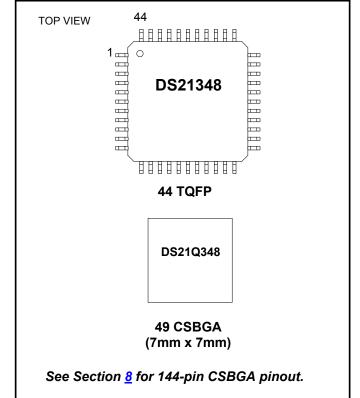
DALLAS JUINKI


DS21348/DS21Q348 3.3V E1/T1/J1 Line Interface

www.maxim-ic.com

FEATURES

- Complete E1, T1, or J1 Line Interface Unit (LIU)
- Supports Both Long-Haul And Short-Haul Trunks
- Internal Software-Selectable Receive-Side Termination for 75Ω/100Ω/120Ω
- 3.3V Power Supply
- 32-Bit or 128-Bit Crystal-Less Jitter Attenuator Requires Only a 2.048MHz Master Clock for Both E1 and T1 with Option to Use 1.544MHz for T1
- Generates the Appropriate Line Build-Outs, with and without Return loss, for E1 and DSX-1 and CSU Line Build-Outs for T1
- AMI, HDB3, and B8ZS, Encoding/Decoding
- 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz Clock Output Synthesized to Recovered Clock
- Programmable Monitor Mode for Receiver
- Loopbacks and PRBS Pattern Generation/ Detection with Output for Received Errors
- Generates/Detects In-Band Loop Codes, 1 to 16 Bits Including CSU Loop Codes
- 8-Bit Parallel or Serial Interface with Optional Hardware Mode
- Muxed and Nonmuxed Parallel Bus Supports Intel or Motorola
- Detects/Generates Blue (AIS) Alarms
- NRZ/Bipolar Interface for Tx/Rx Data I/O
- Transmit Open-Circuit Detection
- Receive Carrier Loss (RCL) Indication (G.775)
- High-Impedance State for TTIP and TRING
- 50mA (RMS) Current Limiter

PIN CONFIGURATIONS

ORDERING INFORMATION

PART	CHANNEL	TEMP RANGE	PIN-PACKAGE
DS21348 TN	Single	-40°C to +85°C	44 TQFP
DS21348TN+	Single	-40°C to +85°C	44 TQFP
DS21348T	Single	0° C to $+70^{\circ}$ C	44 TQFP
DS21348T+	Single	0° C to $+70^{\circ}$ C	44 TQFP
DS21348GN	Single	-40°C to +85°C	49 CSBGA
DS21348GN+	Single	-40°C to +85°C	49 CSBGA
DS21348G	Single	0° C to $+70^{\circ}$ C	49 CSBGA
DS21348G+	Single	0° C to $+70^{\circ}$ C	49 CSBGA
DS21Q348 N	Four	-40°C to +85°C	144 CSBGA
DS21Q348	Four	0°C to +70°C	144 CSBGA

+ Denotes lead-free/RoHS-compliant package.

Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, click here: <u>www.maxim-ic.com/errata</u>.

DETAILED DESCRIPTION

The DS21348 is a complete selectable E1 or T1 line interface unit (LIU) for short-haul and long-haul applications. Throughout the data sheet, J1 is represented wherever T1 exists. Receive sensitivity adjusts automatically to the incoming signal and can be programmed for 0dB to 12dB or 0dB to 43dB for E1 applications and 0dB to 30dB or 0dB to 36dB for T1 applications. The device can generate the necessary G.703 E1 waveshapes in 75 Ω or 120 Ω applications and DSX-1 line build-outs or CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB for T1 applications. The crystal-less on-board jitter attenuator requires only a 2.048MHz MCLK for both E1 and T1 applications (with the option of using a 1.544MHz MCLK in T1 applications). The jitter attenuator FIFO is selectable to either 32 bits or 128 bits in depth and can be placed in either the transmit or receive data paths. An X 2.048MHz output clock synthesized to RCLK is available for use as a backplane system clock (where n = 1, 2, 4, or 8).

The DS21348 has diagnostic capabilities such as loopbacks and PRBS pattern generation/detection. 16bit loop-up and loop-down codes can be generated and detected. The device can be controlled through an 8-bit parallel muxed or nonmuxed port, serial port, or used in hardware mode. The device fully meets all of the latest E1 and T1 specifications including ANSI T1.403-1999, ANSI T1.408, AT&T TR 62411, ITU G.703, G.704, G.706, G.736, G.775, G.823, I.431, O.151, O.161, ETSI ETS 300 166, JTG.703, JTI.431, JJ-20.1, TBR12, TBR13, and CTR4.

TABLE OF CONTENTS

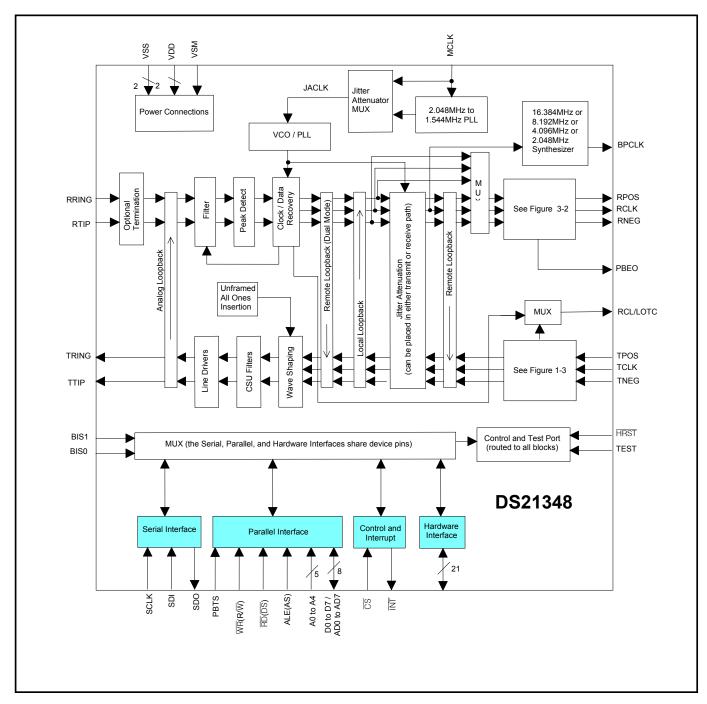
1. INT	RODUCTION	6
1.1 [DOCUMENT REVISION HISTORY	.6
2. PIN	DESCRIPTION1	0
2.1 F	PIN DESCRIPTIONS	14
3. HAI	RDWARE MODE	25
	REGISTER MAP	
3.2 F	PARALLEL PORT OPERATION	26
	SERIAL PORT OPERATION	
	NTROL REGISTERS	
	DEVICE POWER-UP AND RESET	
	ATUS REGISTERS	
	GNOSTICS	
-	N-BAND LOOP CODE GENERATION AND DETECTION	
6.2 l	LOOPBACKS	16
6.2.1	Remote Loopback (RLB)	46
6.2.2	Local Loopback (LLB)	46
6.2.3	Analog Loopback (ALB)	46
6.2.4	Dual Loopback (DLB)	46
6.3 F	PRBS GENERATION AND DETECTION	47
6.4 E	ERROR COUNTER	47
6.4.1	Error Counter Update	48
6.5 E		48
7. AN/	ALOG INTERFACE	19
7.1 F	RECEIVER	49
7.2	TRANSMITTER	50
	JITTER ATTENUATOR	
	G.703 SYNCHRONIZATION SIGNAL	
	21Q348 QUAD LIU 5	
	CHARACTERISTICS	
10. THE	ERMAL CHARACTERISTICS	33
11. AC	CHARACTERISTICS	54
12. PAG	CKAGE INFORMATION	/3
12.1 4	14-PIN TQFP (56-G4012-001)	73
12.2 4	49-BALL CSGÈA (7мм x 7мм)́ (56-G6006-001)	74
12.3 ´	144-BALL CSBGA (17мм х 17мм) (56-G6011-001)	75

LIST OF FIGURES

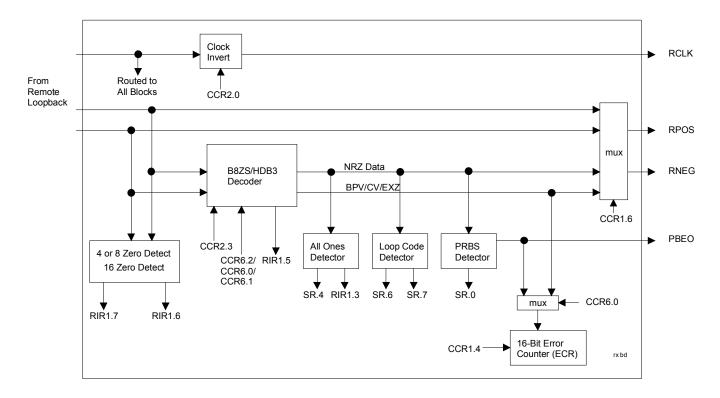
Figure 1-1. DS21348 Block Diagram	7
Figure 1-2. Receive Logic	
Figure 1-3. Transmit Logic	
Figure 2-1. Parallel Port Mode Pinout (BIS1 = 0, BIS0 = 1 or 0) (TQFP Package)	22
Figure 2-2. Serial Port Mode Pinout (BIS1 = 1, BIS0 = 0) (TQFP Package)	23
Figure 2-3. Hardware Mode Pinout (BIS1 = 1, BIS0 = 1) (TQFP Package)	24
Figure 3-1. Serial Port Operation for Read Access (R = 1) Mode 1	27
Figure 3-2. Serial Port Operation for Read Access Mode 2	27
Figure 3-3. Serial Port Operation for Read Access Mode 3	27
Figure 3-4. Serial Port Operation for Read Access Mode 4	28
Figure 3-5. Serial Port Operation for Write Access (R = 0) Modes 1 and 2	28
Figure 3-6. Serial Port Operation for Write Access (R = 0) Modes 3 and 4	28
Figure 7-1. Basic Interface	
Figure 7-2. Protected Interface Using Internal Receive Termination	53
Figure 7-3. Protected Interface Using External Receive Termination	54
Figure 7-4. E1 Transmit Pulse Template	55
Figure 7-5. T1 Transmit Pulse Template	
Figure 7-6. Jitter Tolerance	
Figure 7-7. Jitter Attenuation	
Figure 8-1. 144-CSBGA (17mm x 17mm) Pinout	
Figure 11-1. Intel Bus Read Timing (PBTS = 0, BIS1 = 0, BIS0 = 0)	
Figure 11-2. Intel Bus Write Timing (PBTS = 0, BIS1 = 0, BIS0 = 0)	
Figure 11-3. Motorola Bus Timing (PBTS = 1, BIS1 = 0, BIS0 = 0)	
Figure 11-4. Intel Bus Read Timing (PBTS = 0, BIS1 = 0, BIS0 = 1)	
Figure 11-5. Intel Bus Write Timing (PBTS = 0, BIS1 = 0, BIS0 = 1)	
Figure 11-6. Motorola Bus Read Timing (PBTS = 1, BIS1 = 0, BIS0 = 1)	
Figure 11-7. Motorola Bus Write Timing (PBTS = 1, BIS1 = 0, BIS0 = 1)	
Figure 11-8. Serial Bus Timing (BIS1 = 1, BIS0 = 0)	
Figure 11-9. Receive Side Timing	
Figure 11-10. Transmit Side Timing	72

LIST OF TABLES

Table 2-1. Bus Interface Selection	.10
Table 2-2. Pin Assignment in Parallel Port Mode	
Table 2-3. Pin Assignment in Serial Port Mode	.11
Table 2-4. Pin Assignment in Hardware Mode	.12
Table 2-5. Pin Descriptions in Parallel Port Mode (Sorted by Pin Name, DS21348T Pin Numbering)	
Table 2-6. Pin Descriptions in Serial Port Mode (Sorted By Pin Name, DS21348T Pin Numbering)	
Table 2-7. Pin Descriptions in Hardware Mode (Sorted By Pin Name, DS21348T Pin Numbering)	
Table 2-8. Loopback Control in Hardware Mode	
Table 2-9. Transmit Data Control in Hardware Mode	
Table 2-10. Receive Sensitivity Settings	
Table 2-11. Monitor Gain Settings	
Table 2-12. Internal Rx Termination Select	
Table 2-13. MCLK Selection	
Table 3-1. Register Map	
Table 4-1. MCLK Selection	
Table 4-2. Receive Equalizer Sensitivity Settings	.32
Table 4-3. Backplane Clock Select	.34
Table 4-4. Monitor Gain Settings	
Table 4-5. Internal Rx Termination Select	.34
Table 5-1. Received Alarm Criteria	.36
Table 5-2. Receive Level Indication	.40
Table 6-1. Transmit Code Length	
Table 6-2. Receive Code Length	
Table 6-3. Definition of Received Errors	.47
Table 6-4. Function of ECRS Bits and RNEG Pin	.48
Table 7-1. Line Build-Out Select for E1 in Register CCR4 (ETS = 0)	.51
Table 7-2. Line Build-Out Select for T1 in Register CCR4 (ETS = 1)	.51
Table 7-3. Transformer Specifications for 3.3V Operation	.51
Table 8-1. DS21Q348 Pin Assignment	.58
Table 9-1. Recommended DC Operating Conditions	.62
Table 9-2. Capacitance	.62
Table 9-3. DC Characteristics	.62
Table 10-1. Thermal Characteristics—DS21Q348 CSBGA Package	.63
Table 10-2. Theta-JA (θ _{JA}) vs. Airflow.	.63
Table 11-1. AC Characteristics—Multiplexed Parallel Port (BIS1 = 0, BIS0 = 0)	.64
Table 11-2. AC Characteristics—Nonmultiplexed Parallel Port (BIS1 = 0, BIS0 = 1)	.67
Table 11-3. AC Characteristics—Serial Port (BIS1 = 1, BIS0 = 0)	
Table 11-4. AC Characteristics—Receive Side	
Table 11-5. AC Characteristics—Transmit Side	.72


1. INTRODUCTION

The analog AMI/HDB3 waveform off of the E1 line or the AMI/B8ZS waveform off of the T1 line is transformer coupled into the RTIP and RRING pins of the DS21348. The user has the option to use internal termination, software selectable for $75\Omega/100\Omega/120\Omega$ applications, or external termination. The device recovers clock and data from the analog signal and passes it through the jitter attenuation MUX outputting the received line clock at RCLK and bipolar or NRZ data at RPOS and RNEG. The DS21348 contains an active filter that reconstructs the analog received signal for the nonlinear losses that occur in transmission. The receive circuitry is also configurable for various monitor applications. The device has a usable receive sensitivity of 0dB to -43dB for E1 and 0dB to -36dB for T1, which allows the device to operate on 0.63mm (22AWG) cables up to 2.5km (E1) and 6k feet (T1) in length. Data input at TPOS and TNEG is sent via the jitter attenuation mux to the waveshaping circuitry and line driver. The DS21348 will drive the E1 or T1 line from the TTIP and TRING pins via a coupling transformer. The line driver can handle both CEPT 30/ISDN-PRI lines for E1 and long-haul (CSU) or short-haul (DSX-1) lines for T1.


REVISION	DESCRIPTION		
011801	Data sheet revised for 3.3V only.		
092101	Added supply current measurements		
092101	Added thermal characteristics of quad package		
101104	Corrected typos and removed all instances of 5V operation.		
113004	Updated the storage and soldering temperature specs in the <i>Absolute</i>		
115004	Maximum Ratings section.		
011206	Added lead-free packages to Ordering Information table on page 1.		

1.1 Document Revision History

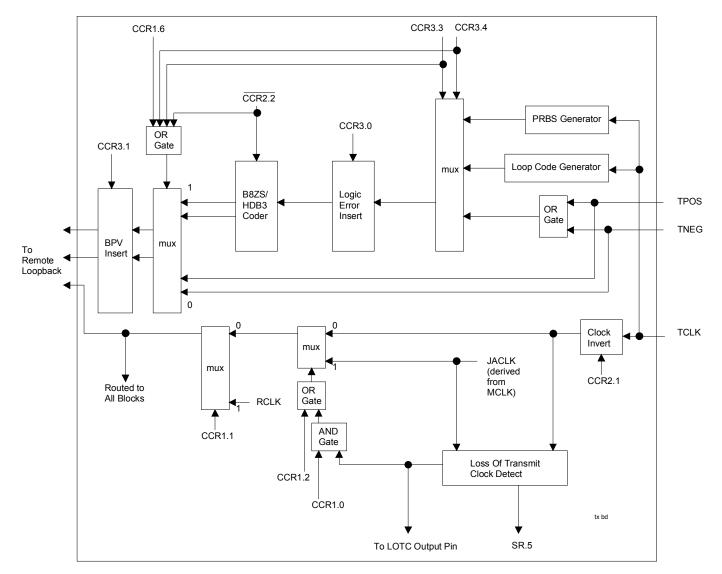


Figure 1-2. Receive Logic

Figure 1-3. Transmit Logic

2. PIN DESCRIPTION

The DS21348 can be controlled in a parallel port mode, serial port mode, or hardware mode (<u>Table 2-2</u>, <u>Table 2-3</u>, and <u>Table 2-4</u>).

BIS1	BISO	PBTS	MODE
0	0	0	Muxed Intel
0	0	1	Muxed Motorola
0	1	0	Nonmuxed Intel
0	1	1	Nonmuxed Motorola
1	0		Serial Port
1	1		Hardware

Table 2-1. Bus Interface Selection

Table 2-2. Pin Assignment in Parallel Port Mode

PIN		LO	PARALLEL
DS21348T	DS21348G	I/O	PORT MODE
1	C3	Ι	CS
2	C2	Ι	$\overline{\text{RD}}(\overline{\text{DS}})$
3	B1	Ι	\overline{WR} (R/ \overline{W})
4	D2	Ι	ALE (AS)
5	C1	Ι	NA
6	D3	Ι	NA
7	D1	I/O	A4
8	E1	Ι	A3
9	F2	Ι	A2
10	F1	Ι	A1
11	G1	Ι	A0
12	E3	I/O	D7/AD7
13	F3	I/O	D6/AD6
14	G2	I/O	D5/AD5
15	F4	I/O	D4/AD4
16	G3	I/O	D3/AD3
17	E4	I/O	D2/AD2
18	G4	I/O	D1/AD1
19	F5	I/O	D0/AD0
20	G5	Ι	VSM
21	F6	_	VDD
22	G6		VSS
23	E5	I/O	ĪNT
24	E6	0	PBEO
25	F7	0	RCL/LOTC
26	D6	Ι	TEST
27	D5	Ι	RTIP

P	IN	L/O	PARALLEL
DS21348T	DS21348G	I/O	PORT MODE
28	D7	Ι	RRING
29	C6	Ι	HRST
30	C7	Ι	MCLK
31	B6	0	BPCLK
32	B7	Ι	BIS0
33	A7	Ι	BIS1
34	C5	0	TTIP
35	B5		VSS
36	A6		VDD
37	B4	0	TRING
38	C4	0	RPOS
39	A4	0	RNEG
40	B3	0	RCLK
41	A3	Ι	TPOS
42	B2	Ι	TNEG
43	A2	Ι	TCLK
44	A1	Ι	PBTS

Table 2-3. Pin Assignment in Serial Port Mode

PIN		I/O	SERIAL
DS21348T	DS21348G	1/0	PORT MODE
1	C3	Ι	\overline{CS}
2	C2	Ι	NA
3	B1	Ι	NA
4	D2	Ι	NA
5	C1	Ι	SCLK
6	D3	Ι	SDI
7	D1	I/O	SDO
8	E1	Ι	ICES
9	F2	Ι	OCES
10	F1	Ι	NA
11	G1	Ι	NA
12	E3	I/O	NA
13	F3	I/O	NA
14	G2	I/O	NA
15	F4	I/O	NA
16	G3	I/O	NA
17	E4	I/O	NA
18	G4	I/O	NA
19	F5	I/O	NA
20	G5	Ι	VSM
21	F6		VDD
22	G6		VSS

P	PIN		SERIAL
DS21348T	DS21348G	- I/O	PORT MODE
23	E5	I/O	ĪNT
24	E6	0	PBEO
25	F7	0	RCL/LOTC
26	D6	Ι	TEST
27	D5	Ι	RTIP
28	D7	Ι	RRING
29	C6	Ι	HRST
30	C7	Ι	MCLK
31	B6	0	BPCLK
32	B7	Ι	BIS0
33	A7	Ι	BIS1
34	C5	Ο	TTIP
35	B5		VSS
36	A6		VDD
37	B4	Ο	TRING
38	C4	Ο	RPOS
39	A4	0	RNEG
40	B3	0	RCLK
41	A3	Ι	TPOS
42	B2	Ι	TNEG
43	A2	Ι	TCLK
44	A1	Ι	NA

Table 2-4. Pin Assignment in Hardware Mode

PIN		I/O	HARDWARE	
DS21348T	DS21348G		MODE	
1	C3	Ι	EGL	
2	C2	Ι	ETS	
3	B1	Ι	NRZE	
4	D2	Ι	SCLKE	
5	C1	Ι	L2	
6	D3	Ι	L1	
7	D1	I/O	LO	
8	E1	Ι	DJA	
9	F2	Ι	JAMUX	
10	F1	Ι	JAS	
11	G1	Ι	HBE	
12	E3	I/O	CES	
13	F3	I/O	TPD	
14	G2	I/O	TX0	
15	F4	I/O	TX1	
16	G3	I/O	LOOP0	

P	PIN		HARDWARE
DS21348T	DS21348G	I/O	MODE
17	E4	I/O	LOOP1
18	G4	I/O	MM0
19	F5	I/O	MM1
20	G5	Ι	VSM
21	F6		VDD
22	G6		VSS
23	E5	I/O	RT1
24	E6	0	PBEO
25	F7	0	RCL
26	D6	Ι	TEST
27	D5	Ι	RTIP
28	D7	Ι	RRING
29	C6	Ι	HRST
30	C7	Ι	MCLK
31	B6	0	BPCLK
32	B7	Ι	BIS0
33	A7	Ι	BIS1
34	C5	0	TTIP
35	B5	_	VSS
36	A6	_	VDD
37	B4	0	TRING
38	C4	0	RPOS
39	A4	0	RNEG
40	B3	0	RCLK
41	A3	Ι	TPOS
42	B2	Ι	TNEG
43	A2	Ι	TCLK
44	A1	Ι	RT0

2.1 Pin Descriptions

Table 2-5. Pin Descriptions in Parallel Port Mode (Sorted by Pin Name,DS21348T Pin Numbering)

NAME	PIN	I/O	FUNCTION	
A0 to A4	11 to 7	Ι	Address Bus. In nonmultiplexed bus operation (BIS1 = 0, BIS0 = 1), serves as the address bus. In multiplexed bus operation (BIS1 = 0 , BIS0 = 0), these pins are not used and should be tied low.	
ALE (AS)	4	Ι	Address Latch Enable (Address Strobe). When using the parallel port (BIS1 = 0) in multiplexed bus mode (BIS0 = 0), serves to demultiplex the bus on a positive-going edge. In nonmultiplexed bus mode (BIS0 = 1), should be tied low.	
BIS0/BIS1	32/33	Ι	Bus Interface Select Bits 0 and 1. Used to select bus interface option. See <u>Table 2-1</u> for details.	
BPCLK	31	0	Backplane Clock. A 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz clock output that is referenced to RCLK selectable via CCR5.7 and CCR5.6. In hardware mode, defaults to 16.384MHz output.	
CS	1	Ι	Chip Select, Active Low. This active-low signal must be low to read or write to the device.	
D0/AD0 to D7/AD7	19 to 12	I/O	Data Bus/Address/Data Bus. In nonmultiplexed bus operation (BIS1 = 0, BIS0 = 1), serves as the data bus. In multiplexed bus operation (BIS1 = 0, BIS0 = 0), serves as an 8-bit multiplexed address/data bus.	
HRST	29	Ι	Hardware Reset, Active Low. Bringing HRST low resets the DS21348, setting all control bits to their default state of all zeros.	
ĪNT	23	0	Interrupt, Active Low. Flags host controller during conditions and change of conditions defined in the Status Register. Active low, open drain output.	
MCLK	30	Ι	Master Clock. A 2.048MHz (±50ppm) clock source with TTL levels is applied at this pin. This clock is used internally for both clock/data recovery and for jitter attenuation. Use of a T1 1.544MHz clock source is optional.	
N/A		Ι	Not Assigned. Should be tied low.	
PBEO	24	0	PRBS Bit Error Output. The receiver will constantly search for a 2 ¹⁵ -1 or a 2 ²⁰ -1 PRBS depending on the ETS bit setting (CCR1.7). Remains high if out of synchronization with the PRBS pattern. Goes low when synchronized to the PRBS pattern. Any errors in the received pattern after synchronization will cause a positive going pulse (with same period as E1 or T1 clock) synchronous with RCLK. PRBS bit errors can also be reported to the ECR1 and ECR2 registers by setting CCR6.2 to a logic 1.	

NAME	PIN	I/O	FUNCTION		
PBTS	44	Ι	Parallel Bus Type Select. When using the parallel port (BIS1 = 0), set high to select Motorola bus timing, set low to select Intel bus timing. This pin controls the function of the \overline{RD} (\overline{DS}), ALE (AS), and \overline{WR} ($\overline{R/W}$) pins. If PBTS = 1 and BIS1 = 0, then these pins assume the Motorola function listed in parentheses (). In serial port mode, this pin should be tied low.		
RCLK	40	Ο	Receive Clock. Buffered recovered clock from the line. Synchronous to MCLK in absence of signal at RTIP and RRING.		
$\overline{\mathrm{RD}}(\overline{\mathrm{DS}})$	2	Ι	Read Input (Data Strobe), Active Low. DS is active low when in nonmultiplexed, Motorola mode. See the bus timing diagrams in Section <u>11</u> .		
RCL/ LOTC	25	0	Section 11. Receive Carrier Loss/Loss of Transmit Clock. An output which will toggle high during a receive carrier loss (CCR2.7 = 0) or will toggle high if the TCLK pin has not been toggled for 5 μ sec ± 2 μ sec (CCR2.7 = 1). CCR2.7 defaults to logic 0 when in hardware mode.		
RNEG	39	0	Receive Negative Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge (CCR2.0 = 1) of RCLK with the bipolar data out of the line interface. Set NRZE (CCR1.6) to a one for NRZ applications. In NRZ mode, data will be output on RPOS while a received error will cause a positive-going pulse synchronous with RCLK at RNEG. See Section 6.4 for details.		
RPOS	38	0	Receive Positive Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge (CCR2.0 = 1) of RCLK with bipolar data out of the line interface. Set NRZE (CCR1.6) to a one for NRZ applications. In NRZ mode, data will be output on RPOS while a received error will cause a positive-going pulse synchronous with RCLK at RNEG. See Section 6.4 for details.		
RTIP/ RRING	27/28	Ι	Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect via a 1:1 transformer to the line. See Section 5 for details.		
TCLK	43	Ι	Transmit Clock. A 2.048MHz or 1.544MHz primary clock. Used to clock data through the transmit side formatter. Can be sourced internally by MCLK or RCLK. See Common Control Register 1 and Figure 1-3.		
TEST	26	Ι	Tri-State Control. Set high to tri-state all outputs and I/O pins (including the parallel control port). Set low for normal operation. Useful in board level testing.		
TNEG	42	Ι	Transmit Negative Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge (CCR2.1 = 1) of TCLK for data to be transmitted out onto the line.		
TPOS	41	Ι	transmitted out onto the line.Transmit Positive Data. Sampled on the falling edge ($CCR2.1 = 0$)or the rising edge ($CCR2.1 = 1$) of TCLK for data to be transmittedout onto the line.		

NAME	PIN	I/O	FUNCTION	
TTIP/ TRING	34/37	0	Transmit Tip and Ring [TTIP AND TRING]. Analog line driver outputs. These pins connect via a step-up transformer to the line. See Section <u>5</u> for details.	
VDD	21/36	_	Positive Supply. 3.3V ±5%	
VSM	20	Ι	Voltage Supply Mode. Should be low for 3.3V operation.	
VSS	22/35	_	Signal Ground	
$\overline{\mathrm{WR}}(\mathrm{R}/\overline{\mathrm{W}})$	3	Ι	Write Input (Read/Write), Active Low. See the bus timing diagrams in Section <u>11</u> .	

Table 2-6. Pin Descriptions in Serial Port Mode (Sorted By Pin Name,DS21348T Pin Numbering)

NAME	PIN	I/O	FUNCTION	
BIS0/BIS1	32/33	Ι	Bus Interface Select Bits 0 and 1. Used to select bus interface option. See <u>Table 2-1</u> for details.	
BPCLK	31	О	Backplane Clock. A 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz clock output that is referenced to RCLK selectable via CCR5.7 and CCR5.6. In hardware mode, defaults to 16.384MHz output.	
CS	1	Ι	Chip Select, Active Low. Active-low signal must be low to read or write to the device.	
HRST	29	Ι	Hardware Reset, Active Low. Bringing HRST low will reset the DS21348 setting all control bits to their default state of all zeros.	
ICES	8	Ι	Input Clock Edge Select. Selects whether the serial port data input (SDI) is sampled on rising (ICES =0) or falling edge (ICES = 1) of SCLK.	
ĪNT	23	О	Interrupt, Active Low. Flags host controller during conditions and change of conditions defined in the Status Register. Active-low, open-drain output.	
MCLK	30	Ι	Master Clock. A 2.048MHz (±50ppm) clock source with TTL levels is applied at this pin. This clock is used internally for both clock/data recovery and for jitter attenuation. Use of a T1 1.544MHz clock source is optional.	
NA		Ι	Not Assigned. Should be tied low.	
OCES	9	Ι	Output Clock Edge Select.Selects whether the serial port dataoutput (SDO) is valid on the rising (OCES = 1) or falling edge $(OCES = 0)$ of SCLK.	
PBEO	24	0	PRBS Bit Error Output. The receiver will constantly search for a 2 ¹⁵ -1 or a 2 ²⁰ -1 PRBS depending on the ETS bit setting (CCR1.7). Remains high if out of synchronization with the PRBS pattern. Goes low when synchronized to the PRBS pattern. Any errors in the received pattern after synchronization will cause a positive going pulse (with same period as E1 or T1 clock) synchronous with RCLK. PRBS bit errors can also be reported to the ECR1 and ECR2 registers by setting CCR6.2 to a logic 1.	

NAME	PIN	I/O	FUNCTION			
RCLK	40	0	Receive Clock. Buffered recovered clock from the line. Synchronous to MCLK in absence of signal at RTIP and RRING.			
RCL/LOTC	25	0	Receive Carrier Loss/Loss of Transmit Clock. An output which will toggle high during a receive carrier loss (CCR2.7 = 0) or will toggle high if the TCLK pin has not been toggled for $5\mu s \pm 2\mu s$ (CCR2.7 = 1). CCR2.7 defaults to logic 0 when in hardware mode.			
RNEG	39	0	Receive Negative Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge (CCR2.0 = 1) of RCLK with the bipolar data out of the line interface. Set NRZE (CCR1.6) to a one for NRZ applications. In NRZ mode, data will be output on RPOS while a received error will cause a positive-going pulse synchronous with RCLK at RNEG. See Section 6.4 for details.			
RPOS	38	0	Receive Positive Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge (CCR2.0 = 1) of RCLK with bipolar data out of the line interface. Set NRZE (CCR1.6) to a one for NRZ applications. In NRZ mode, data will be output on RPOS while a received error will cause a positive-going pulse synchronous with RCLK at RNEG. See Section 6.4 for details.			
RTIP/ RRING	27/28	Ι	Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect via a 1:1 transformer to the line. See Section 5 for details.			
SCLK	5	Ι	Serial Clock. Serial bus clock input.			
SDI	6	Ι	Serial Data Input. Sampled on rising edge (ICES = 0) or the falling edge (ICES = 1) of SCLK.			
SDO	7	0	Serial Data Output. Valid on the falling edge (OCES = 0) or the rising edge (OCES = 1) of SCLK.			
TCLK	43	Ι	Transmit Clock. A 2.048MHz or 1.544MHz primary clock. Used to clock data through the transmit side formatter. Can be sourced internally by MCLK or RCLK. See Common Control Register 1 and Figure 1-3.			
TEST	26	Ι	Tri-State Control. Set high to tri-state all outputs and I/O pins (including the parallel control port). Set low for normal operation. Useful in board-level testing.			
TNEG	42	Ι	Transmit Negative Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge (CCR2.1 = 1) of TCLK for data to be transmitted out onto the line.			
TPOS	41	Ι	Transmit Positive Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge (CCR2.1 = 1) of TCLK for data to be transmitted out onto the line.			
TTIP/TRIN G	34/37	0	Transmit Tip and Ring [TTIP and TRING]. Analog line-driver outputs. These pins connect via a step-up transformer to the line. See Section <u>5</u> for details.			
VDD	21/36		Positive Supply. 3.3V ±5%			
VSM	20	Ι	Voltage Supply Mode. Should be tied low for 3.3V operation.			
VSS	22/35	—	Signal Ground			

Table 2-7. Pin Descriptions in Hardware Mode (Sorted By Pin Name,DS21348T Pin Numbering)

NAME	PIN	I/O	FUNCTION		
BIS0/BIS1	32/33	Ι	Bus Interface Select Bits 0 and 1. Used to select bus interface		
			option. BIS0 = 1 and BIS1 = 1 selects hardware mode.		
BPCLK	31	0	Backplane Clock. 16.384MHz output.		
CES	12	Ι	Receive and Transmit Clock Edge Select. Selects which RCLKedge to update RPOS and RNEG and which TCLK edge to sampleTPOS and TNEG.0 = update RNEG/RPOS on rising edge of RCLK; sampleTPOS/TNEG on falling edge of TCLK1 = update RNEG/RPOS on falling edge of RCLK; sampleTPOS/TNEG on rising edge of TCLK		
			Disable Jitter Attenuator.		
DJA	8	Ι	0 = jitter attenuator enabled		
			1 = jitter attenuator disabled		
EGL	1	Ι	Receive Equalizer Gain Limit. This pin controls the sensitivity of the receive equalizer. EGL E1 (ETS = 0) 0 = -12dB (short haul) 1 = -43dB (long haul) EGL T1 (ETS = 1) 0 = -36dB (long haul) 1 = -30dB (limited long haul)		
ETS	2	Ι	E1/T1 Select. 0 = E1 1 = T1		
HBE	11	Ι	Receive and Transmit HDB3/B8ZS Enable 0 = enable HDB3 (E1)/B8ZS (T1) 1 = disable HDB3 (E1)/B8ZS (T1)		
HRST	29	Ι	Hardware Reset. Bringing HRST low will reset the DS21348.		
JAMUX	9	Ι	Jitter Attenuator Mux. Controls the source for JACLK.See Figure 1-1 and Table 2-13.E1 (ETS = 0) JAMUXMCLK = 2.048MHz 0T1 (ETS = 1)MCLK = 2.048MHz 1MCLK = 1.544MHz 0		
JAS	10	Ι	Jitter Attenuator Select 0 = place the jitter attenuator on the receive side 1 = place the jitter attenuator on the transmit side		
L0/L1/L2	7/6/5	Ι	Transmit LIU Waveshape Select Bits 0 and 1 [H/W Mode]. These inputs determine the waveshape of the transmitter (<u>Table 7-1</u> and <u>Table 7-2</u> .		
LOOP0/ LOOP1	16/17	Ι	Loopback Select Bits 0 and 1 [H/W Mode]. These inputs determine the active loopback mode (if any). See <u>Table 2-8</u> .		

NAME	PIN	I/O	FUNCTION		
MCLK	30	Ι	Master Clock. A 2.048MHz (±50ppm) clock source with TTL levels is applied at this pin. This clock is used internally for both clock/data recovery and for jitter attenuation. Use of a T1 1.544MHz clock source is optional. G.703 requires an accuracy of ±50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of ±32ppm for T1 interfaces.		
MM0/MM1	18/19	Ι	Monitor Mode Select Bits 0 and 1 [H/W Mode]. These inputs determine if the receive equalizer is in a monitor mode (Table 2-11).		
NA		Ι	Not Assigned. Should be tied low.		
NRZE	3	Ι	NRZ Enable [H/W Mode] 0 = Bipolar data at RPOS/RNEG and TPOS/TNEG 1 = NRZ data at RPOS and TPOS or TNEG; RNEG outputs a positive going pulse when device receives a BPV, CV, or EXZ.		
PBEO	24	0	 PRBS Bit Error Output. The receives a BPV, CV, of EXZ. PRBS Bit Error Output. The receiver will constantly search for a QRSS (T1) or a 2¹⁵-1 (E1) PRBS depending whether T1 or E1 mode is selected. Remains high if out of synchronization with the PRBS pattern. Goes low when synchronized to the PRBS pattern. Any errors in the received pattern after synchronization will cause a positive going pulse (with same period as E1 or T1 clock) synchronous with RCLK. 		
RCLK	40	0	Receive Clock. Buffered recovered clock from the line. Synchronous to MCLK in absence of signal at RTIP and RRING.		
RCL	25	0	Receive Carrier Loss. An output which will toggle high during a receive carrier loss.		
RNEG	39	0	Receive Negative Data. Updated on the rising edge (CES = 0) or the falling edge (CES = 1) of RCLK with the bipolar data out of the line interface. Set NRZE to a one for NRZ applications. In NRZ mode, data will be output on RPOS while a received error will cause a positive-going pulse synchronous with RCLK at RNEG. See Section 6.4 for details.		
RPOS	38	0	Receive Positive Data. Updated on the rising edge (CES = 0) or the falling edge (CES = 1) of RCLK with bipolar data out of the line interface. Set NRZE pin to a one for NRZ applications. In NRZ mode, data will be output on RPOS while a received error will cause a positive-going pulse synchronous with RCLK at RNEG. See section <u>6.4</u> for details.		
RT0/RT1	44/23	Ι	Receive LIU Termination Select Rits 0 and 1 [H/W Model Thes		
RTIP/ RRING	27/28	Ι	Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect via a 1:1 transformer to the line. See Section <u>5</u> for details.		
SCLKE	4	Ι	Receive and Transmit Synchronization Clock Enable0 = disable 2.048MHz synchronization transmit and receive mode1 = enable 2.048 Hz synchronization transmit and receive mode		
TCLK	43	Ι	Transmit Clock. A 2.048MHz or 1.544MHz primary clock. Used to clock data through the transmit side formatter.		

NAME	PIN	I/O	FUNCTION	
TEST	26	Ι	Tri-State Control. Set high to tri-state all outputs and I/O pins (including the parallel control port). Set low for normal operation. Useful in board-level testing.	
TNEG	42	Ι	Transmit Negative Data. Sampled on the falling edge ($CES = 0$) or the rising edge ($CES = 1$) of TCLK for data to be transmitted out onto the line.	
TPD	13	Ι	Transmit Power-Down 0 = normal transmitter operation 1 = powers down the transmitter and tri-states the TTIP and TRING pins	
TPOS	41	Ι	Transmit Positive Data. Sampled on the falling edge ($CES = 0$) or the rising edge ($CES = 1$) of TCLK for data to be transmitted out onto the line.	
TTIP/TRING	34/37	Ο	Transmit Tip and Ring [TTIP and TRING]. Analog line driver outputs. These pins connect via a step-up transformer to the line. See Section <u>5</u> for details.	
TX0/TX1	14/15	Ι	Transmit Data Source Select Bits 0 and 1 [H/W Mode]. These inputs determine the source of the transmit data. See <u>Table 2-9</u> .	
VDD	21/36		Positive Supply. 3.3V ±5%	
VSM	20	Ι	Voltage Supply Mode. Should be tied low for 3.3V operation.	
VSS	22/35		Signal Ground	

Note: G.703 requires an accuracy of ±50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of ±32ppm for T1 interfaces.

LOOPBACK	SYMBOL	CONTROL BIT	LOOP1	LOOP0
Remote Loopback	RLB	CCR6.6	1	1
Local Loopback	LLB	CCR6.7	1	0
Analog Loopback	ALB	CCR6.4	0	1
No Loopback		—	0	0

Table 2-8. Loopback Control in Hardware Mode

Table 2-9. Transmit Data Control in Hardware Mode

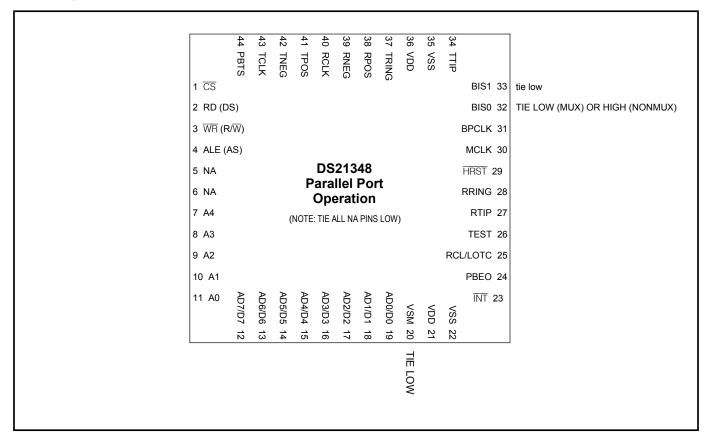
TRANSMIT DATA	SYMBOL	CONTROL BIT	TX1	TX0
Transmit Unframed All Ones	TUA1	CCR3.7	1	1
Transmit Alternating Ones and Zeros	TAOZ	CCR3.5	1	0
Transmit PRBS	TPRBSE	CCR3.4	0	1
TPOS and TNEG			0	0

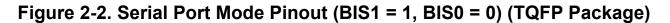
Table 2-10. Receive Sensitivity Settings

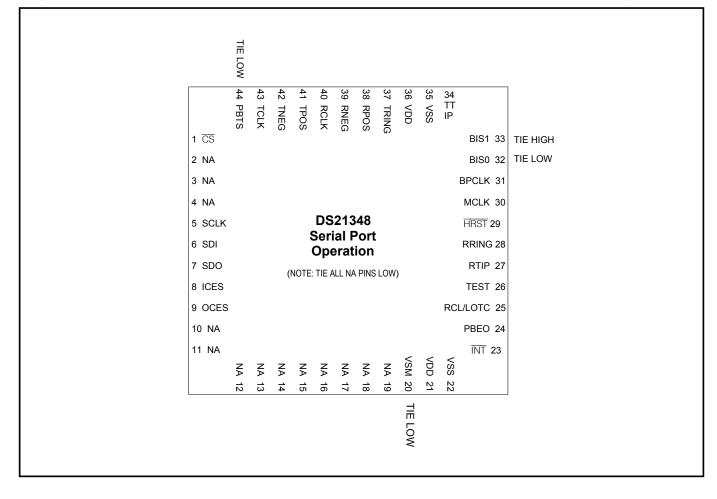
EGL (CCR4.4)	ETS (CCR1.7)	RECEIVE SENSITIVITY
0	0 (E1)	-12dB (short haul)
1	0 (E1)	-43dB (long haul)
1	1 (T1)	-30dB (limited long haul)
0	1 (T1)	-36dB (long haul)

Table 2-11. Monitor Gain Settings

MM1 (CCR5.5)	MM0 (CCR5.4)	INTERNAL LINEAR GAIN BOOST (dB)
0	0	Normal operation (no boost)
0	1	20
1	0	26
1	1	32


Table 2-12. Internal Rx Termination Select


RT1 (CCR5.1)	RT0 (CCR5.0)	INTERNAL RECEIVE TERMINATION CONFIGURATION
0	0	Internal receive-side termination disabled
0	1	Internal receive-side 120Ω enabled
1	0	Internal receive-side 100Ω enabled
1	1	Internal receive-side 75Ω enabled


Table 2-13. MCLK Selection

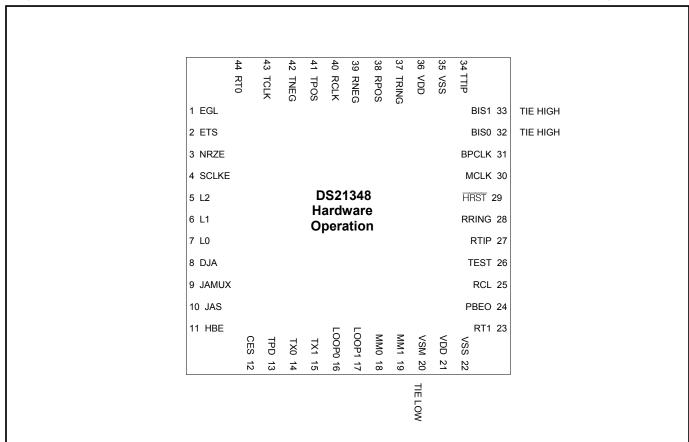

MCLK (MHz)	JAMUX (CCR1.3)	ETS (CCR1.7)
2.048	0	0
2.048	1	1
1.544	0	1

Figure 2-1. Parallel Port Mode Pinout (BIS1 = 0, BIS0 = 1 or 0) (TQFP Package)

Figure 2-3. Hardware Mode Pinout (BIS1 = 1, BIS0 = 1) (TQFP Package)

3. HARDWARE MODE

In hardware mode (BIS1 = 1, BIS0 = 1), pins 1–19, 23, 25, 31, and 44 are redefined to be used for initializing the DS21348. BPCLK (pin 31) defaults to a 16.384MHz output when in hardware mode. The RCL/LOTC (pin 25) is designated to RCL when in hardware mode. JABDS (CCR4.2) defaults to logic 0. The RHBE (CCR2.3) and THBE (CCR2.2) control bits are combined and controlled by HBE at pin 11 while the RSCLKE (CCR5.3) and TSCLKE (CCR5.2) bits are combined and controlled by SCLKE at pin 4. TCES (CCR2.1) and RCES (CCR2.0) are combined and controlled by CES at pin 12. The transmitter functions are combined and controlled by TX1 (pin 15) and TX0 (pin 14). The loopback functions are controlled by LOOP1 (pin 17) and LOOP0 (pin 16). All other control bits default to the logic 0 setting.

3.1 Register Map

Table 3-1. Register Map

NAME	REGISTER	R/W	PARALLEL PORT MODE	SERIAL PORT MODE (Notes 2 to 5) (msb) (lsb)
CCR1	Common Control Register 1	R/W	00h	B000 000A
CCR2	Common Control Register 2	R/W	01h	B000 001A
CCR3	Common Control Register 3	R/W	02h	B000 010A
CCR4	Common Control Register 4	R/W	03h	B000 011A
CCR5	Common Control Register 5	R/W	04h	B000 100A
CCR6	Common Control Register 6	R/W	05h	B000 101A
SR	Status Register	R	06h	B000 110A
IMR	Interrupt Mask Register	R/W	07h	B000 111A
RIR1	Receive Information Register 1	R	08h	B001 000A
RIR2	Receive Information Register 2	R	09h	B001 001A
IBCC	In-Band Code Control Register	R/W	0Ah	B001 010A
TCD1	Transmit Code Definition Register 1	R/W	0Bh	B001 011A
TCD2	Transmit Code Definition Register 2	R/W	0Ch	B001 100A
RUPCD1	Receive Up Code Definition Register 1	R/W	0Dh	B001 101A
RUPCD2	Receive Up Code Definition Register 2	R/W	0Eh	B001 110A
RDNCD1	Receive Down Code Definition Register 1	R/W	0Fh	B001 111A
RDNCD2	Receive Down Code Definition Register 2	R/W	10h	B010 000A
ECR1	Error Count Register 1	R	11h	B010 001A
ECR2	Error Count Register 2	R	12h	B010 010A
TEST1	Test 1	R/W	13h	B010 011A
TEST2	Test 2	R/W	14h	B010 100A
TEST3	Test 3	R/W	15h	B010 101A
		_	(Note 1)	

Note 1: Register addresses 16h to 1Fh do not exist.

Note 2: In the Serial Port Mode, the LSB is on the right hand side.

Note 3: In the Serial Port Mode, data is read and written LSB first.

Note 4: In the Serial Port Mode, the A bit (the LSB) determines whether the access is a read (A = 1) or a write (A = 0).

Note 5: In the Serial Port Mode, the B bit (the MSB) determines whether the access is a burst access (B = 1) or a single register access (B = 0).

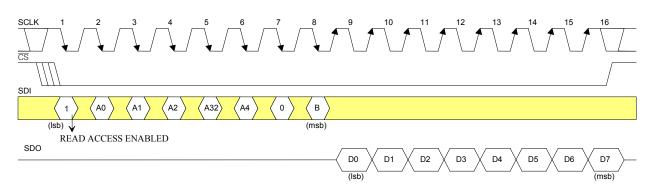
3.2 Parallel Port Operation

When using the parallel interface on the DS21348 (BIS1 = 0) the user has the option for either multiplexed bus operation (BIS1 = 0, BIS0 = 0) or non-multiplexed bus operation (BIS1 = 0, BIS0 = 1). The DS21348 can operate with either Intel or Motorola bus timing configurations. If the PBTS pin is tied low, Intel timing will be selected; if tied high, Motorola timing will be selected. All Motorola bus signals are listed in parentheses (). See the timing diagrams in Section <u>11</u> for more details.

3.3 Serial Port Operation

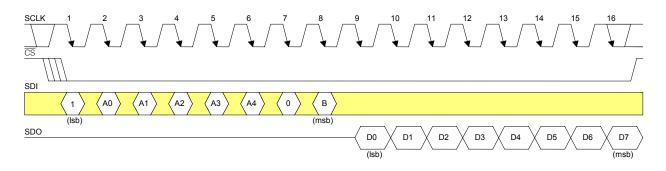
Setting BIS1 = 1 and BIS0 = 0 enables the serial bus interface on the DS21348. Port read/write timing is unrelated to the system transmit and receive timing, allowing asynchronous reads or writes by the host. See Section <u>11</u> for the AC timing of the serial port. All serial port accesses are LSB first. See Figure 3-1, Figure 3-2, Figure 3-3, and Figure 3-4 for more details.

Reading or writing to the internal registers requires writing one address/command byte prior to transferring register data. The first bit written (LSB) of the address/command byte specifies whether the access is a read (1) or a write (0). The next 5 bits identify the register address. Bit 7 is reserved and must be set to 0 for proper operation.

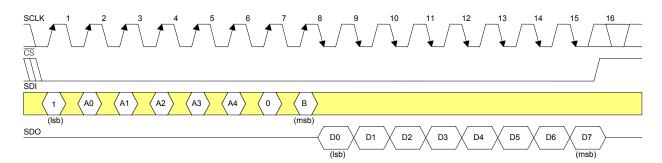

The last bit (MSB) of the address/command byte is the burst mode bit. When the burst bit is enabled (B = 1) and a READ operation is performed, addresses 0 through 15h are read sequentially, starting at address 0h. And when the burst bit is enabled and a WRITE operation is performed, addresses 0 through 16h are written sequentially, starting at address 0h. Burst operation is stopped once address 15h is read. See Figure 3-5 and Figure 3-6 for more details.

All data transfers are initiated by driving the \overline{CS} input low. When Input Clock-Edge Select (ICES) is low, input data is latched on the rising edge of SCLK and when ICES is high, input data is latched on the falling edge of SCLK. When Output Clock-Edge Select (OCES) is low, data is output on the falling edge of SCLK and when OCES is high, data is output on the rising edge of SCLK. Data is held until the next falling or rising edge. All data transfers are terminated if the \overline{CS} input transitions high. Port control logic is disabled and SDO is tri-stated when \overline{CS} is high.

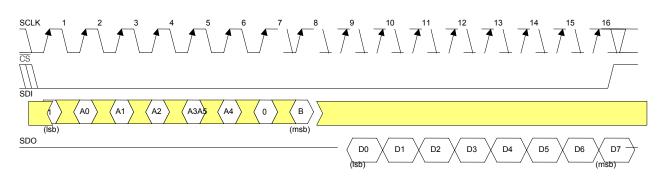
Figure 3-1. Serial Port Operation for Read Access (R = 1) Mode 1


ICES = 1 (sample SDI on the falling edge of SCLK)

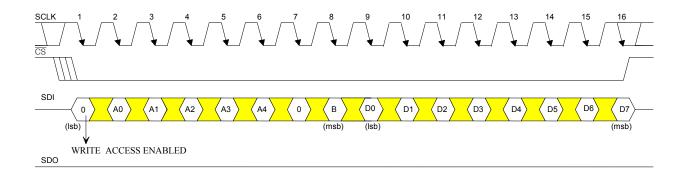
OCES = 1 (update SDO on rising edge of SCLK)


Figure 3-2. Serial Port Operation for Read Access Mode 2

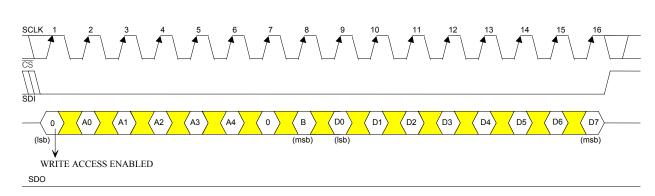
ICES = 1 (sample SDI on the falling edge of SCLK) OCES = 0 (update SDO on falling edge of SCLK)


Figure 3-3. Serial Port Operation for Read Access Mode 3

ICES = 0 (sample SDI on the rising edge of SCLK) OCES = 0 (update SDO on falling edge of SCLK)


Figure 3-4. Serial Port Operation for Read Access Mode 4

ICES = 0 (sample SDI on the rising edge of SCLK) OCES = 1 (update SDO on rising edge of SCLK)


Figure 3-5. Serial Port Operation for Write Access (R = 0) Modes 1 and 2

ICES = 1 (sample SDI on the falling edge of SCLK)

Figure 3-6. Serial Port Operation for Write Access (R = 0) Modes 3 and 4

D0

ICES = 0 (sample SDI on the rising edge of SCLK)

4. CONTROL REGISTERS

CCR1 (00H): COMMON CONTROL REGISTER 1

(MSB)	,						(LSB)
ETS	NRZE	RCLA	ECUE	JAMUX	TTOJ	TTOR	LOTCMC
SYMBOL	POSITIO	N DESCF	RIPTION				
ETS	CCR1.7	E1/T1 \$ 0 = E1 1 = T1	Select.				
NRZE	CCR1.6	NRZ E 0 = Bip1 = NR	olar data at Z Z data at R pulse when d	RPOS/RNEG a POS and TPO device receives	S or TNEG;	RNEG outp	1
RCLA	CCR1.5	$\mathbf{Receive}_{0} = \mathbf{RC}$	e Carrier L L declared u	oss Alternate (pon 255 (E1) o pon 2048 (E1)	or 192 (T1) co		
ECUE	CCR1.4	Error C cycle to the coun for E1	Counter Up load the en nters. The u and 1296ns	date Enable. A rror counter re ser must wait a s for T1) befor update. See Sec	A 0 to 1 trans gisters with to minimum of re reading th	ition forces the latest con f two clocks e error cour	the next clock unts and reset cycles (976ns nt registers to
JAMUX	CCR1.3	Jitter A 0 = JAC	Attenuator M CLK sourced	MUX. Controls from MCLK	s the source for (2.048MHz o	or JACLK (<u>I</u> or 1.544MHz	Figure 1-1). at MCLK)
TTOJ	CCR1.2		to JACLK. Ibled	Internally con	· · · · · · · · · · · · · · · · · · ·		/
TTOR	CCR1.1	TCLK 0 = disa 1 = enal	bled	nternally conn	ects TCLK to	RCLK (<u>Fig</u>	<u>ure 1-3</u>).
LOTCMC	CCR1.0	transmit transition 0 = do r	t logic shoul on (<u>Figure 1</u> not switch to	Clock Mux Co ld switch to JA -3). JACLK if TC K if TCLK sto	CLK if the To LK stops		

Table 4-1. MCLK Selection

MCLK (MHz)	JAMUX (CCR1.3)	ETS (CCR1.7)
2.048	0	0
2.048	1	1
1.544	0	1

CCR2 (01H): COMMON CONTROL REGISTER 2

(MSB)							(LSB)
P25S	n/a	SCLD	CLDS	RHBE	THBE	TCES	RCES
SYMBOL	POSITION	DESCH	RIPTION				
P25S	CCR2.7	$0 = \log g$	gles high duri	d to logic 0 in ng a Receive (CLK does not	Carrier Loss c	ondition	
-	CCR2.6		0	ld be set to ze			
SCLD	CCR2.5	current $0 = enal$	limiter. ble 50 mA cu	it Disable (E rrent limiter A CURRENI	,	ontrols the 5	0 mA (rms)
CLDS	CCR2.4	operation CCR4.5 wave a When t the dev drivers to zero	on of the trans $5 = CCR4.6 =$ t the TTIP a his bit is set ice will force instead of the	er Select. Sett issmit line driv = CCR4.7 = 0, nd TRING on to a one and C e TTIP and T ir normal push operation of t this bit.	ver. When this , then the dev utputs instead CCR4.5 = CC FRING output n-pull operation	is bit is set t ice will general of a norma R4.6 = CCR4 ts to become on. This bit s	o a one and rate a square 1 waveform. $4.7 \neq 0$, then e open drain hould be set
RHBE	CCR2.3	Receive $0 = enal$	e HDB3/B8Z ble HDB3 (E	S Enable. See 1)/B8ZS (T1)			
THBE	CCR2.2	$\mathbf{Transn}\\0 = \mathbf{ena}$	1 = disable HDB3 (E1)/B8ZS (T1) Transmit HDB3/B8ZS Enable. See Figure 1-3. 0 = enable HDB3 (E1)/B8ZS (T1) 1 = disable HDB3 (E1)/B8ZS (T1)				
TCES	CCR2.1	Transn and TN 0 = sam	Transmit Clock Edge Select. Selects which TCLK edge to sample TPOS and TNEG. See Figure 1-3. 0 = sample TPOS and TNEG on falling edge of TCLK				
RCES	CCR2.0	and RN 0 = upd	 1 = sample TPOS and TNEG on rising edge of TCLK Receive Clock Edge Select. Selects which RCLK edge to update RPO and RNEG. See Figure 1-2. 0 = update RPOS and RNEG on rising edge of RCLK 1 = update RPOS and RNEG on falling edge of RCLK 				

CCR3 (02H): COMMON CONTROL REGISTER 3

(MSB)							(LSB)
TUA1	ATUA1	TAOZ	TPRBSE	TLCE	LIRST	IBPV	IBE
SYMBOL	POSITION	DESC	RIPTION				
TUA1	CCR3.7	device bit mu transm Figure 0 = transpace	mit Unframed will transmit a set be set to ission of this of $\frac{1-1}{2}$. nsmit all ones a nsmit data norm	an all ones pa a one to all data pattern is at TTIP and T	ttern on powe ow the device always time	er-up or devic ce to transmi	e reset. This it data. The
ATUA1	CCR3.6	Autom unfram	atic Transmi led all ones pat condition or re abled	it Unframed at the start of the	and TRING du	•	
TAOZ	CCR3.5	TTIP a		he transmissi			
TPRBSE	CCR3.4	Transi	nit PRBS En a nd TRING (<u>Fi</u> abled		t a 2 ¹⁵ - 1 (E1)) or a 2 ²⁰ - 1 (T1) PRBS at
TLCE	CCR3.3	Transı loop u	nit Loop Cod p code in th . See Section <u>4</u> abled	e Transmit (Code Definiti	ion registers	
LIRST	CCR3.2	interna the jitt	nterface Reset l reset that reset er attenuator. l red and set aga	sets the clock Normally this	recovery stat bit is only to	te machine ar	nd re-centers
IBPV	CCR3.1	Insert Violati has been of three	BPV. A 0 to on (BPV) to b en toggled from e consecutive in for a subseq	1 transition e inserted into n a 0 to a 1, t ones to insert	on this bit was the transmit he device was the BPV. Th	data stream. (its for the nex is bit must be	Once this bit t occurrence
IBE	CCR3.0	Insert error to	Bit Error. A be inserted ir again for a sul	0 to 1 transition to the transm	ion on this bi	t will cause a n. This bit mu	st be cleared

4.1 Device Power-Up and Reset

The DS21348 will reset itself upon power-up setting all writeable registers to 00h and clear the status and information registers. CCR3.7 (TUA1) = 0 results in the LIU transmitting unframed all ones. After the power supplies have settled following power-up, initialize all control registers to the desired settings, then toggle the LIRST bit (CCR3.2). At anytime, the DS21348 can be reset to the default settings by bringing HRST (pin 29) low (level triggered) or by powering down and powering up again.

CCR4 (03H): COMMON CONTROL REGISTER 4

(MSB)	-						(LSB)
L2	L1	LO	EGL	JAS	JABDS	DJA	TPD
SYMBOL	POSITIO	N DESCR	RIPTION				
L2	CCR4.7		Line Build Out Select Bit 2. Sets the transmitter build out; see <u>Table 7-1</u> for E1 and Table 7-2 for T1.				
L1	CCR4.6		nd <u>Table 7-2</u>		the transmitte	er build out; s	ee <u>Table 7-1</u>
L0	CCR4.5		Line Build Out Select Bit 0. Sets the transmitter build out; see <u>Table 7-1</u> for E1 and <u>Table 7-2</u> for T1.				
EGL	CCR4.4		Receive Equalizer Gain Limit. This bit controls the sensitivity of the receive equalizer. See <u>Table 4-2</u> .				
JAS	CCR4.3	0 = plac	Jitter Attenuator Select. 0 = place the jitter attenuator on the receive side 1 = place the jitter attenuator on the transmit side				
JABDS	CCR4.2	0 = 128	Jitter Attenuator Buffer Depth Select. 0 = 128 bits 1 = 32 bits (use for delay-sensitive applications)				
DJA	CCR4.1	Disable 0 = jitte	Jitter Attenu r attenuator en r attenuator di	uator. nabled			
TPD	CCR4.0	0 = norr	it Power-Do nal transmitte ers down the	r operation	nd tri-states the	e TTIP and T	RING pins

Table 4-2. Receive Equalizer Sensitivity Settings

EGL (CCR4.4)	ETS (CCR1.7)	RECEIVE SENSITIVITY
0	0 (E1)	-12dB (short haul)
1	0 (E1)	-43dB (long haul)
1	1 (T1)	-30dB (limited long haul)
0	1 (T1)	-36dB (long haul)

CCR5 (04H): COMMON CONTROL REGISTER 5

(MSB)	,						(LSB)	
BPCS1	BPCS0	MM1	MM0	RSCLKE	TSCLKE	RT1	RT0	
SYMBOL	POSITION	N DESCR	RIPTION					
BPCS1	CCR5.7	Backpla	Backplane Clock Select 1. See <u>Table 4-3</u> for details.					
BPCS0	CCR5.6	Backpla	Backplane Clock Select 0. See <u>Table 4-3</u> for details					
MM1	CCR5.5	Monito	Monitor Mode 1. See <u>Table 4-4</u> .					
MM0	CCR5.4	Monito	Monitor Mode 0. See <u>Table 4-4</u> .					
RSCLKE TSCLKE	CCR5.3 CCR5.2	This con T1/E1 s $E1 \mod 0$ 0 = rece 1 = rece $T1 \mod 0$ 0 = rece 1 = rece Transm This con T1/E1 s $E1 \mod 0$ 0 = tran	ntrol bit deter ignals or a sy e: ive normal E ive 2.048MF e: ive normal T ive 1.544MF it Synchron ntrol bit deter ignals or a sy e: smit normal smit 2.048M	Exation Clock E rmines whether ynchronization E1 signal (Secti Hz synchroniza F1 signal Hz synchroniza hization Clock rmines whether ynchronized sig E1 signal (Sect Hz synchroniz	the line rece signal. on 6 of G.703 tion signal (So tion signal Enable. the transmitt gnal.	3) ection 10 of (eer should tran 13)	G.703) nsmit normal	
RT1 RT0	CCR5.1 CCR5.0	1 = tran Receive	e Terminatio	H I signal Hz synchroniz on 1. See <u>Table</u> on 0. See <u>Table</u>	4-5 for detail			

BPCS1 (CCR5.7)	BPCS0 (CCR5.6)	BPCLK FREQUENCY
0	0	16.384MHz
0	1	8.192MHz
1	0	4.096MHz
1	1	2.048MHz

Table 4-3. Backplane Clock Select

Table 4-4. Monitor Gain Settings

MM1 (CCR5.5)	MM0 (CCR5.4)	INTERNAL LINEAR GAIN BOOST
0	0	Normal operation (no boost)
0	1	20dB
1	0	26dB
1	1	32dB

Table 4-5. Internal Rx Termination Select

RT1 (CCR5.1)	RT0 (CCR5.0)	INTERNAL RECEIVE TERMINATION CONFIGURATION
0	0	Internal receive-side termination disabled
0	1	Internal receive-side 120Ω enabled
1	0	Internal receive-side 100Ω enabled
1	1	Internal receive-side 75Ω enabled

CCR6 (05H): COMMON CONTROL REGISTER 6

(MSB) (LSB)							
LLB	RLB	ARLBE	ALB	RJAB	ECRS2	ECRS1	ECRS0
SYMBOL	POSITION	DESCRIPT	TION				
LLB	CCR6.7	Local Loopback. In Local Loopback (LLB), transmit data will be looped back to the receive path passing through the jitter attenuator if it is enabled. Data in the transmit path will act as normal. See Figure 1-1 and Section 6.2.2 for details. 0 = loopback disabled 1 = loopback enabled					
RLB	CCR6.6	Remote Loopback. In Remote Loopback (RLB), data output from the clock/data recovery circuitry will be looped back to the transmit path passing through the jitter attenuator if it is enabled. Data in the receive path will act as normal while data presented at TPOS and TNEG will be ignored. See Figure 1-1 and Section 6.2.1 for details. 0 = loopback disabled 1 = loopback enabled					
ARLBE	CCR6.5	Automatic Remote Loopback Enable and Reset. When this bit is set high, the device will automatically go into remote loopback when it detects loop up code programmed into the Receive Loop-Up Code Definition Registers (RUPCD1 and RUPCD2) for a minimum of 5 seconds and it will also set the RIR2.1 status bit. Once in a RLB state, it will remain in this state until it has detected the loop code programmed into the Receive Loop-Down Code Definition Registers (RDNCD1 and RDNCD2) for a minimum of 5 seconds at which point it will force the device out of RLB and clear RIR2.1. The automatic RLB circuitry can be reset by toggling this bit from a 1 to a 0. The action of the automatic remote loopback circuitry is logically ORed with the RLB (CCR6.6) control bit (i.e., either one can cause a RLB to occur).					
ALB	CCR6.4	Analog Loopback. In Analog Loopback (ALB), signals at TTIP and TRING will be internally connected to RTIP and RRING. The incoming signals, from the line, at RTIP and RRING will be ignored. The signals at TTIP and TRING will be transmitted as normal. See <u>Figure 1-1</u> and Section <u>6.2.3</u> for more detail $0 = $ loopback disabled $1 = $ loopback enabled					
RJAB	CCR6.3	RCLK Jitter Attenuator Bypass. This control bit allows the receive recovered clock and data to bypass the jitter attenuation while still allowing the BPCLK output to use the jitter attenuator. See Figure 1-1 and Section 7.3 for details. $0 = disabled$					
ECRS2	CCR6.2	1 = enabled Error Count Register Select 2. See Section <u>6.4</u> for details.					
ECRS1	CCR6.1	Error Count Register Select 1. See Section <u>6.4</u> for details.					
ECRS0	CCR6.0	Error Coun	nt Register S	elect 0. See S	ection <u>6.4</u> for	details.	

5. STATUS REGISTERS

There are three registers that contain information on the current real-time status of the device, Status Register (SR) and Receive Information Registers 1 and 2 (RIR1/RIR2). When a particular event has occurred (or is occurring), the appropriate bit in one of these three registers will be set to a one. Some of the bits in SR, RIR1, and RIR2 are latched bits and some are real time bits. The register descriptions below list which status bits are latched and which are real time bits. For latched status bits, when an event or an alarm occurs the bit is set to a one and will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again. Two of the latched status bits (RUA1 and RCL) will remain set after reading if the alarm is still present.

The user will always precede a read of any of the three status registers with a write. The byte written to the register will inform the DS21348 which bits the user wishes to read and have cleared. The user will write a byte to one of these registers with a one in the bit positions to be read and a zero in the other bit positions. When a one is written to a bit location, that location will be updated with the latest information. When a zero is written to a bit position, that bit position will not be updated and the previous value will be held. A write to the status and information registers will be immediately followed by a read of the same register. The read result should be logically ANDed with the mask byte that was just written and this value should be written back into the same register to insure that bit does indeed clear. This second write step is necessary because the alarms and events in the status registers occur asynchronously with respect to their access via the parallel port. This write-read-write scheme allows an external microcontroller or microprocessor to individually poll certain bits without disturbing the other bits in the register. This operation is key in controlling the DS21348 with higher-order software languages.

The bits in the SR register have the unique ability to initiate a hardware interrupt via the INT output pin. Each of the alarms and events in the SR can be either masked or unmasked from the interrupt pin via the Interrupt Mask Register (IMR). The interrupts caused by the RCL, RUA1, and LOTC bits in SR act differently than the interrupts caused by the other status bits in SR. The RCL, RUA1 and LOTC bits will force the INT pin low whenever they change state (i.e., go active or inactive). The INT pin will be allowed to return high (if no other interrupts are present) when the user reads the alarm bit that caused the interrupt to occur even if the alarm is still present. The other status bits in SR can force the INT pin low when they are set. The INT pin will be allowed to return high (if no other interrupt to occur.

ALARM	E1/T1	SET CRITERIA	CLEAR CRITERIA		
RUA1	E1	Less than 2 zeros in two frames (512 bits)	More than 2 zeros in two frames (512 bits)		
RUA1	T1	Over a 3ms window, five or fewer zeros are received	Over a 3ms window, six or more zeros are received		
RCL^1	E1	255 (or 2048) ² consecutive zeros received (G.775)	In 255 bit times, at least 32 ones are received		
RCL ¹	T1	192 (or 1544) ² consecutive zeros are received	14 or more ones out of 112 possible bit positions are received starting with the first one received		

 Table 5-1. Received Alarm Criteria

Note 1: Receive carrier loss (RCL) is also known as loss of signal (LOS) or Red Alarm in T1.

Note 2: See CCR1.5 for details.

SR (06H): STATUS REGISTER

(MSB)							(LSB)
LUP	LDN	LOTC	RUA1	RCL	TCLE	TOCD	PRBSD

SYMBOL POSITION DESCRIPTION

LUP (latched) LDN	SR.7 SR.6	Loop-Up Code Detected. Set when the loop-up code defined in registers RUPCD1 and RUPCD2 is being received. See Section <u>4</u> for details. Loop-Down Code Detected. Set when the loop-down code defined in
(latched)		registers RDNCD1 and RDNCD2 is being received. See Section $\frac{4}{4}$ for details.
LOTC	SR.5	Loss of Transmit Clock. Set when the TCLK pin has not transitioned for
(real time)		5 μ sec ($\pm 2\mu$ s). Will force the LOTC pin high.
RUA1	SR.4	Receive Unframed All Ones. Set when an unframed all ones code is
(latched)		received at RRING and RTIP. See <u>Table 5-1</u> for details.
RCL	SR.3	Receive Carrier Loss. Set when a receive carrier loss condition exists at
(latched)		RRING and RTIP. See <u>Table 5-1</u> for details.
TCLE	SR.2	Transmit Current Limit Exceeded. Set when the 50mA (RMS) current
(real time)		limiter is activated whether the current limiter is enabled or not.
TOCD	SR.1	Transmit Open Circuit Detect. Set when the device detects that the TTIP
(real time)		and TRING outputs are open circuited.
PRBSD	SR.0	PRBS Detect. Set when the receive-side detects a 2^{15} - 1 (E1) or a 2^{20} - 1
(real time)		(T1) Pseudo-Random Bit Sequence (PRBS).

IMR (07H): INTERRUPT MASK REGISTER

(MSB)							(LSB)
LUP	LDN	LOTC	RUA1	RCL	TCLE	TOCD	PRBSD
SYMBOL	POSI	TION I	DESCRIPTIO	N			<u> </u>
LUP	IM	C	Loop-Up Code = interrupt ma	asked			
LDN	IM	R.6 I	= interrupt en L oop-Down Co = interrupt ma	ode Detected. asked			
LOTC	IM	R.5 I	= interrupt en Loss of Transn) = interrupt ma	nit Clock. asked			
RUA1	IM	R.4 I	= interrupt en Receive Unfran) = interrupt ma	med All Ones asked	•		
RCL	IM	R.3 F	= interrupt en Receive Carrie = interrupt ma	er Loss.			
TCLE	IM	R.2 7	= interrupt en [ransmit Curr] = interrupt ma	r ent Limiter I asked	Exceeded.		
TOCD	IM	R.1 T	= interrupt en Fransmit Oper = interrupt ma	n Circuit Dete asked	ect.		
PRBSD	IM	R.0 H	= interrupt en PRBS Detectio = interrupt ma = interrupt en	n. Isked			

RIR1 (08H): RECEIVE INFORMATION REGISTER 1

(MSB)								(LSB)	
ZD	16ZD	HBD)	RCLC	RUA1C	JALT	n/a	n/a	
SYMBOL	POS	ITION	DE	SCRIPTIO	N				
ZD (latched)	RI	R1.7	(ET	S = 1 cons	et when a strin ecutive zeros (ived. Will be c	regardless of	the length of	-	
16ZD (latched)	RI	R1.6	(reg	Sixteen Zero Detect. Set when at least 16 consecutive zeros (regardless of the length of the string) have been received. Will be cleared when read.					
HBD (latched)	RI	R1.5	(ET HD	S = 1 code B3/B8ZS m	Vord Detect. Solve word is detect node (CCR4.6) matically settin	ted independe is enabled. W	ent of whether Vill be cleared	r the receiv	
RCLC (latched)	RI	R1.4	Receive Carrier Loss Clear. Set when the RCL alarm has met the clear criteria defined in <u>Table 5-1</u> . Will be cleared when read.						
RUA1C (latched)	RI	R1.3	Rec	Receive Unframed All Ones Clear. Set when the unframed all ones signal is no longer detected. Will be cleared when read (Table 5-1).					
JALT (latched)	RI	R1.2	Jitter Attenuator Limit Trip. Set when the jitter attenuator FIFO reaches to within 4 bits of its useful limit. Will be cleared when rea Useful for debugging jitter attenuation operation.						
N/A	RI	R1.1			Could be any	-			
N/A	RI	R1.0	Not	t Assigned.	Could be any	value when re	ead.		

(MSB)								(LSB)
RL3	RL2	RL	1	RL0	N/A	N/A	ARLB	SEC
SYMBOL	POSI	TION	DES	SCRIPTION	Ň			
RL3	RI	R2.7	Rec	eive Level F	Bit 3. See <u>Tabl</u>	<u>e 5-2</u> .		
(real time)			_					
RL2 (real time)	RII	R2.6	Rec	eive Level F	Bit 2. See <u>Tabl</u>	<u>e 5-2</u> .		
RL1	RI	R2.5	Rec	eive Level F	Bit 1. See <u>Tabl</u>	e 5-2		
(real time)	111		1100		<u>10 10 500 <u>1001</u></u>	<u>•••</u> .		
RL0	RII	R2.4	Rec	eive Level F	Bit 0. See <u>Tabl</u>	<u>e 5-2</u> .		
(real time) N/A	ווס	R2.3	Not	Assigned (Could be only u	alua whan ra	ad	
				U	Could be any v			
N/A	RII	R2.2	Not	Assigned. (Could be any w	alue when rea	ad.	
ARLB (real time)	RIF	R2.1	Automatic Remote Loopback Detected. This bit will be set to a c when the automatic Remote Loopback (RLB) circuitry has detecte the presence of a loop up code for 5 seconds. It will remain set unt the automatic RLB circuitry has detected the loop down code for 5					s detected in set until
SEC	RII	R2.0	secc whe	onds. See See on the automatic	ction <u>4</u> for mo atic RLB circu mer. This bit	re details. Thi	is bit will be for $CCR6.5 =$	orced low 0).
(latched)			bou		ned by the dev			

RIR2 (09H): RECEIVE INFORMAION REGISTER 2

RL3	RL2	RL1	RL0	RECEIVE LEVEL (dB)
0	0	0	0	< -2.5
0	0	0	1	-2.5 to -5.0
0	0	1	0	-5.0 to -7.5
0	0	1	1	-7.5 to -10.0
0	1	0	0	-10.0 to -12.5
0	1	0	1	-12.5 to -15.0
0	1	1	0	-15.0 to -17.5
0	1	1	1	-17.5 to -20.0
1	0	0	0	-20.0 to -22.5
1	0	0	1	-22.5 to -25.0
1	0	1	0	-25.0 to -27.5
1	0	1	1	-27.5 to -30.0
1	1	0	0	-30.0 to -32.5
1	1	0	1	-32.5 to -35.0
1	1	1	0	-35.0 to -37.5
1	1	1	1	> -37.5

Table 5-2. Receive Level Indication

6. DIAGNOSTICS

6.1 In-Band Loop Code Generation and Detection

The DS21348 can generate and detect a repeating bit pattern that is from one to eight or sixteen bits in length. To transmit a pattern, the user will load the pattern to be sent into the Transmit Code Definition (TCD1 and TCD2) registers and select the proper length of the pattern by setting the TC0 and TC1 bits in the In-Band Code Control (IBCC) register. When generating a 1, 2, 4, 8, or 16 bit pattern both the transmit code registers (TCD1 and TCD2) must be filled with the proper code. Generation of a 1, 3, 5, or 7-bit pattern only requires TCD1 to be filled. Once this is accomplished, the pattern will be transmit the standard "loop up" code for Channel Service Units which is a repeating pattern of ...10000100001... then 80h would be loaded into TCD1 and the length would set using TC1 and TC0 in the IBCC register to 5 bits.

The DS21348 can detect two separate repeating patterns to allow for both a "loop up" code and a "loop down" code to be detected. The user will program the codes to be detected in the Receive Up Code Definition (RUPCD1 and RUPCD2) registers and the Receive Down Code Definition (RDNCD1 and RDNCD2) registers and the length of each pattern will be selected via the IBCC register. The DS21348 will detect repeating pattern codes with bit error rates as high as 1×10^{-2} . The code detector has a nominal integration period of 48ms, hence, after about 48ms of receiving either code, the proper status bit (LUP at SR.7 and LDN at SR.6) will be set to a one. Normally codes are sent for a period of 5 seconds. It is recommended that the software poll the DS21348 every 100ms to 1000ms until 5 seconds has elapsed to insure that the code is continuously present.

(MSB)							(LSB)		
TC1	TC0	RUP2	RUP1	RUP0	RDN2	RDN1	RDN0		
SYMBOL	POS	ITION I	DESCRIPTIO	N					
TC1	IBO	CC.7 7	Fransmit Cod	e Length Def	inition Bit 1.	See <u>Table 6-</u>	<u>L</u> .		
TC0	IBO	CC.6 7	Fransmit Cod	<u>L</u> .					
RUP2	IBO	CC.5 I	Receive Up Code Length Definition Bit 2. See <u>Table 6-2</u> .						
RUP1	IBO	CC.4 I	Receive Up Co	de Length D	efinition Bit	1. See <u>Table (</u>	<u>6-2</u> .		
RUP0	IBO	CC.3 I	Receive Up Co	de Length D	efinition Bit	0. See <u>Table (</u>	<u>5-2</u> .		
RDN2	IBO	CC.2 I	Receive Down	Code Length	1 Definition F	Bit 2. See <u>Tab</u>	<u>le 6-2</u> .		
RDN1	IBO	CC.1 I	Receive Down Code Length Definition Bit 1. See <u>Table 6-2</u> .						
RDN0	IBO	CC.0 I	Receive Down Code Length Definition Bit 0. See <u>Table 6-2</u> .						

IBCC (0AH): IN-BAND CODE CONTROL REGISTER

Table 6-1. Transmit Code Length

41 of 76

TC1	TC0	LENGTH SELECTED (BITS)
0	0	5
0	1	6/3
1	0	7
1	1	16/8/4/2/1

Table 6-2. Receive Code Length

RUP2/RDN2	RUP1/ RDN1	RUP0/RDN0	LENGTH SELECTED (BITS)
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	16/8

TCD1 (0BH): TRANSMIT CODE DEFINITION REGISTER 1

(MSB)							(LSB)
C7	C6	C5	C4	C3	C2	C1	C0
SYMBO	DL P	OSITION	DESCRIP	TION			
C7		TCD1.7	Transmit	Code Definit	ion Bit 7. Firs	st bit of the re	epeating
			pattern.	~			
C6		TCD1.6	Transmit (Code Definit	ion Bit 6.		
C5		TCD1.5	Transmit	Code Definit	ion Bit 5.		
C4		TCD1.4	Transmit	Code Definit	ion Bit 4.		
C3		TCD1.3	Transmit	Code Definit	ion Bit 3.		
C2		TCD1.2	Transmit (length is se		ion Bit 2. A D	Don't Care if	a 5-bit
C1		TCD1.1	•	Code Definit	ion Bit 1. A 🛛	Don't Care if	a 5-bit or 6-
C0		TCD1.0	Transmit		ion Bit 0. A D ected.	Don't Care if	a 5-bit, 6-

(MSB)	,						(LSB)
C15	C14	C13	C12	C11	C10	С9	C8
SYMBO	DL P	OSITION	DESCRIP	TION			
C15		TCD2.7	Transmit	Code Definit	ion Bit 15		
C14		TCD2.6	Transmit	Code Definit	ion Bit 14		
C13		TCD2.5	Transmit	Code Definit	ion Bit 13		
C12		TCD2.4	Transmit	Code Definit	ion Bit 12		
C11		TCD2.3	Transmit	Code Definit	ion Bit 11		
C10		TCD2.2	Transmit	Code Definit	ion Bit 10		
С9		TCD2.1	Transmit	Code Definit	ion Bit 9		
C8		TCD2.0	Transmit	Code Definit	ion Bit 8		

TCD2 (0CH): TRANSMIT CODE DEFINITION REGISTER 2

RUPCD1 (0DH): RECEIVE UP CODE DEFINITION REGISTER 1

(MSB)							(LSB)		
C7	C6	C5	C4	C3	C2	C1	CO		
SYMBO	DL P	OSITION	DESCRIP	TION					
C7	R	RUPCD1.7	Receive U	p Code Defin	ition Bit 7. F	irst bit of the	repeating		
			pattern.						
C6	C6 RUPCD1.6			p Code Defin	ition Bit 6. A	Don't Care	if a 1-bit		
			length is se						
C5	R	RUPCD1.5		Receive Up Code Definition Bit 5. A Don't Care if a 1-bit or					
			U	h is selected.					
C4	R	RUPCD1.4	Receive Up Code Definition Bit 4. A Don't Care if a 1-bit to						
			U	h is selected.					
C3	R	RUPCD1.3		p Code Defin	ition Bit 3. A	Don't Care	if a 1-bit to		
C 2	п		•	h is selected.	··· D·· 2 A		.0 11.44		
C2	K	RUPCD1.2		p Code Defin	ition Bit 2. A	Don't Care	II a 1-bit to		
C1	מ	RUPCD1.1	U	h is selected.	ition Dit 1 A	Don't Cara	if a 1 bit to		
CI	N	UFCD1.1		p Code Define h is selected.	nuon dit 1. A	Don t Cale			
C0	R	RUPCD1.0	Receive U	p Code Defin h is selected.	ition Bit 0. A	Don't Care	if a 1-bit to		

RUPCD2 (0EH): RECEIVE UP CODE DEFINITION REGISTER 2

(MSB)							(LSB)
C15	C14	C13	C12	C11	C10	С9	C8
SYMBO	DL P	OSITION	DESCRIP	TION			
C15	R	RUPCD2.7	Receive U	p Code Defin	ition Bit 15		
C14	R	RUPCD2.6	Receive U	p Code Defin	ition Bit 14		
C13	R	RUPCD2.5	Receive U	p Code Defin	ition Bit 13		
C12	R	RUPCD2.4	Receive U	p Code Defin	ition Bit 12		
C11	R	RUPCD2.3	Receive U	p Code Defin	ition Bit 11		
C10	R	RUPCD2.2	Receive U	p Code Defin	ition Bit 10		
С9	R	RUPCD2.1	Receive U	p Code Defin	ition Bit 9		
C8	R	RUPCD2.0	Receive U	p Code Defin	ition Bit 8		

RDNCD1 (0FH): RECEIVE DOWN CODE DEFINITION REGISTER 1

(MSB)							(LSB)
C7	C6	C5	C4	C3	C2	C1	C0
SYMBO	DL P	OSITION	DESCRIP	TION			
C7	R	DNCD1.7		own Code De	efinition Bit 7	7. First bit of	the
C6	R	DNCD1.6	repeating p Receive De length is se	own Code De	efinition Bit 6	6. A Don't Ca	re if a 1-bit
C5	R	DNCD1.5	Receive D	own Code De		5. A Don't Ca	re if a 1-bit
C4	R	DNCD1.4	Receive D	own Code De	efinition Bit 4	I. A Don't Ca	re if a 1-bit
C3	R	DNCD1.3	Receive D	own Code De	efinition Bit 3	3. A Don't Ca	re if a 1-bit
C2	R	DNCD1.2	Receive D	own Code De	efinition Bit 2	2. A Don't Ca	re if a 1-bit
C1	R	DNCD1.1	Receive D	own Code De	efinition Bit 1	I. A Don't Ca	re if a 1-bit
C0	R	DNCD1.0	Receive D	own Code De gth is selected	efinition Bit (). A Don't Ca	re if a 1-bit

	· (· • · · / · · · -						
(MSB)							(LSB)
C15	C14	C13	C12	C11	C10	С9	C8
SYMBO	DL P	OSITION	DESCRIP	TION			
C15	R	DNCD2.7	Receive D	own Code De	finition Bit 1	5	
C14	R	DNCD2.6	Receive D	own Code De	finition Bit 1	4	
C13	R	DNCD2.5	Receive D	own Code De	finition Bit 1	3	
C12	R	DNCD2.4	Receive D	own Code De	finition Bit 1	2	
C11	R	DNCD2.3	Receive D	own Code De	finition Bit 1	1	
C10	R	DNCD2.2	Receive D	own Code De	finition Bit 1	0	
С9	R	DNCD2.1	Receive D	own Code De	finition Bit 9)	
C8	R	DNCD2.0	Receive D	own Code De	finition Bit 8	3	

RDNCD2 (10H): RECEIVE DOWN CODE DEFINITION REGISTER 2

6.2 Loopbacks

6.2.1 Remote Loopback (RLB)

When RLB (CCR6.6) is enabled, the DS21348 is placed into remote loopback. In this loopback, data from the clock/data recovery state machine will be looped back to the transmit path passing through the jitter attenuator if it is enabled. The data at the RPOS and RNEG pins will be valid while data presented at TPOS and TNEG will be ignored. See Figure 1-1 for details.

If the Automatic Remote Loop Back Enable (CCR6.5) is set to a one, the DS21348 will automatically go into remote loop back when it detects the loop-up code programmed in the Receive Up Code Definition Registers (RUPCD1 and RUPCD2) for a minimum of 5 seconds. When the DS21348 detects the loop down code programmed in the Receive Loop-Down Code Definition registers (RDNCD1 and RDNCD2) for a minimum of 5 seconds, the DS21348 will come out of remote loop back. The ARLB can also be disabled by setting ARLBE to a zero.

6.2.2 Local Loopback (LLB)

When LLB (CCR6.7) is set to a one, the DS21348 is placed into Local Loopback. In this loopback, data on the transmit-side will continue to be transmitted as normal. TCLK and TPOS/TNEG will pass through the jitter attenuator (if enabled) and be output at RCLK and RPOS/RNEG. Incoming data from the line at RTIP and RRING will be ignored. If Transmit Unframed All Ones (CCR3.7) is set to a one while in LLB, TTIP and TRING will transmit all ones while TCLK and TPOS/TNEG will be looped back to RCLK and RPOS/RNEG. See Figure 1-1 for more details.

6.2.3 Analog Loopback (ALB)

Setting ALB (CCR6.4) to a one puts the DS21348 in Analog Loopback. Signals at TTIP and TRING will be internally connected to RTIP and RRING. The incoming signals at RTIP and RRING will be ignored. The signals at TTIP and TRING will be transmitted as normal. See <u>Figure 1-1</u> for more details.

6.2.4 Dual Loopback (DLB)

Setting both CCR6.7 and CCR6.6 to a one, LLB and RLB respectively, puts the DS21348 into Dual Loopback operation. The TCLK and TPOS/TNEG signals will be looped back through the jitter attenuator (if enabled) and output at RCLK and RPOS/RNEG. Clock and data recovered from RTIP and RRING will be looped back to the transmit-side and output at TTIP and TRING. This mode of operation is not available when implementing hardware operation. See Figure 1-1 for more details.

6.3 PRBS Generation and Detection

Setting TPRBSE (CCR3.4) = 1 enables the DS21348 to transmit a 2^{15} - 1 (E1) or a 2^{20} - 1 (T1) Pseudo-Random Bit Sequence (PRBS) depending on the ETS bit setting in CCR1.7. The receive-side of the DS21348 will always search for these PRBS patterns independent of CCR3.4. The PRBS Bit Error Output (PBEO) will remain high until the receiver has synchronized to one of the two patterns (64 bits received without an error) at which time PBEO will go low and the PRBSD bit in the Status Register (SR) will be set. Once synchronized, any bit errors received will cause a positive going pulse at PBEO, synchronous with RCLK. This output can be used with external circuitry to keep track of bit error rates during the PRBS testing. Setting CCR6.0 (ECRS) = 1 will allow the PRBS errors to be accumulated in the 16-bit counter in registers ECR1 and ECR2. The PRBS synchronizer will remain in sync until it experiences 6 bit errors or more within a 64-bit span. Both PRBS patterns comply with the ITU-T 0.151 specifications.

6.4 Error Counter

Error Count Register 1 (ECR1) is the most significant word and ECR2 is the least significant word of a user selectable 16-bit counter that records incoming errors including BiPolar Violations (BPV), Code Violations (CV), Excessive Zero violations (EXZ) and/or PRBS Errors. See <u>Table 6-3</u> and <u>Table 6-4</u> and <u>Figure 1-2</u> for details.

ERROR	E1 OR T1	DEFINITION OF RECEIVED ERRORS
		Two consecutive marks with the same polarity. Will ignore BPVs due to
BPV	E1/T1	HDB3 and B8ZS zero suppression when $CCR2.3 = 0$. Typically used with
		AMI coding (CCR2.3 = 1). ITU-T O.161.
CV	E1	When HDB3 is enabled (CCR2.3 = 0) and the receiver detects two
	LI	consecutive BPVs with the same polarity. ITU-T O.161.
EXZ	E1	When four or more consecutive zeros are detected.
		When receiving AMI coded signals ($CCR2.3 = 1$), detection of 16 or more
EXZ	T1	zeros or a BPV. ANSI T1.403 1999.
LAL	11	When receiving B8ZS coded signals ($CCR2.3 = 0$), detection of 8 or more
		zeros or a BPV. ANSI T1.403 1999.
PRBS	E1/T1	A bit error in a received PRBS pattern. See Section 6.3 for details. ITU-T
1105		0.151.

Table 6-3. Definition of Received Errors

E1 or T1 (CCR1.7)	ECRS2 (CCR6.2)	ECRS1 (CCR6.1)	ECRS0 (CCR6.0)	RHBE (CCR2.3)	FUNCTION OF ECR COUNTERS/RNEG ¹
0	0	0	0	X	CVs
0	0	0	1	Х	BPVs (HDB3 code words not counted)
0	0	1	0	Х	CVs + EXZs
0	0	1	1	Х	BPVs + EXZs
1	0	Х	0	0	BPVs (B8ZS code words not counted)
1	0	Х	1	0	BPVs + 8 EXZs
1	0	Х	0	1	BPVs
1	0	Х	1	1	BPVs + 16 EXZs
X	1	Х	Х	Х	PRBS Errors ²

Table 6-4. Function of ECRS Bits and RNEG Pin

Note 1: RNEG outputs error data only when in NRZ mode (CCR1.6 = 1)

Note 2: PRBS errors will always be output at PBEO independent of ECR control bits and NRZ mode and will not be present at RNEG.

6.4.1 Error Counter Update

A transition of the ECUE (CCR1.4) control bit from 0 to 1 will update the ECR registers with the current values and reset the counters. ECUE must be set back to zero and another 0 to 1 transition must occur for subsequent reads/resets of the ECR registers. Note that the DS21348 can report errors at RNEG when in NRZ mode (CCR1.6 = 1) by outputting a pulse for each error occurrence. The counter saturates at 65,535 and will not rollover.

ECR1 (11H): UPPER ERROR COUNT REGISTER 1; ECR2 (12H): LOWER ERROR COUNT REGISTER 2

(MSB)							(LSB)	
E15	E14	E13	E12	E11	E10	E9	E8	ECR1
E7	E6	E5	E4	E3	E2	E1	E0	ECR2
SYMB	OL	POSITIO	N DES	CRIPTION	ſ			
E15	5	ECR1.7	MSB	B of the 16-b	oit error cou	unt		
E0		ECR2.0	LSB	of the 16-b	it error cou	nt		

6.5 Error Insertion

When IBPV (CCR3.1) is transitioned from a zero to a one, the device waits for the next occurrence of three consecutive ones to insert a BPV. IBPV must be cleared and set again for another BPV error insertion. See Figure 1-3 for details on the insertion of the BPV into the datastream.

When IBE (CCR3.0) is transitioned from a zero to a one, the device will insert a logic error. IBE must be cleared and set again for another logic error insertion. See <u>Figure 1-3</u> for details on the insertion of the logic error into the datasteam.

7. ANALOG INTERFACE

7.1 Receiver

The DS21348 contains a digital clock recovery system. The DS21348 couples to the receive E1 or T1 twisted pair (or coaxial cable in 75 Ω E1 applications) via a 1:1 transformer. See <u>Table 7-3</u> for transformer details. Figure 7-1, Figure 7-2, and Figure 7-3 along with <u>Table 7-1</u> and <u>Table 7-2</u> show the receive termination requirements. The DS21348 has the option of using internal termination resistors.

The DS21348 is designed to be fully software-selectable for E1 and T1 without the need to change any external resistors for the receive-side. The receive-side will allow the user to configure the DS21348 for 75 Ω , 100 Ω , or 120 Ω receive termination by setting the RT1 (CCR5.1) and RT0 (CCR5.0) bits. When using the internal termination feature, the Rr resistors should be 60 Ω each. See Figure 7-1 for details. If external termination is required, RT1 and RT0 should be set to 0 and both Rr resistors in Figure 7-1 will need to be 37.5 Ω , 50 Ω , or 60 Ω each depending on the line impedance.

The resultant E1 or T1 clock derived from the 2.048/1.544 PLL (JACLK in Figure 1-1) is internally multiplied by 16 via another internal PLL and fed to the clock recovery system. The clock recovery system uses the clock from the PLL circuit to form a 16 times oversampler which is used to recover the clock and data. This oversampling technique offers outstanding performance to meet jitter tolerance specifications shown in Figure 7-6.

Normally, the clock that is output at the RCLK pin is the recovered clock from the E1 AMI/HDB3 or T1 AMI/B8ZS waveform presented at the RTIP and RRING inputs. When no signal is present at RTIP and RRING, a Receive Carrier Loss (RCL) condition will occur and the RCLK will be derived from the JACLK source. See Figure 1-1. If the jitter attenuator is placed in the receive path (as is the case in most applications), the jitter attenuator restores the RCLK to an approximate 50% duty cycle. If the jitter attenuator is either placed in the transmit path or is disabled, the RCLK output can exhibit slightly shorter high cycles of the clock. This is due to the highly oversampled digital clock recovery circuitry. See the *Receive AC Timing Characteristics* in Section <u>11</u> for more details.

The receive-side circuitry also contains a clock synthesizer which outputs a user configurable clock (up to 16.384MHz) synthesized to RCLK at BPCLK (pin 31). See <u>Table 4-3</u> for details on output clock frequencies at BPCLK. In hardware mode, BPCLK defaults to a 16.384MHz output.

The DS21348 has a bypass mode for the receive side clock and data. This allows the BPCLK to be derived from RCLK after the jitter attenuator while the clock and data presented at RCLK, RPOS, and RNEG go unaltered. This is intended for applications where the receive side jitter attenuation will be done after the LIU. Setting RJAB (CCR6.3) to a logic 1 will enable the bypass. Be sure that the jitter attenuator is in the receive path (CCR4.3 = 0). See Figure 1-1 for details.

The DS21348 will report the signal strength at RTIP and RRING in 2.5dB increments via RL3-RL0 located in the Receive Information Register 2. This feature is helpful when trouble shooting line performance problems. See <u>Table 5-2</u> for details.

Monitor applications in both E1 and T1 require various flat gain settings for the receive-side circuitry. The DS21348 can be programmed to support these applications via the Monitor Mode control bits MM1 and MM0. When the monitor modes are enabled, the receiver will tolerate normal line loss up to -6dB. See <u>Table 4-4</u> for details.

7.2 Transmitter

The DS21348 uses a set of laser-trimmed delay lines along with a precision Digital-to-Analog Converter (DAC) to create the waveforms that are transmitted onto the E1 or T1 line. The waveforms created by the DS21348 meet the latest ETSI, ITU, ANSI, and AT&T specifications. The user will select which waveform is to be generated by setting the ETS bit (CCR1.7) for E1 or T1 operation, then programming the L2/L1/L0 bits in Common Control Register 4 for the appropriate application. See <u>Table 7-1</u> and <u>Table 7-2</u> for the proper L2/L1/L0 settings.

A 2.048MHz or 1.544MHz TTL clock is required at TCLK for transmitting data at TPOS and TNEG. ITU specification G.703 requires an accuracy of \pm 50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of \pm 32ppm for T1 interfaces. The clock can be sourced internally by RCLK or JACLK. See CCR1.2, CCR1.1, CCR1.0, and Figure 1-3 for details. Due to the nature of the design of the transmitter in the DS21348, very little jitter (less than 0.005UI_{P-P} broadband from 10Hz to 100kHz) is added to the jitter present on TCLK. Also, the waveforms created are independent of the duty cycle of TCLK. The transmitter in the DS21348 couples to the E1 or T1 transmit twisted pair (or coaxial cable in some E1 applications) via a 1:2 step-up transformer. In order for the device to create the proper waveforms, the transformer used must meet the specifications listed in Table 7-3.

The DS21348 has automatic short-circuit limiter which limits the source current to 50mA (RMS) into a 1 Ω load. This feature can be disabled by setting the SCLD bit (CCR2.5) = 1. When the current limiter is activated, TCLE (SR.2) will be set even if short circuit limiter is disabled. The TPD bit (CCR4.0) will power-down the transmit line driver and tri-state the TTIP and TRING pins. The DS21348 can also detect when the TTIP or TRING outputs are open circuited. When an open circuit is detected, TOCD (SR.1) will be set.

7.3 Jitter Attenuator

The DS21348 contains an on-board jitter attenuator that can be set to a depth of either 32 or 128 bits via the JABDS bit (CCR4.2). In hardware mode the depth is 128 bits and cannot be changed. The 128-bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used in delay sensitive applications. The characteristics of the attenuation are shown in Figure 7-7Figure 7-7. The jitter attenuator can be placed in either the receive path or the transmit path by appropriately setting or clearing the JAS bit (CCR4.3). Also, the jitter attenuator can be disabled (in effect, removed) by setting the DJA bit (CCR4.1). For the jitter attenuator to operate properly, a 2.048MHz or 1.544MHz clock must be applied at MCLK. ITU specification G.703 requires an accuracy of ±50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of ±32ppm for T1 interfaces. There is an on-board PLL for the jitter attenuator, which will convert the 2.048MHz clock to a 1.544 MHz rate for T1 applications. Setting JAMUX (CCR1.3) to a logic 0 bypasses this PLL. On-board circuitry adjusts either the recovered clock from the clock/data recovery block or the clock applied at the TCLK pin to create a smooth jitterfree clock, which is used to clock data out of the jitter attenuator FIFO. It is acceptable to provide a gapped/bursty clock at the TCLK pin if the jitter attenuator is placed on the transmit side. If the incoming jitter exceeds either 120UI_{P-P} (buffer depth is 128 bits) or 28UI_{P-P} (buffer depth is 32 bits), then the DS21348 will divide the internal nominal 32.768MHz (E1) or 24.704MHz (T1) clock by either 15 or 17 instead of the normal 16 to keep the buffer from overflowing. When the device divides by either 15 or 17, it also sets the Jitter Attenuator Limit Trip (JALT) bit in the Receive Information Register 1 (RIR1).

7.4 G.703 Synchronization Signal

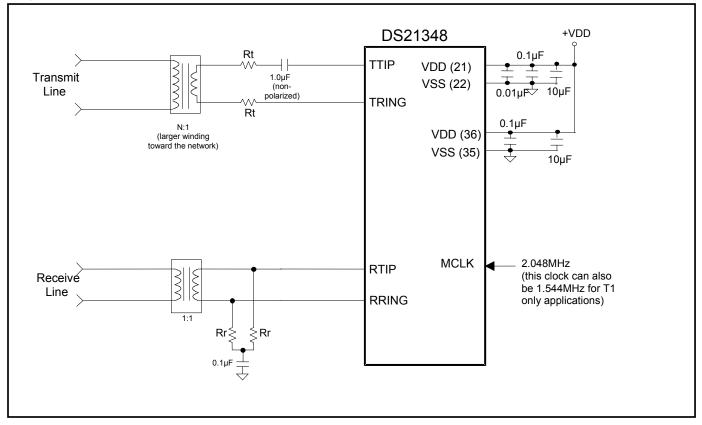
The DS21348 can receive a 2.048MHz square-wave synchronization clock as specified in Section 13 of ITU G.703(10/98). To use the DS21348 in this mode, set the Receive Synchronization Clock Enable (CCR5.3) = 1. The DS21348 can also transmit the 2.048MHz square-wave synchronization clock as specified in Section 10 of G.703. To transmit the 2.048MHz clock, set the Transmit Synchronization Clock Enable (CCR5.2) = 1.

L2	L1	LO	V _{DD} (V)	APPLICATION	Ν	RETURN LOSS (dB)	Rt (Ω)
0	0	0	3.3	75Ω normal	1:2	N.M.	0
0	0	1	3.3	120Ω normal	1:2	N.M.	0
1	0	0	3.3	75 Ω with high return loss	1:2	21	6.2
1	0	1	3.3	120 Ω with high return loss	1:2	21	11.6

Table 7-1. Line Build-Out Select for E1 in Register CCR4 (ETS = 0)

Note: See *<u>Figure 7-1</u>, <u>Figure 7-2</u>, and <u>Figure 7-3</u>. N.M. = Not meaningful.*

Table 7-2. Line Build-Out Select for T1 in Register CCR4 (ETS = 1)


L2	L1	LO	V _{DD} (V)	APPLICATION	Ν	RETURN LOSS (dB)	Rt (Ω)
0	0	0	3.3	DSX-1 (0 to 133 feet)/ 0dB CSU	1:2	N.M.	0
0	0	1	3.3	DSX-1 (133 to 266 feet)	1:2	N.M.	0
0	1	0	3.3	DSX-1 (266 to 399 feet)	1:2	N.M.	0
0	1	1	3.3	DSX-1 (399 to 533 feet)	1:2	N.M.	0
1	0	0	3.3	DSX-1 (533 to 655 feet)	1:2	N.M.	0
1	0	1	3.3	-7.5dB CSU	1:2	N.M.	0
1	1	0	3.3	-15dB CSU	1:2	N.M.	0
1	1	1	3.3	-22.5dB CSU	1:2	N.M.	0

Note: See <u>Figure 7-1</u>, <u>Figure 7-2</u>, and <u>Figure 7-3</u>. N.M. = Not meaningful.

Table 7-3. Transformer Specifications for 3.3V Operation

SPECIFICATION	RECOMMENDED VALUE
Turns Ratio 3.3V Applications	1:1 (receive) and 1:2 (transmit) $\pm 2\%$
Primary Inductance	600μH minimum
Leakage Inductance	1.0µH maximum
Intertwining Capacitance	40pF maximum
Transmit Transformer DC Resistance	
Primary (Device Side)	1.0Ω maximum
Secondary	2.0Ω maximum
Receive Transformer DC Resistance	
Primary (Device Side)	1.2Ω maximum
Secondary	1.2Ω maximum

Figure 7-1. Basic Interface

- 1) All resistor values are $\pm 1\%$.
- 2) In E1 applications, the Rt resistors are used to increase the transmitter return loss (<u>Table 7-1</u>). No return loss is required for T1 applications.
- 3) The Rr resistors should be set to 60Ω each if the internal receive-side termination feature is enabled. When this feature is disabled, Rr = 37.5Ω for 75Ω or 60Ω for 120Ω E1 systems, or 50Ω for 100Ω T1 lines.
- 4) See <u>Table 7-1</u> and <u>Table 7-2</u> for the appropriate transmit transformer turns ratio (N).

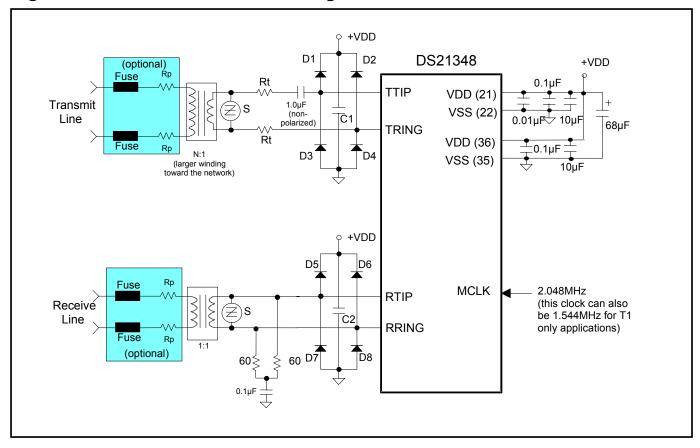


Figure 7-2. Protected Interface Using Internal Receive Termination

- 1. All resistor values are $\pm 1\%$.
- 2. $C1 = C2 = 0.1 \mu F.$
- 3. S is a 6V transient suppresser.
- 4. D1 to D8 are Schottky diodes.
- 5. The fuses are optional to prevent AC power line crosses from compromising the transformers.
- 6. Rp resistors exist to keep the Fuses from opening during a surge. If they are used, then the 60Ω receive termination resistance must be adjusted to match the line impedance.
- 7. The Rt resistors are used to increase the transmitter return loss (<u>Table 7-1</u>). No return loss is required for T1 applications.
- 8. The transmit transformer turns ratio (N) would be 1:2 for 3.3V operation.
- 9. The 68μ F is used to keep the local power plane potential within tolerance during a surge.

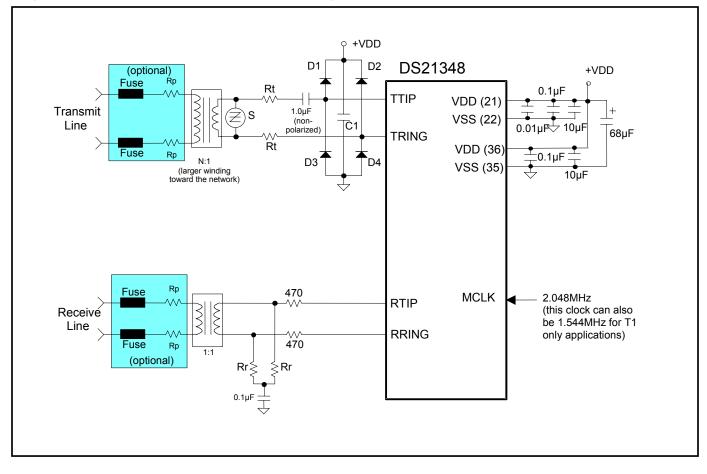


Figure 7-3. Protected Interface Using External Receive Termination

- 1. All resistor values are $\pm 1\%$.
- 2. $C1 = 0.1 \mu F$.
- 3. S is a 6V transient suppresser.
- 4. D1 to D4 are Schottky diodes.
- 5. The fuses are optional to prevent AC power line crosses from compromising the transformers.
- 6. Rp resistors exist to keep the Fuses from opening during a surge. If they are used, then Rr must be adjusted to match the line impedance.
- 7. $Rr = 37.5\Omega$ for 75Ω or 60Ω for 120Ω E1 systems, or 50Ω for 100Ω T1 lines.
- 8. The Rt resistors are used to increase the transmitter return loss (<u>Table 7-1</u>). No return loss is required for T1 applications.
- 9. The transmit transformer turns ratio (N) would be 1:2 for 3.3V operation.
- 10. The 68μ F is used to keep the local power plane potential within tolerance during a surge.

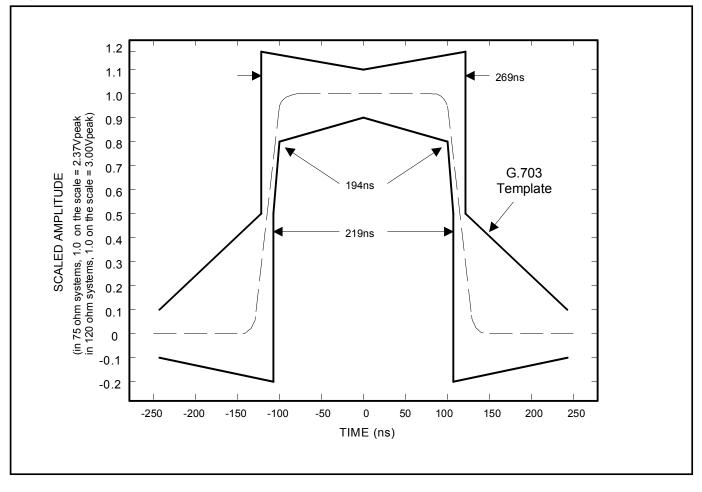


Figure 7-4. E1 Transmit Pulse Template

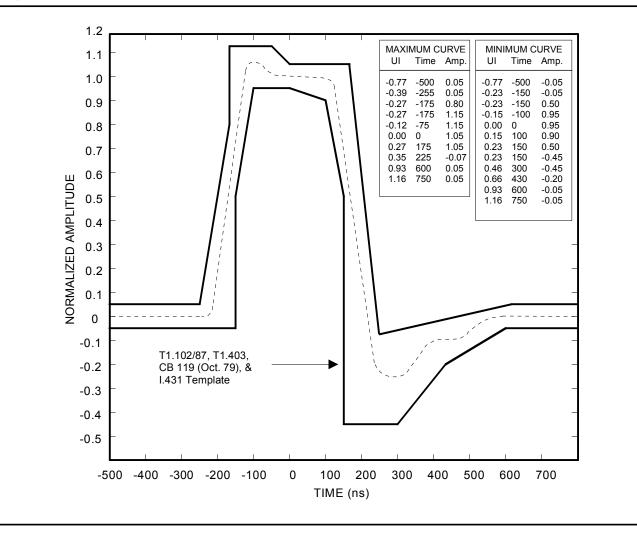


Figure 7-5. T1 Transmit Pulse Template

Figure 7-6. Jitter Tolerance

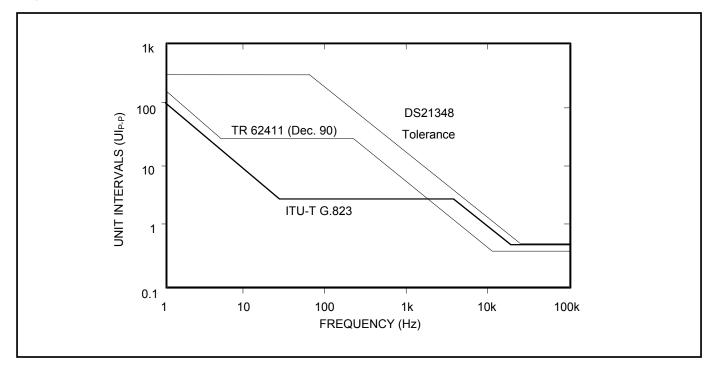
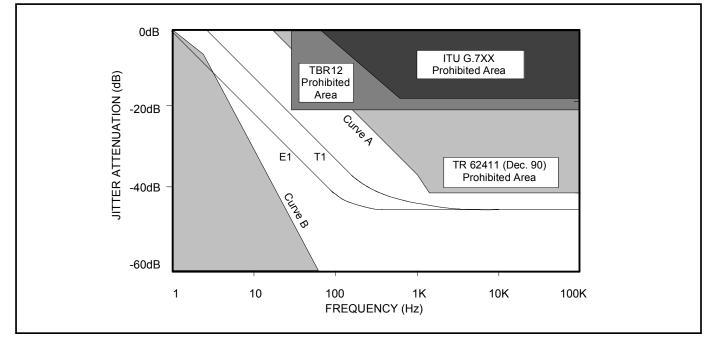



Figure 7-7. Jitter Attenuation

8. DS21Q348 QUAD LIU

The DS21Q348 is a quad version of the DS21348G utilizing CSBGA on carrier packaging technology. The four LIUs are controlled via the parallel port mode. Serial and hardware modes are unavailable in this package.

<u> </u>		PARALLEL		
PIN	I/O	PORT MODE		
J1	Ι	Connect to VSS		
K3	Ι	Connect to VSS		
J2	Ι	$\overline{\text{RD}}(\overline{\text{DS}})$		
H1	Ι	\overline{WR} (R/ \overline{W})		
K2	Ι	ALE (AS)		
K1	I/O	A4		
L1	Ι	A3		
H11	Ι	A2		
H12	Ι	A1		
G12	Ι	A0		
J10	I/O	D7/AD7		
H10	I/O	D6/AD6		
G11	I/O	D5/AD5		
J9	I/O	D4/AD4		
E3	I/O	D3/AD3		
D4	I/O	D2/AD2		
F3	I/O	D1/AD1		
D5	I/O	D0/AD0		
G4	Ι	VSM		
K9	I/O	INT		
K7	Ι	TEST		
L9	Ι	HRST		
J6	Ι	MCLK		
L7	Ι	BIS0		
M8	Ι	BIS1		
M12	Ι	PBTS		
J3	Ι	$\overline{\text{CS1}}$		
D3	Ι	$\overline{\text{CS2}}$		
D10	Ι	CS3		
K10	Ι	$\overline{\text{CS4}}$		
K5	0	PBEO1		
G3	0	PBEO2		
E10	0	PBEO3		
K8	0	PBEO4		
L6	0	RCL/LOTC1		
D7	0	RCL/LOTC2		

Table 8-1. DS21Q348 Pin Assignment T

PIN	I/O	PARALLEL PORT MODE
F9	0	RCL/LOTC3
J7	0	RCL/LOTC4
A1	Ι	RTIP1
A4	Ι	RTIP2
A7	Ι	RTIP3
A10	Ι	RTIP4
B2	Ι	RRING1
B5	Ι	RRING2
B8	Ι	RRING3
B11	Ι	RRING4
H4	0	BPCLK1
D6	0	BPCLK2
F10	0	BPCLK3
L8	0	BPCLK4
A2	0	TTIP1
A5	0	TTIP2
A8	0	TTIP3
A11	0	TTIP4
B3	0	TRING1
B6	0	TRING2
B9	0	TRING3
B12	0	TRING4
K4	0	RPOS1
E1	0	RPOS2
D11	0	RPOS3
K11	0	RPOS4
G2	0	RNEG1
E2	0	RNEG2
F11	0	RNEG3
M10	0	RNEG4
Н3	0	RCLK1
F1	0	RCLK2
E11	0	RCLK3
L11	0	RCLK4
G1	Ι	TPOS1
F2	Ι	TPOS2
E12	Ι	TPOS3
M11	Ι	TPOS4
H2	Ι	TNEG1
M1	Ι	TNEG2
D12	Ι	TNEG3
K12	Ι	TNEG4
M2	Ι	TCLK1
L2	Ι	TCLK2

PIN	I/O	PARALLEL PORT MODE
F12	Ι	TCLK3
L12	Ι	TCLK4
J5		VDD1
D2		VDD2
G9	—	VDD3
M9		VDD4
L5		VDD1
E4		VDD2
D8		VDD3
J8		VDD4
J4	—	VSS1
D1		VSS2
E9		VSS3
L10		VSS4
M4		VSS1
F4		VSS2
D9		VSS3
H9		VSS4

3								-				
	1	2	3	4	5	6	7	8	9	10	11	12
Α	RTIP1	TTIP1	NC	RTIP2	TTIP2	NC	RTIP3	TTIP3	NC	RTIP4	TTIP4	NC
В	NC	RRING1	TRING1	NC	RRING2	TRING2	NC	RRING3	TRING3	NC	RRING4	TRING4
С	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
D	VSS2	VDD2	CS2	D2/AD2	D0/AD0	BPCLK2	RCL/ LOTC2	VDD3	VSS3	CS3	RPOS3	TNEG3
Е	RPOS2	RNEG2	D3/AD3	VDD2	NC	NC	NC	NC	VSS3	PEBO3	RCLK3	TPOS3
F	RCLK2	TPOS2	D1/AD1	VSS2	NC	NC	NC	NC	RCL/ LOTC3	BPCLK3	RNEG3	TCLK3
G	TPOS1	RNEG1	PEBO2	VSM	NC	NC	NC	NC	VDD 3	NC	D5/AD5	A0
н	WR (R/W)	TNEG1	RCLK1	BPCLK1	NC	NC	NC	NC	VSS4	D6/AD6	A2	A1
J	(Note 2)	RD (DS)	CS1	VSS1	VDD1	MCLK	RCL/ LOTC4	VDD4	D4/AD4	D7/AD7	NC	NC
к	A4	ALE (AS)	(Note 2)	RPOS1	PEBO1	NC	TEST	PEBO4	INT	CS4	RPOS4	TNEG4
L	A3	TCLK2	NC	NC	VDD1	RCL/ LOTC1	BIS0	BPCLK4	HRST	VSS4	RCLK4	TCLK4
м	TNEG2	TCLK1	NC	VSS1	NC	NC	NC	BIS1	VDD4	RNEG4	TPOS4	PBTS

Figure 8-1. 144-CSBGA (17mm x 17mm) Pinout

Note 1: Shaded areas are signals common to all four devices.

Note 2: Connect to V_{SS}.

9. DC CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

Voltage Range on Any Pin Relative to Ground	
Operating Temperature Range for DS21348TN	-40°C to +85°C
Storage Temperature Range	55°C to +125°C
Soldering Temperature	See IPC/JEDEC J-STD-020 Specification

This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time can affect device reliability.

Table 9-1. Recommended DC Operating Conditions

(T _A = -40°C to +85°C)						
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Logic 1	V _{IH}	2.0		5.5	V	
Logic 0	V _{IL}	-0.3		+0.8	V	
Supply for 3.3V Operation	V _{DD}	3.135	3.3	3.465	V	1

Table 9-2. Capacitance

$(T_A = +25^{\circ}C)$						
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C _{IN}		5		pF	
Output Capacitance	C _{OUT}		7		pF	

Table 9-3. DC Characteristics

 $(V_{DD} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Input Leakage	I _{IL}	-1.0		+1.0	μΑ	3
Output Leakage	I _{LO}			1.0	μΑ	4
Output Current (2.4V)	I _{OH}	-1.0			mA	
Output Current (0.4V)	I _{OL}	+4.0			mA	
Supply Current	I _{DD}		66	100	mA	2, 5

- 1) Applies to V_{DD} .
- 2) TCLK = MCLK = 2.048MHz.
- 3) $0.0V < V_{IN} < V_{DD}$.
- 4) Applied to \overline{INT} when tri-stated.
- 5) Power dissipation with TTIP and TRING driving a 30Ω load, for an all-ones data density.

10. THERMAL CHARACTERISTICS

Table 10-1. Thermal Characteristics—DS21Q348 CSBGA Package

PARAMETER	MIN	ТҮР	MAX	NOTES
Ambient Temperature	-40°C		+85°C	1
Junction Temperature			+125°C	
Theta-JA (θ_{JA}) in Still Air		+24°C/W		2
Theta-JC (θ_{JC}) in Still Air		+4.1°C/W		3

NOTES:

- 1) The package is mounted on a four-layer JEDEC-standard test board.
- 2) Theta-JA (θ_{JA}) is the junction to ambient thermal resistance, when the package is mounted on a fourlayer JEDEC-standard test board.
- 3) While Theta-JC (θ_{JC}) is commonly used as the thermal parameter that provides a correlation between the junction temperature (T_j) and the average temperature on top center of four of the chip-scale BGA packages (T_c), the proper term is Psi-JT. It is defined by:

 $(T_J - T_C) / overall package power$

The method of measurement of the thermal parameters is defined in EIA/JEDEC-standard document EIA-JESD51-2.

FORCED AIR (m/s) THETA-JA (θ_{JA}) 0 24°C/W 1 21°C/W 2.5 19°C/W

Table 10-2. Theta-JA (θ_{JA}) vs. Airflow

11. AC CHARACTERISTICS

Table 11-1. AC Characteristics—Multiplexed Parallel Port (BIS1 = 0, BIS0 = 0)

 $(V_{DD} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$ (See <u>Figure 11-1</u>, <u>Figure 11-2</u>, and <u>Figure 11-3</u>.)

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Cycle Time	t_{CYC}	200			ns	
Pulse Width, DS Low or \overline{RD} High	PW _{EL}	100			ns	
Pulse Width, DS High or \overline{RD} Low	$\mathrm{PW}_{\mathrm{EH}}$	100			ns	
Input Rise/Fall Times	t _R , t _F			20	ns	
R/\overline{W} Hold Time	t _{RWH}	10			ns	
R/W Setup Time Before DS High	t _{RWS}	50			ns	
$\frac{\overline{\text{CS}}}{\overline{\text{WR}}}$, or $\overline{\text{RD}}$ Active	t _{CS}	20			ns	
$\overline{\text{CS}}$ Hold Time	t _{CH}	0			ns	
Read Data Hold Time	t _{DHR}	10		50	ns	
Write Data Hold Time	t _{DHW}	0			ns	
Muxed Address Valid to AS or ALE Fall	t _{ASL}	15			ns	
Muxed Address Hold Time	t_{AHL}	10			ns	
Delay Time DS, \overline{WR} , or \overline{RD} to AS or ALE Rise	t _{ASD}	20			ns	
Pulse Width AS or ALE High	PW _{ASH}	30			ns	
Delay Time, AS or ALE to DS, WR, or RD	t _{ASED}	10			ns	
Output Data Delay Time from DS or RD	t _{DDR}	20		80	ns	
Data Setup Time	t _{DSW}	50			ns	

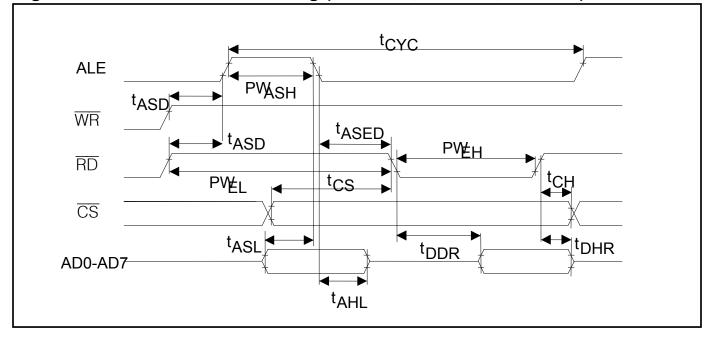
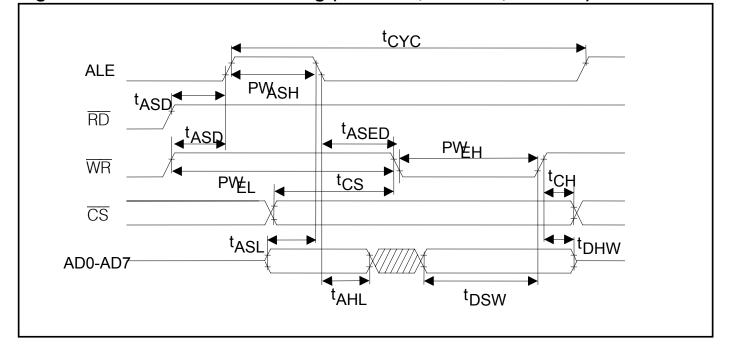



Figure 11-1. Intel Bus Read Timing (PBTS = 0, BIS1 = 0, BIS0 = 0)

Figure 11-2. Intel Bus Write Timing (PBTS = 0, BIS1 = 0, BIS0 = 0)

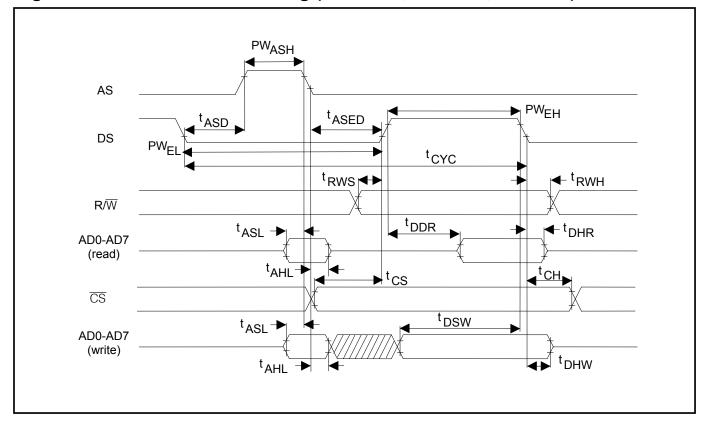


Figure 11-3. Motorola Bus Timing (PBTS = 1, BIS1 = 0, BIS0 = 0)

Table 11-2. AC Characteristics—Nonmultiplexed Parallel Port (BIS1 = 0, BIS0 = 1)

 $(V_{DD} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$ (See <u>Figure 11-4</u>, <u>Figure 11-5</u>, <u>Figure 11-6</u>, and <u>Figure 11-7</u>.)

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Setup Time for A0 to A4, Valid to \overline{CS} Active	t1	0			ns	
Setup Time for \overline{CS} Active to Either \overline{RD} , \overline{WR} , or \overline{DS} Active	t2	0			ns	
Delay Time from Either \overline{RD} or \overline{DS} Active to Data Valid	t3			75	ns	
Hold Time from Either \overline{RD} , \overline{WR} , or \overline{DS} , Inactive to \overline{CS} Inactive	t4	0			ns	
Hold Time from \overline{CS} Inactive to Data Bus Tri-State	t5	5		20	ns	
Wait Time from Either \overline{WR} or \overline{DS} Active to Latch Data	t6	75			ns	
Data Setup Time to Either \overline{WR} or \overline{DS} Inactive	t7	10			ns	
Data Hold Time from Either \overline{WR} or \overline{DS} Inactive	t8	10			ns	
Address Hold from Either \overline{WR} or \overline{DS} Inactive	t9	10			ns	

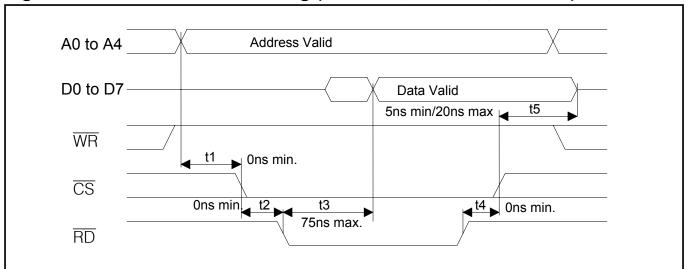
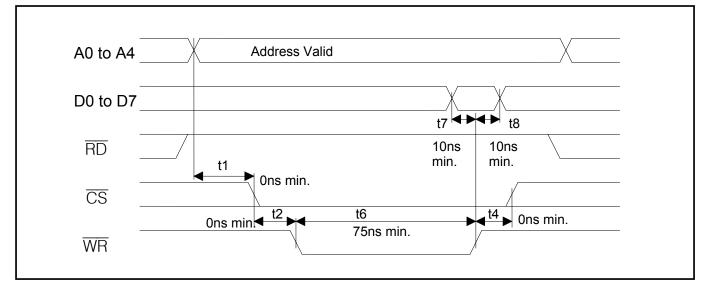



Figure 11-4. Intel Bus Read Timing (PBTS = 0, BIS1 = 0, BIS0 = 1)

Figure 11-5. Intel Bus Write Timing (PBTS = 0, BIS1 = 0, BIS0 = 1)

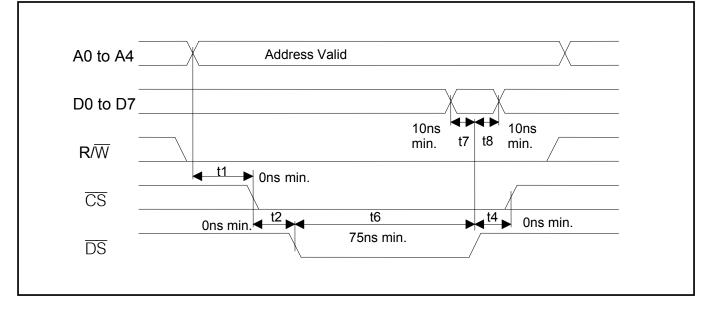



Figure 11-6. Motorola Bus Read Timing (PBTS = 1, BIS1 = 0, BIS0 = 1)

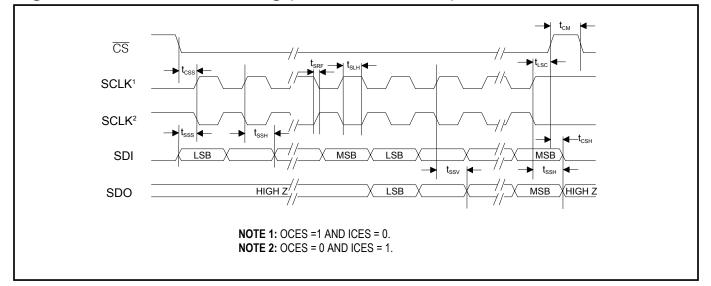


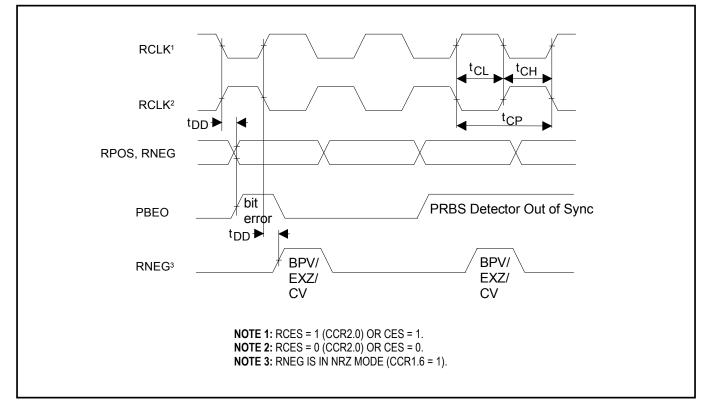
Table 11-3. AC Characteristics—Serial Port (BIS1 = 1, BIS0 = 0)

-		_	-			
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Setup Time \overline{CS} to SCLK	t _{CSS}	50			ns	
Setup Time SDI to SCLK	t _{SSS}	50			ns	
Hold Timfe SCLK to SDI	t _{SSH}	50			ns	
SCLK High/Low Time	t _{SLH}	200			ns	
SCLK Rise/Fall Time	t _{SRF}			50	ns	
SCLK to \overline{CS} Inactive	t_{LSC}	50			ns	
CS Inactive Time	t _{CM}	250			ns	
SCLK to SDO Valid	$t_{\rm SSV}$			50	ns	
SCLK to SDO Tri-State	t _{SSH}		100		ns	
$\overline{\text{CS}}$ Inactive to SDO Tri-State	t _{CSH}		100		ns	

(V_{DD} = $3.3V \pm 5\%$, T_A = -40°C to +85°C.) (See <u>Figure 11-8</u>.)

Figure 11-8. Serial Bus Timing (BIS1 = 1, BIS0 = 0)

Table 11-4. AC Characteristics—Receive Side


PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
DOLK Daria d	t		488		ns	1
RCLK Period	t_{CP}		648		ns	2
RCLK Pulse Width	t _{CH}	200			ns	3
KCLK Fulse widdi	$t_{\rm CL}$	200			ns	3
RCLK Pulse Width	t _{CH}	150			ns	4
RCLK Pulse widdi	t_{CL}	150			ns	4
Delay RCLK to RPOS, RNEG, PBEO, RBPV Valid	t _{DD}			50	ns	

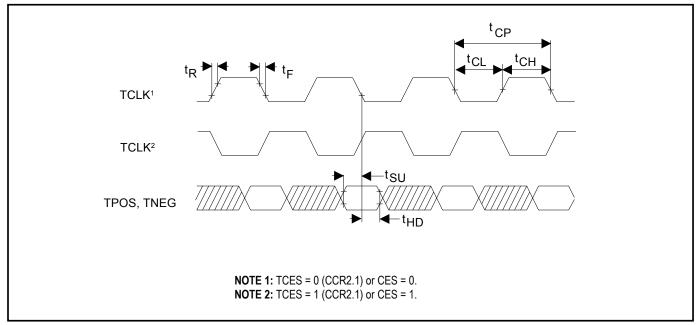
 $(V_{DD} = 3.3V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C.)$ (See Figure 11-9.)

NOTES:

- 1) E1 mode.
- 2) T1 or J1 mode.
- 3) Jitter attenuator enabled in the receive path.
- 4) Jitter attenuator disabled or enabled in the transmit path.

Figure 11-9. Receive Side Timing

Table 11-5. AC Characteristics—Transmit Side


$(V_{DD} = 3.3V \pm 5\%, I_A = -40^{\circ}C$ to	+85°C.) (<u>Figu</u>	<u>re 11-10</u>				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
TCLK Period	tan		488		ns	1
ICLK Fellou	t_{CP}		648		ns	2
TCLK Pulse Width	t _{CH}	75			ns	
ICLK Fulse widui	$t_{\rm CL}$	75			ns	
TPOS/TNEG Setup to TCLK Falling or Rising	t_{SU}	20			ns	
TPOS/TNEG Hold from TCLK Falling or Rising	t _{HD}	20			ns	
TCLK Rise and Fall Times	t _R , t _F			25	ns	

Λ1 2 2)/ ± 50/ T 40° C to +85°C) (Figure 11 10)

NOTES:

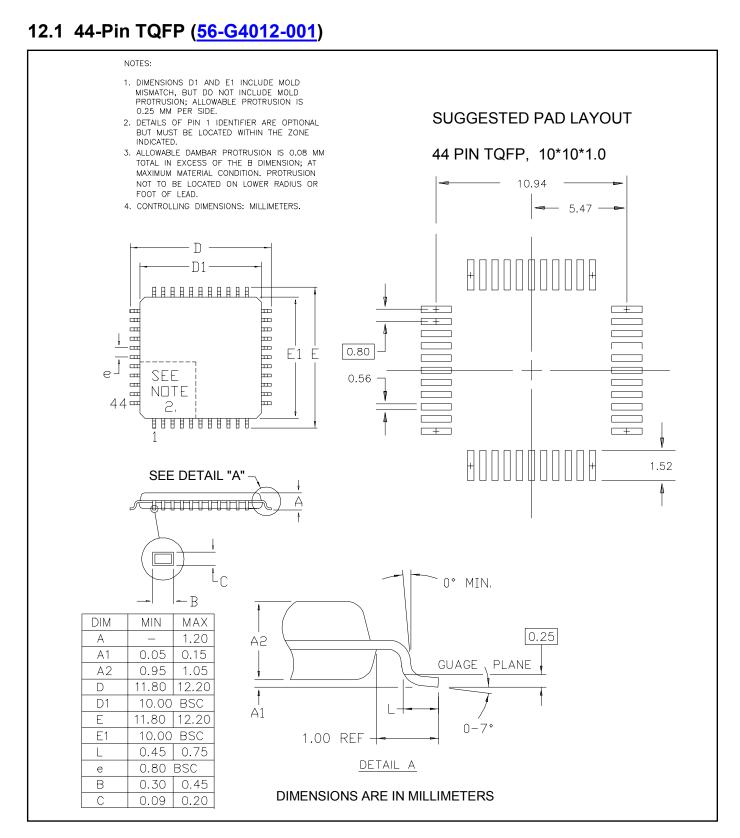
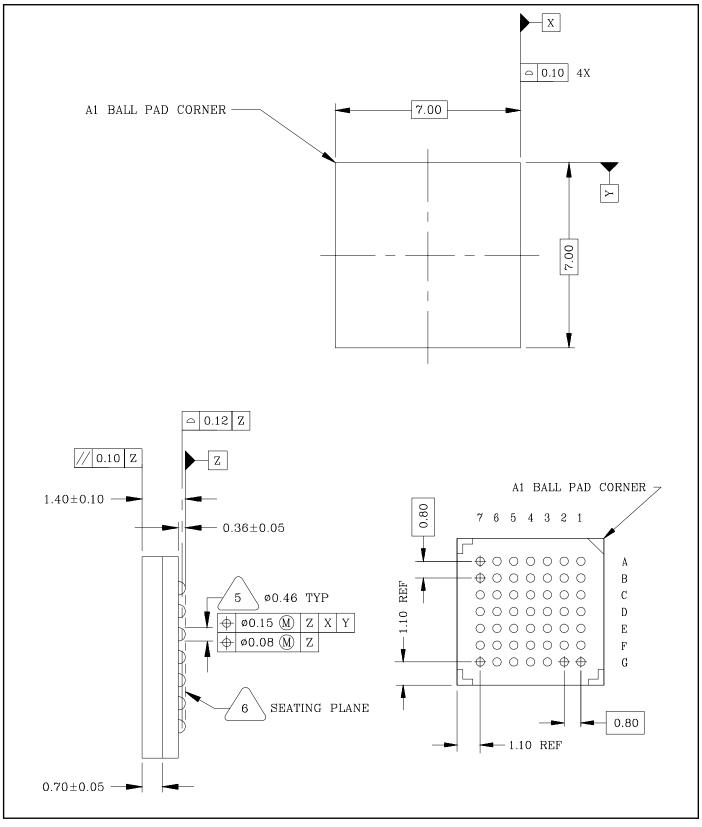
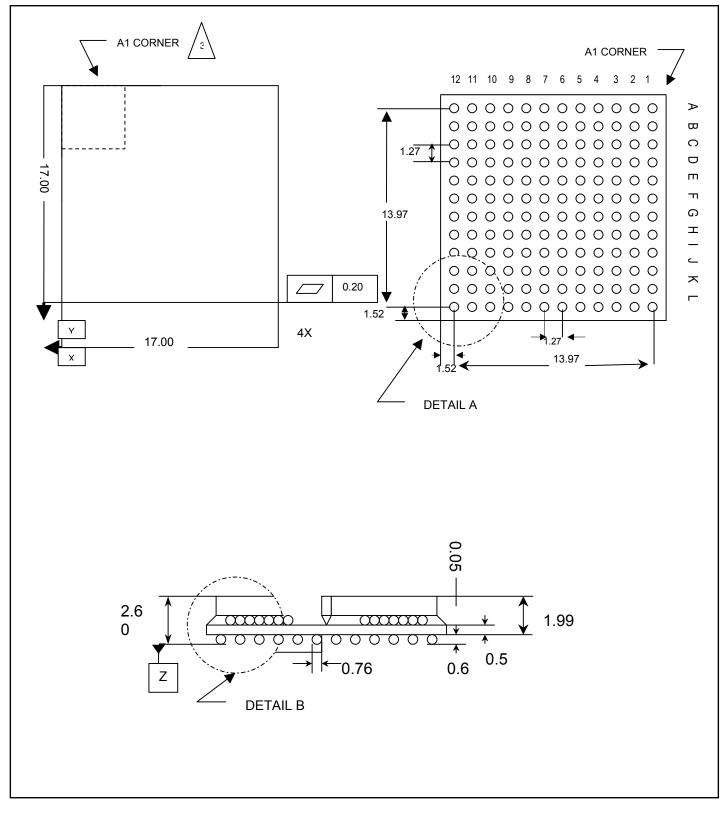

- 1) E1 mode.
- 2) T1 or J1 mode.

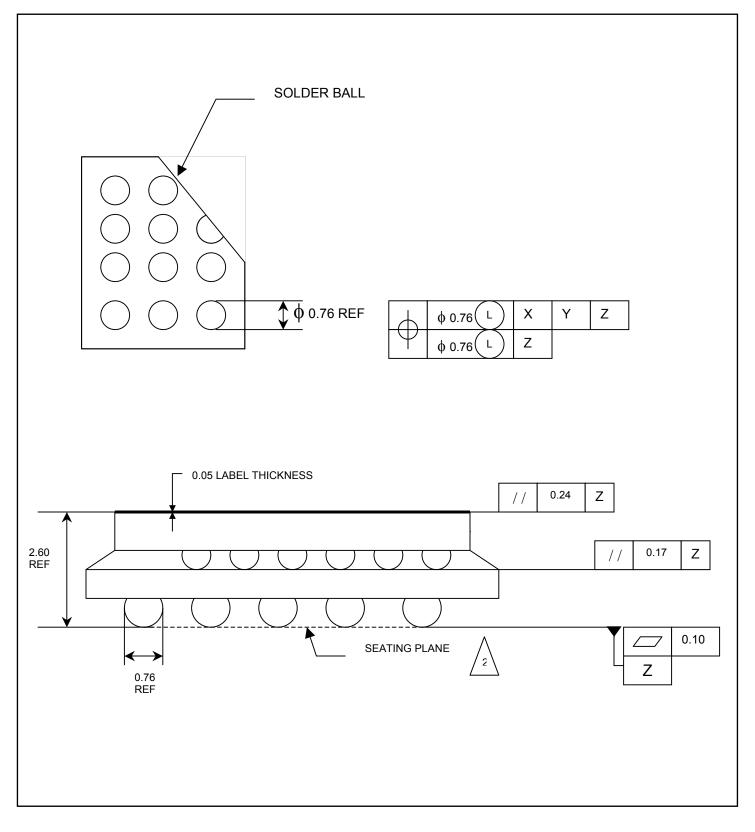
Figure 11-10. Transmit Side Timing



12. PACKAGE INFORMATION

(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for each package is a link to the latest package outline information.)




73 of 76

12.2 49-Ball CSGBA (7mm x 7mm) (<u>56-G6006-001</u>)

76 of 76

Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2006 Maxim Integrated Products • Printed USA

DALLAS ////XI/ are registered trademarks of Maxim Integrated Products, Inc., and Dallas Semiconductor Corporation.