
mW/°C | | Operating and Storage Temperature | T_{J}, T_{STG} | -65 to +200 | °C | | Thermal Resistance, Junction to Case | $R_{\Theta JC}$ | 7.5 | °C/W | **NOTE:** All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release. DATA SHEET #: TR0007A # STX6905 #### **PRELIMINARY** # SOLID STATE DEVICES, INC. 14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773 | ELECTRICAL CHARACTERISTICS | SYMBOL | MIN | MAX | UNITS | |--|------------------------------|----------------|-----------------|----------------------------| | | $ rac{BV_{CEO}}{BV_{CER}}$ | 450
600 | - | \mathbf{V}_{DC} | | | BV_{CBO} | 600 | - | V | | | $\mathrm{BV}_{\mathrm{EBO}}$ | 8 | - | V | | | I_{CBO} | - | 1 | μΑ | | Emmiter Cutoff Current $(V_{EB} = 6V_{DC})$ | I_{EBO} | - | 1 | μΑ | | $\begin{array}{c} \textbf{DC Current Gain*} & (I_C = 1 m A_{DC}; V_{CE} = 10 V_{DC}) \\ (I_C = 25 m A_{DC}; V_{CE} = 10 V_{DC}) \\ (I_C = 100 m A_{DC}; V_{CE} = 15 V_{DC}) \end{array}$ | $\mathbf{H}_{ ext{FE}}$ | 40
40
30 | 200
200
- | | | $\label{eq:collector-Emitter Saturation Voltage*} \begin{aligned} &\textbf{Collector-Emitter Saturation Voltage*} \\ &(\textbf{I}_C = 25 \text{mA}_{DC}, \textbf{I}_B = 2.5 \text{mA}_{DC}) \end{aligned}$ | V _{CE(SAT)} | - | 0.5 | V _{DC} | | Base-Emitter Saturation Voltage* $(I_C = 25 \text{mA}_{DC}, I_B = 2.5 \text{mA}_{DC})$ | $V_{BE(SAT)}$ | - | 1.0 | V _{DC} | | Current Gain Bandwidth Product $(I_C = 50 m A_{DC}, V_{CE} = 10 V_{DC}, f = 1 MHz)$ | fТ | 20 | - | MHz | | Output Capacitance $(V_{CB}=30V_{DC},\ I_E=0A_{DC},\ f=1.0MHz)$ | C_{ob} | - | 20 | pf | ^{*}Pulse Test: Pulse Width = 300us, Duty Cycle = 2%