

N-Channel, J-FET Depletion Mode Transistor

Screened in reference to MIL-PRF-19500

DESCRIPTION

The NJF6514 and NJF6515 are ideal for functioning as very high frequency (VHF) small signal amplifiers. The NJF6514 part number is similar to the MV2N3821. The NJF6515 part number would be similar to a MS2N3821.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- The NJF6514 is screened to MV level in reference to MIL-PRF-19500 JANTXV level.
- The NJF6515 is screened to MS level in reference to MIL-PRF-19500 JANS level.

TO-72 (TO-206AF) Package

APPLICATIONS / BENEFITS

- Low-power transistor.
- Leaded metal TO-72 package.

MAXIMUM RATINGS @ $T_C = +25$ °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-55 to +200	°C
Reverse Gate-Source Voltage	V_{GSR}	50	V
Drain-Source Voltage	V _{DS}	50	V
Drain-Gate Voltage	V_{DG}	50	V
Total Power Dissipation @ T _A = +25 °C ⁽¹⁾	P _T	300	mW
Forward Gate Current	I _{GF}	10	mA

Notes: 1. Derate linearly 1.7 mW/°C for $T_A > +25$ °C.

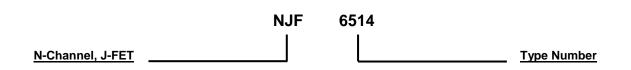
MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- · CASE: Ni plated kovar, Ni cap.
- TERMINALS: Au over Ni plated kovar leads.
- MARKING: Manufacturer's ID, date code, part number.
- POLARITY: See case outline on last page.
- WEIGHT: Approximately 0.322 grams.
- See <u>package dimensions</u> on last page.

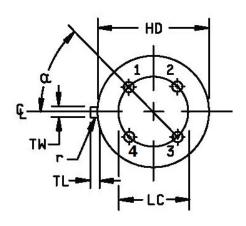
PART NOMENCLATURE

SYMBOLS & DEFINITIONS			
Symbol	Definition		
I _D	Drain current, dc: The direct current into the drain terminal.		
I _G	Gate current, dc: The direct current into the gate terminal.		
R_{G}	Gate resistance.		
T _A	Ambient temperature: The air temperature measured below a device, in an environment of substantially uniform temperature, cooled only by natural air convection and not materially affected by reflective and radiant surfaces.		
Tc	Case temperature: The temperature measured at a specified location on the case of a device.		
I _{GF}	Forward gate current: The direct current into the gate terminal with a forward gate-source voltage applied.		
V_{DG}	Drain-gate voltage, dc: The dc voltage between the drain and gate terminals.		
V_{DS}	Drain-source voltage, dc: The dc voltage between the drain and source terminals.		
V_{GSR}	Reverse gate-source voltage: The voltage between the gate and source terminals of such polarity that an increase in its magnitude causes the channel resistance to increase.		

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted

OFF CHARACTERTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Reverse Gate-Source Breakdown Voltage V_{DS} = 0, I_{G} = 1.0 μA	V _{(BR)GSSR}	50		V
Reverse Gate Current $V_{GS} = 0$, $V_{DS} = 30 \text{ V}$ $V_{GS} = 0$, $V_{DS} = 30 \text{ V}$ $V_{DS} = 0$, $V_{GS} = 20 \text{ V}$	I _{GSSR}		0.1	nA
Zero-Gate-Voltage Drain Current (Pulsed) V _{GS} = 0, V _{DS} = 15 V	I _{DSS}	0.5	2.5	mA
Gate-Source Voltage $V_{DS} = 15 \text{ V}, I_D = 50 \mu\text{A}$	V_{GS}	0.5	2.0	V
Gate-Source Cutoff Voltage $V_{DS} = 15 \text{ V}, I_D = 0.5 \text{ nA}$	V _{GS(off)}		4.0	V


DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Common Source, Short-Circuit Forward Transfer Admittance V _{GS} = 0, V _{DS} = 15 V, f = 1.0 kHz	y _{fs}	1500	4500	μS
Small-Signal, Common Source, Short-Circuit Output Admittance V _{GS} = 0, V _{DS} = 15 V, f = 1.0 kHz	y _{os}		10	μS
Small-Signal, Common-Source Short-Circuit Input Capacitance $V_{GS}=0\ V,\ V_{DS}=15\ V,\ 100\ kHz \le f \le 1.0\ MHz$	C _{iss}		6.0	pF
Small-Signal, Common-Source Reverse Transfer Capacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$	C _{rss}		3.0	pF
Common Source Spot Noise Figure $V_{GS}=0,V_{DS}=15V,R_G=1M\Omega$ $f=10Hz$ $f=1.0kHz$	NF ₁		5.0 2.5	dB

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inch		Millimeters		Notes
	Min	Max	Min	Max	
CD	0.178	0.195	4.52	4.95	
СН	0.170	0.210	4.32	5.33	
HD	0.209	0.230	5.31	5.84	
L1	-	0.050	-	1.27	
L2	0.250	-	6.35		
LC	0.10	0.100 TP		2.54 TP	
LD	0.016	0.021	0.41	0.53	2, 6
LL	0.500	0.750	12.70	19.05	6
LU	0.016	0.019	0.41	0.48	3, 6
Q	-	0.040	-	1.02	
r	-	0.007	-	0.18	
TL	0.028	0.048	0.71	1.22	8
TW	0.036	0.046	0.91	1.17	
α	45° TP				
Pin					
1	Emitter				
2	Base				
3	Collector				
4	Case				

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Measured in the zone beyond 0.250 (6.35 mm) from the seating plane.
- 3. Measured in the zone 0.050 (1.27 mm) and 0.250 (6.35 mm) from the seating plane.
- 4. When measured in a gauging plane 0.054 + 0.001, 0.000 (1.37 + 0.3, 0.00 mm) before the seating plane of the transistor, maximum diameter leads shall be within 0.007 (0.18 mm) of their true location relative to a maximum width tab. Smaller diameter leads shall fall within the outline of the maximum diameter lead tolerance.
- 5. The active elements are electrically insulated from the case.
- 6. All 4 leads.
- 7. Lead 1 is the source, lead 2 is the drain, lead 3 is the gate, and lead 4 is the case.
- 8. Symbol TL is measured from HD maximum.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.