16/8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78322 is a 16-/8-bit single-chip microcontroller that incorporates a high-performance 16-bit CPU. The μ PD78322 is one of $78 \mathrm{~K} / \mathrm{III}$ series.

A realtime pulse unit for realtime pulse control required in motor control, an A/D converter, a ROM, and a RAM have been integrated into one chip.

The μ PD78322 incorporates 16K-byte mask ROM and 640-byte RAM.
The μ PD78320 is provided as a ROM-less product of the $\mu \mathrm{PD} 78322$. Also, the $\mu \mathrm{PD} 78 \mathrm{P} 322$ is provided as an on-chip PROM product.

Detailed information about product features and specifications can be found in the following document. μ PD78322 User's Manual : IEU-1248

FEATURES

- Internal 16-bit architecture and external 8-bit data bus
- High-speed processing by pipeline control and instruction prefetch
- Minimum instruction execution time: 250 ns (with 16 MHz external clock in operation)
- Instruction set suitable for control operations (μ PD78312 upward compatible)
- Multiplication/division instruction (16 bits $\times 16$ bits, 32 bits $\div 16$ bits)
- Bit manipulation instruction
- String instruction, etc.
- On-chip high-function interrupt controller
-3-level priority specifiable
- 3-type interrupt servicing mode selectable
(Vectored interrupt function, context switching function, and macro service function)
- Variety of peripheral hardware
- Realtime pulse unit
- 8-channel, 10-bit A/D converter
- Watchdog timer
- Powerful serial interface (with an on-chip dedicated baud rate generator)
- UART
- SBI (NEC Standard Serial Bus Interface)
..... 1 channel
- 3-wire serial I/O \qquad

APPLICATIONS

- Motor control devices

Unless there are any particular notices, the μ PD78322 is described as the representative model in this document.

ORDERING INFORMATION Part Number	Package	Internal ROM
μ PD78320GF-3B9	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	None
μ PD78320GJ-5BJ	74-pin plastic QFP $(20 \times 20 \mathrm{~mm})$	None
μ PD78320L	68-pin plastic QFJ $(\square 950 \mathrm{mil})$	None
μ PD78322GF- $\times \times \times-3 B 9$	80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$	Mask ROM
μ PD78322GJ $-\times \times \times-5$ BJ	74-pin plastic QFP $(20 \times 20 \mathrm{~mm})$	Mask ROM
μ PD78322L- $\times \times \times$	68-pin plastic QFJ $(\square 950 \mathrm{mil})$	Mask ROM

Remark $\times \times \times$ indicates ROM code number.

PIN CONFIGURATION

- 68-pin plastic QFJ ($\square 950$ mil) μ PD78320L μ PD78322L-XXX

- 74-pin plastic QFP ($20 \times 20 \mathrm{~mm}$)
μ PD78320GJ-5BJ
μ PD78322GJ-×××-5BJ

Caution The NC pin should be connected to Vss for noise control (can also be left open).

- 80 -pin plastic QFP $(14 \times 20 \mathrm{~mm})$
μ PD78320GF-3B9
μ PD78322GF-×××-3B9

Caution The NC pin should be connected to Vss for noise control (can also be left open).

P00 to P07	: Port0
P20 to P27	: Port2
P30 to P34	: Port3
P40 to P47	: Port4
P50 to P57	: Port5
P70 to P77	: Port7
P80 to P85	: Port8
P90 to P93	: Port9
NMI	: Nonmaskable Interrupt
INTP0 to INTP6 $:$: Interrupt From Peripherals	
RTP0 to RTP7	: Realtime Port
TI	: Timer Input
TxD	: Transmit Data
RxD	: Receive Data
SB0/SO	: Serial Bus/Serial Output
SB1/SI	: Serial Bus/Serial Input
SCK	: Serial Clock
TO00 to TO03	: $\}$ Timer Output
TO10, TO11	:

RESET	: Reset
X1, X2	: Crystal
WDTO	: Watchdog Timer Output
EA	: External Access
TMD	: Turbo Mode
TAS	: Turbo Access Strobe
$\overline{W R}$: Write Strobe
RD	: Read Strobe
ASTB	: Address Strobe
AD0 to AD7	: Address/Data Bus
A8 to A15	: Address Bus
AN0 to AN7	: Analog Input
AVref	: Analog Reference Voltage
AVss	: Analog Vss
AVdd	: Analog Vdd
Vdd	: Power Supply
Vss	: Ground
NC	: Non-connection

GENERAL DESCRIPTION OF FUNCTIONS

Basic instructions	111
Minimum instruction execution time	250 ns (with 16 MHz external clock in operation)
Internal memory	- ROM : 16384×8 bits (μ PD78322) None (μ PD78320) -RAM : 640×8 bits
Memory space	64K bytes
General registers	8 bits $\times 16 \times 8$ banks (memory mapping)
I/O line	- Input port $: 16$ (dual-function as analog input: 8$)$ - Input/output port $: 39(\mu$ PD78322) $21(\mu$ PD78320)
Realtime pulse unit	- 18-/16-bit free running timer $\times 1$ - 16-bit timer/event counter $\times 1$ - 16 -bit compare register $\times 6$ - 18 -bit capture register $\times 4$ - 18-bit capture/compare register $\times 2$ - Realtime output port $\times 8$
Serial communication interface	Serial interface with a dedicated baud rate generator - UART : 1 channel - SBI (NEC Serial Bus Interface) : 1 channel
A/D converter	10-bit resolution (8 analog inputs)
Interrupt	- External : 8, internal : 14 (dual-function as external : 2) - 3 servicing modes (vectored interrupt function, context switching function, and macro service function)
Test factor	Internal : 1
Standby	STOP mode/HALT mode
Instruction set	16-bit transfer/operation instruction, multiplication/division instruction ($16 \times 16,32 \div 16$), bit manipulation instruction, string instruction, etc.
Others	On-chip watchdog timer
Package	-68-pin plastic QFJ ($\square 950$ mil) - 74-pin plastic QFP $(20 \times 20 \mathrm{~mm})$ - 80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$

DIFFERENCES BETWEEN μ PD78322 AND 78320

Product Name Item		μ PD78322	μ PD78320
Internal ROM		16K bytes	None
I/O line	Input	16 (dual-function as analog input: 8)	
	Input /output	39	21
$\left\lvert\, \begin{aligned} & \text { Port } 4 \\ & \text { (P40 to P47) } \end{aligned}\right.$		Specifiable as I/O as an 8-bit unit. Functions as multiplexed address/data buses (AD0 to AD7) in the external memory expansion mode.	Functions always as multiplexed address/data buses.
$\begin{aligned} & \text { Port } 5 \\ & \text { (P50 to P57) } \end{aligned}$		Specifiable as I/O bit-wise. Functions as address bus (A8 to A15) in the external memory expansion mode.	Functions always as address bus.
Port 9 (P90 to P93)		Specifiable as I/O bit-wise. In the external memory expansion mode, P90 and P91 function as $\overline{\mathrm{RD}}$ strobe signal output and $\overline{\mathrm{WR}}$ strobe signal output, respectively. In the external memory high-speed fetch mode, P92 and P93 function as TAS output and TMD output, respectively.	Always P90 and P91 function as $\overline{\mathrm{RD}}$ strobe and $\overline{\mathrm{WR}}$ strobe signal output, respectively.
Memory expansion mode register (MM)		Port $4 \mathrm{I} / \mathrm{O}$ mode is set as an 8-bit unit .	In the μ PD78322 emulation mode, turbo access manager (μ PD71P301) ${ }^{\text {Note }}$ PA and PB pins are controlled as port 4 and port 5 emulation pins.
Port 5 mode register (PM5)		Port 5 I/O mode is set bit-wise.	

$\star \quad$ Note Maintenance product

CONTENTS

1. LIST OF PIN FUNCTIONS 12
1.1 PORT PINS 12
1.2 NON-PORT PINS 13
1.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS 15
2. CPU ARCHITECTURE 17
2.1 MEMORY SPACE 17
2.2 PROCESSOR REGISTERS 20
2.2.1 Control Registers 21
2.2.2 General Registers 23
2.2.3 Special Function Registers (SFR) 25
2.3 DATA MEMORY ADDRESSING 30
2.3.1 General Register Addressing 30
2.3.2 Short Direct Addressing 30
2.3.3 Special Function Register (SFR) Addressing 30
3. BLOCK FUNCTIONS 31
3.1 BUS CONTROL UNIT (BCU) 31
3.2 EXECUTION UNIT (EXU) 31
3.3 ROM/RAM 31
3.4 INTERRUPT CONTROLLER 31
3.5 PORT FUNCTIONS 32
3.6 CLOCK GENERATOR 33
3.7 REALTIME PULSE UNIT (RPU) 35
3.7.1 Configuration 35
3.7.2 Realtime Output Function 37
3.8 A/D CONVERTER 38
3.9 SERIAL INTERFACE 38
3.10 WATCHDOG TIMER 41
4. INTERRUPT FUNCTIONS 42
4.1 OVERVIEW 42
4.2 MACRO SERVICE 44
4.3 CONTEXT SWITCHING FUNCTION 45
4.3.1 Context Switching Function by Interrupt Request 45
4.3.2 Context Switching Function by BRKCS Instruction 46
5. STANDBY FUNCTIONS 47
6. EXTERNAL DEVICE EXPANSION FUNCTION 48
7. OPERATION AFTER RESET 49
8. INSTRUCTION SET 50
9. ELECTRICAL SPECIFICATIONS 64
10. PACKAGE DRAWINGS 75
11. RECOMMENDED SOLDERING CONDITIONS 78
APPENDIX A. LIST OF 78K/III SERIES PRODUCTS 79
APPENDIX B. TOOLS 81
B. 1 DEVELOPMENT TOOL 81
B. 2 EVALUATION TOOL 85
B. 3 EMBEDDED SOFTWARE 85

1. LIST OF PIN FUNCTIONS

1.1 PORT PINS

Pin Name	I/O	Function	DualFunction Pin
P00 to P07	Input/ output	Port 0 8-bit input/output port Input/output can be specified bit-wise Also serves as a realtime output port.	RTP0 to RTP7
P20	Input	Port 2 8-bit dedicated input port	NMI
P21			INTP0
P22			INTP1
P23			INTP2
P24			INTP3
P25			INTP4
P26			INTP5
P27			INTP6/TI
P30	Input/ output	Port 3 5-bit input/output port Input/output can be specified bit-wise	TxD
P31			RxD
P32			SO/SB0
P33			SI/SB1
P34			$\overline{\text { SCK }}$
P40 to P47	Input/ output	Port 4 8-bit input/output port Input/output can be specified in 8-bit unit.	AD0 to AD7
P50 to P57	Input/ output	Port 5 8-bit input/output port Input/output can be specified bit-wise	A8 to A15
P70 to P77	Input	Port 7 8 -bit dedicated input port	AN0 to AN7
P80	Input/ output	Port 8 6-bit input/output port Input/output can be specified bit-wise	TO00
P81			TO01
P82			TO02
P83			TO03
P84			TO10
P85			TO11
P90	Input/ output	Port 9 4-bit input/output port Input/output can be specified bit-wise	$\overline{\mathrm{RD}}$
P91			$\overline{\mathrm{WR}}$
P92			$\overline{T A S}$
P93			TMD

1.2 NON-PORT PINS (1/2)

Pin Name	I/O	Function	Dual- Function Pin
RTP0 to RTP7	Output	Realtime output port which generates pulses in synchronization with the trigger signal transmitted from the realtime pulse unit (RPU).	P00 to P07
NMI	Input	Nonmaskable interrupot request input capable of specifying the effective at the rising or falling edge by a mode register.	P20
INTP0	Input	External interrupt request input capable of specifying the effective edgy by a mode register.	P21
INTP1			P22
INTP2			P23
INTP3			P24
INTP4			P25
INTP5			P26
INTP6			P27/TI
TI	Input	External count clock input to timer 1 (TM1)	P27/INTP6
TxD	Output	Serial data output of asynchronous serial interface (UART)	P30
RxD	Input	Serial data input of asynchronous serial interface (UART)	P31
SO	Output	Serial data output of clocked serial interface in 3 -wire mode	P32/SB0
SI	Input	Serial data input of clocked serial interface in 3-wire mode	P33/SB1
SB0	Input /output	Serial data input/output of clocked serial interface in SBI mode	P32/SO
SB1			P33/SI
$\overline{\text { SCK }}$	Input /output	Serial clock input/output of clocked serial interface	P34
AD0 to AD7	Input /output	Multiplexed address/data bus for external memory expansion	P40 to P47
A8 to A15	Output	Address bus for external memory expansion	P50 to P57
TO00	Output	Pulse output from the realtime pulse unit	P80
TO01			P81
TO02			P82
TO03			P83
TO10			P84
TO11			P85
$\overline{\mathrm{RD}}$	Output	Strobe signal output generated for external memory read operation	P90
$\overline{\text { WR }}$		Strobe signal output generated for external memory write operation	P91
$\overline{\text { TAS }}$		Control signal output generated for access to turbo access manager μ PD71P301 ${ }^{\text {Note }}$	P92
TMD			P93
$\overline{\text { WDTO }}$	Output	Signal output indicating that the watchdog timer has generated a nonmascable interrupt.	-
ASTB	Output	Timing signal output generated for externally latching the lower address information output from pins AD0 to AD7 in order to access the external memory.	-

Note Maintenance product

1.2 NON- PORT PINS (2/2)

Pin Name	I/O	Function	Dual- Function Pin
$\overline{E A}$	Input	In the μ PD78322, EA pin is normally connected to Vod. Connecting $\overline{\mathrm{EA}}$ pin to $\mathrm{V}_{\text {ss }}$ sets the ROM-less mode and accesses the external memory. In the μ PD78320, this pin should be fixed to "0" (low level). The EA pin level cannot be changed during operation.	-
AN0 to AN7	Input	A/D converter analog input	-
AVref	Input	A/D converter reference voltage input	-
AVdo	-	A/D converter analog power supply	-
AVss	-	A/D converter GND	-
$\overline{\text { RESET }}$	Input	System reset input	-
X1	Input	Crystal connect pin for sysem clock oscillation. When an external clock is supplied, the clock is input to X 1 and the inverted clock is input to X 2 . (X2 can also be left open.)	-
X2	-		-
VdD	-	Positive power supply	-
Vss	-	GND pin	-
NC	-	Not internally connected. Connected to Vss (GND) (can also be left open).	-

1.3 PIN INPUT/OUTPUT CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS

The pin input/output circuits, partly simplified, are shown in Table 1-1 and Figure 1-1.
Table 1-1. I/O Circuit Types of Pins and their Recommended Connection Methods when Unused

Pin	Input/Output Circuit Type	Recommended Connection Method
P00 to P07/RTP0 to RTP7	5	Input mode : Individually connected to VDD or Vss via resistor Output mode : Leave open
P20/NMI P21 to P26/INTP0 to INTP5 P27/INTP6/TI	2	Connected to Vss

Figure 1-1. Pin Input/Output Circuits

2. CPU ARCHITECTURE

2.1 MEMORY SPACE

In the μ PD78322 a maximum of 64K bytes of memory can be addressed (see Figure 2-1).
Program fetches can be performed within the area from 0000 H to FDFFH. However, when external memory expansion is implemented in the area from FE00H to FFFFH (main RAM and special function register area), program fetches can also be performed on this area. In this case, a program fetch is performed on the external memory, not on the main RAM or special function registers.

(1) Vector table area

Interrupt request from the peripheral hardware, reset input, external interrupt request and interrupt branch address by break instruction are stored in the 0000 H to 003 FH 64 -byte area. Generation of an interrupt request sets the even address content of each table in the lower 8 bits of the program counter (PC) and the odd address content in the higher 8 bits, and a branch is made.

Interrupt Source		Vector Table Ad
RESET	(RESET pin input)	0000H
NMI	(NMI pin input)	0002H
WDT	(Watchdog timer)	0004H
TMF0	(Realtime pulse unit)	0006H
EXFO	(INTP0 pin input).	0008H
EXF1	(INTP1 pin input)	000AH
EXF2	(INTP2 pin input)	000CH
EXF3	(INTP3 pin input)	000EH
EXF4/CCFX0	(INTP4 pin input/realtime pulse unit)	0010H
EXF5/CCFX1	(INTP5 pin input/realtime pulse unit)	0012H
EXF6/TI	(INTP6/TI pin input)	0014H
CMF00	(Realtime pulse unit)	0016H
CMF01	(Realtime pulse unit)	0018H
CMF02	(Realtime pulse unit)	001AH
CMF03	(Realtime pulse unit)	001CH
CMF10	(Realtime pulse unit)	001EH
CMF11	(Realtime pulse unit)	0020H
SRF	(Serial receive complete)	0024H
STF	(Serial send complete)	0026H
CSIIF	(Clocked serial interface).	0028H
ADF	(A/D converter)	002AH
Operation code	trap	003CH
BRK	(Break instruction)	003EH

If bit 1 (TPF) of CPU control word (CCW) is set to 1 , the 8002 H to 803 FH external memory area is used as an interrupt vector table in place of 0002 H to 003 FH .

(2) CALLT table area

32 tables of call addresses of 1 -byte call instruction (CALLT) can be stored in the 0040 H to 007 FH 64 -byte area. If bit 1 (TPF) of CPU control word (CCW) is set to 1 , the 8040 H to 807 FH external memory area is used as a CALLT instruction table in place of 0040 H to 007 FH .

(3) CALLF entry area

The 0800 H to 0 FFFH area can be directly subroutine-called by 2-byte call instruction (CALLF).

(4) Internal RAM area

A 640-byte RAM is built in FC80H to FEFFH area. This area is composed of the following 2 RAMs.

- Peripheral RAM : FC80H to FDFFH (384 bytes)
- Main RAM : FE00H to FEFFH (256 bytes)

The main RAM can be accessed at high speed.
In the main RAM area, the macro service control word and general register group composed of 8 register banks are mapped onto the 36 bytes from FE06H to FE2BH and the 128 bytes from FE80H to FEFFH, respectively.

(5) Special function register (SFR) area

Registers having specially assigned functions, such as on-chip peripheral hardware mode registers and control registers, are mapped in the FFOOH to FFFFH area. Addresses without mapped registers cannot be accessed.

(6) External memory area

The μ PD78322 can add external memories (ROM, RAM) to the 48K-byte (4000 H to FFFFH) area gradually. The μ PD78320 can connect external memories (ROM, RAM) to the 64 K -byte (0000 H to FFFFH) area. Each external memory can be accessed using P40/AD0 to P47/AD7 (multiplexed address/data bus), P50/A8 to P57/ A15 (address bus) and $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and ASTB signals.

The external access area is mapped in the FFDOH to FFDFH 16-byte area of the special function register (SFR). In this way, the external memory can be accessed by SFR addressing.

Dedicated pins (TAS and TMD pins) are provided to connect turbo access manager (μ PD71P301) Note. If the μ PD71P301 is used, the program processing speed equal to that of the internal ROM can be obtained.

Note Maintenance product

Figure 2-1. Memory Map

Note Accessed in external memory expansion mode.

Caution For word access (including stack operations) to the main RAM area (FEOOH-FEFFH), the address that specifies the operand must be an even value.

2.2 PROCESSOR REGISTERS

The processor registers consist mainly of three groups. They are general registers consisting of 8 banks of sixteen 8bit registers, control registers consisting of one 8 -bit register and three 16-bit registers, and special function registers such as peripheral hardware I/O mode registers.

Figure 2-2. Register Configuration

Control Registers

General Registers

Special Function Registers

07	
SFR 255	
SFR 253	SFR 254
SFR 251	SFR 252
SFR 249	SFR 250
	\approx
	SFR 248
SFR 1	

Remark The CCWs of the control registers are mapped in the special function register (SFR) area.

2.2.1 Control Register

The control registers carry out dedicated functions such as control of the program sequence, status and stack memory, and modification of operand addressing. They consist of three 16 -bit registers and one 8 -bit register.

(1) Program counter (PC)

This is a 16 -bit register which holds the address information of the next program to be executed. It is normally incremented according to the number of bytes of the instruction to be fetched. If an instruction with data branch is executed, immediate data and the register content are set. $\overline{R E S E T}$ input sets and branches the data of 0000H and 0001H reset vector tables in the PC.

(2) Program status word (PSW)

This is a 16-bit register consisting of various flags which are set or reset by the result of instruction execution. Read/ write access is carried out in units of the higher 8 bits (PSWH) or lower 8 bits (PSWL). Each flag can be manipulated using the bit manipulation instruction. If an interrupt request is made or BRK instruction is executed, data is automatically saved in the stack and is recovered by RETI or RETB instruction.

All bits are reset to 0 by $\overline{\text { RESET }}$ input.
Figure 2-3. PSW Format

(a) Interrupt priority level transition flag (LT)

This flag is used to control the interrupt priority. For normal operation of the interrupt control circuit, this bit must not be manipulated by a program.

(b) Carry flag (CY)

If a carry is generated out of bit 7 or 15 as a result of the execution of an operation instruction or a borrow is generated into bit 7 or 15 , this flag is set to 1 . In all other cases, this flag is reset to 0 . This flag can be tested by the conditional branch instruction.

When a bit manipulation instruction is executed, this flag functions as a bit accumulator.

(c) Zero flag (Z)

When the operation result is zero, this flag is set to 1 . In all other cases, this flag is reset to 0 . This flag can be tested by the conditional branch instruction.

(d) Sign flag (S)

When MSB of the operation result is " 1 ", this flag is set to 1 . When the MSB is " 0 ", this flag is reset to 0 . This flag can be tested by the conditional branch instruction.

(e) Parity/overflow flag (P/V)

Only when an overflow or underflow occurs as two's complement during execution of an arithmetic operation instruction, this flag is set to 1 . In all other cases, it is reset to 0 (overflow flag operation).

If the bit number of the operation result set to 1 is even during execution of an logic operation instruction, this flag is set to 1 . If the bit number is odd, this flag is reset to 0 (parity flag operation).

This flag can be tested by the conditional branch instruction.

(f) Auxiliary carry flag (AC)

If a carry is generated out of bit 3 as a result of operation or a borrow is generated into bit 3 , this flag is set to 1 . In all other cases, this flag is reset to 0 . This flag can be tested by the conditional branch instruction.

(g) Register set select flag (RSS)

This flag is used to specify general registers which function as X, A, C and B. As shown in Table 2-1, the RSS value determines the relationship between the functional register and the absolute register.

Thus, another register set ($\mathrm{X}, \mathrm{A}, \mathrm{C}, \mathrm{B}$) can be used by switching the RSS flag.

(h) Interrupt request enable flag (IE)

This flag is used to indicate interrupt request enable/disable. This flag is set to 1 by execution of El instruction and is reset to 0 by execution of DI instruction or acceptance of an interrupt.

(i) Register bank select flag (RBS0 to RBS2)

This is a 3-bit flag to select one of eight register banks (RBANK0 to RBANK7).

(j) User flag (UF)

This flag is set or reset in the user program and can be used for program control.

(3) Stack pointer (SP)

This is a 16-bit register which holds the first address of the stack area (LIFO format) of the memory. It is manipulated by a dedicated instruction.

SP is decremented before write (save) operation into the stack memory and is incremented after read (restore) operation from the stack memory.

Since SP becomes indeterminate by $\overline{\text { RESET input, it must be set before subroutine call, etc.. }}$

(4) CPU control word (CCW)

This is an 8-bit register consisting of CPU control related flags. It is mapped in the special function register area and can be controlled by the software. All bits are reset to 0 by $\overline{\text { RESET input. }}$

Figure 2-4. CCW Format

7	6	5	4	3	2	1	0
0	0	0	0	0	0	TPF	0

- Table position flag (TPF)

This flag is used to specify the interrupt vector table area and the memory area used as CALLT instruction table area.
 The 8002 H to 807 FH address of the external memory area in place of 0002 H to 007 FH address can be used as each table area by setting TPF to 1 using the software. The vector tables of the BRK instruction, operation code trap interrupt and reset input are fixed to $003 \mathrm{EH}, 003 \mathrm{CH}$ and 0000 H , respectively, and they are not affected by TPF.

2.2.2 General Registers

These are 128-byte registers mapped in the special area (FE80H to FEFFH) of the internal RAM space. They consist of eight register banks. The general register in the bank consists of sixteen 8-bit registers.

Figure 2-5. General Register Memory Location

The sixteen 8-bit registers can function as eight 16-bit register pairs (RP0 to RP7) as well.
As shown in Table 2-1, the sixteen 8 -bit registers are characterized by functional names. The X register functions as the lower half of the 16-bit accumulator, the A register functions as the upper half of the 8-bit or 16-bit accumulator, the B and C registers function as counters, and $D E, H L, V P$ and UP function as address register pairs. In particular the VP register functions as a base register and the UP register functions as a user stack pointer.

The unique function register changes as shown in Table 2-1 according to the value of the register set select flag (RSS) in the PSW.

Thus, if the program is described by the functional name, another register set of X, A, C and B can be used by means of the RSS flag.

The μ PD78322 can carry out processed data addressing operations, implied addressing by functional names with importance attached to the unique function of each register and register addressing by absolute names with a view to fast processing with a small number of data transfers or creating highly descriptive programs.

Table 2-1. General Register Configuration

Absolute Name	Functional Name		Absolute Name	Functional Name	
	RSS = 0	RSS = 1		RSS $=0$	RSS = 1
R0	X		RP0	AX	
R1	A		RP1	BC	
R2	C		RP2		AX
R3	B		RP3		BC
R4		X	RP4	VP	VP
R5		A	RP5	UP	UP
R6		C	RP6	DE	DE
R7		B	RP7	HL	HL
R8	VPL	VPL			
R9	VPH	VPH			
R10	UPL	UPL			
R11	UPн	UPн			
R12	E	E			
R13	D	D			
R14	L	L			
R15	H	H			

2.2.3 Special Function Registers (SFR)

These registers are provided with special functions. They include various peripheral hardware mode registers and control registers (CCW).

The special function registers are assigned in the FF00H to FFFFH 256-byte space. Short direct memory addressing is applied to the FF00H to FF1FH 32-byte area for processing with a short word length.

The bit manipulation, arithmetic and transfer instructions can be executed in all areas. The FFD0H to FFDFH 16-byte area is externally accessible by SFR addressing. Thus, the external memory can be accessed and the external device bit manipulation can be carried out by an instruction having a short word length.

Table 2-2 lists the special function registers (SFR). The items in the table have the following meanings.

- Symbol................ Indicates the address of the built-in special function register.

Can be described in the instruction operand column.

- R/W

Indicates if the corresponding special function register can read or write.
R/W : Read/write enable
$R \quad$: Read only enable (register bit test enable)
W : Write only enable

- Manipulable bit unit
\qquad Indicates the applicable manipulation bit unit for the corresponding special function register.
16-bit manipulable SFR can be described in operand sfrp. When specified by an address, an even address is described.
1-bit manipulable SFR can be described by the bit manipulation instruction.
- On reset \qquad Indicates the state of each register when RESET is input.

Cautions 1. Addresses for which no special function registers have been assigned cannot be accessed in the FFOOH to FFFFH area.

2. Do not write to the read only register. If data is written, the internal circuit may malfunction.

Table 2-2. List of Special Function Registers (1/4)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipulable Bit Unit			On Reset
				1 bit	8 bits	16 bits	
FFOOH	Port 0	P0	R/W	\bigcirc	\bigcirc	-	Undefined
FF02H	Port 2	P2	R	-	\bigcirc		
FF03H	Port 3	P3	R/W	\bigcirc	\bigcirc		
FF04H	Port 4	P4		\bigcirc	\bigcirc		
FF05H	Port 5	P5		\bigcirc	\bigcirc	-	
FF07H	Port 7	P7	R	-	\bigcirc	-	
FF08H	Port 8	P8	R/W	\bigcirc	\bigcirc		
FF09H	Port 9	P9		\bigcirc	\bigcirc		
$\begin{aligned} & \text { FFOAH } \\ & \text { FFOBH } \end{aligned}$	Free running counter (lower 16 bits) Note	TMOLW	R	-	-	\bigcirc	0000H
$\begin{aligned} & \text { FF10H } \\ & \text { FF11H } \end{aligned}$	Capture register X0 (lower 16 bits) Note	CTXOLW		-	-	\bigcirc	Undefined
$\begin{aligned} & \text { FF12H } \\ & \text { FF13H } \end{aligned}$	Capture register 01 (lower 16 bits) Note	CT01LW		-	-	\bigcirc	
FF14H FF15H	Capture register 02 (lower 16 bits) Note	CT02LW		-	-	\bigcirc	
FF16H FF17H	Capture register 03 (lower 16 bits) Note	CT03LW		-	-	\bigcirc	
	Capture/compoare register X0 (lower 16 bits) Note	CCXOLW	R/W	-	-	\bigcirc	
FF1AH FF1BH	Capture/compoare register 01 (lower 16 bits) Note	CC01LW		-	-	\bigcirc	
FF20H	Port 0 mode register	PM0	W	-	\bigcirc	-	FFH
FF23H	Port 3 mode register	PM3		-	\bigcirc	-	$\times \times \times 11111 \mathrm{~B}$
FF25H	Port 5 mode register	PM5		-	\bigcirc	-	FFH
FF28H	Port 8 mode register	PM8		-	\bigcirc	-	$\times \times 111111 \mathrm{~B}$
FF29H	Port 9 mode register	PM9		-	\bigcirc	-	$\times \times \times \times 1111 \mathrm{~B}$
$\begin{aligned} & \text { FF2AH } \\ & \text { FF2BH } \end{aligned}$	Free runnting counter (higher 16 bits) Note	TMOUW	R	-	-	\bigcirc	0000H
$\begin{aligned} & \text { FF2CH } \\ & \text { FF2DH } \end{aligned}$	Timer register 1	TM1		-	-	\bigcirc	
$\begin{aligned} & \text { FF30H } \\ & \text { FF31H } \end{aligned}$	Capture register X0 (higher 16 bits) Note	CTXOUW		-	-	\bigcirc	Undefined
$\begin{aligned} & \text { FF32H } \\ & \text { FF33H } \end{aligned}$	Capture register 01 (higher 16 bits) Note	CT01UW		-	-	\bigcirc	
$\begin{aligned} & \text { FF34H } \\ & \text { FF35H } \end{aligned}$	Capture register 02 (higher 16 bits) Note	CT02UW		-	-	\bigcirc	

Note Upper or lower half of 18-bit register.

Table 2-2. List of Special Function Registers (2/4)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manipulable Bit Unit			On Reset
				1 bit	8 bits	16 bits	
$\begin{aligned} & \text { FF36H } \\ & \text { FF37H } \end{aligned}$	Capture register 03 (higher 16 bits) Note	CT03UW	R	-	-	\bigcirc	Undefined
				-	-		
FF38H	Capture/compoare register X0 (higher 16 bits) Note	CCXOUW	R/W	-	-	\bigcirc	
FF39H				-	-		
FF3AH	Capture/compoare register 01 (higher 16 bits) Note	CC01UW		-	-	\bigcirc	
FF3BH				-	-		
FF40H	Port 0 mode control register	PMC0	W	-	\bigcirc	-	OOH
FF41H	Realtime output port set register	RTPS	R/W	\bigcirc	\bigcirc	-	
FF43H	Port 3 mode control register	PMC3	W	-	\bigcirc	-	$\times \times \times 0$ 0000B
FF48H	Port 8 mode control register	PMC8		-	\bigcirc	-	$\times \times 00$ 0000B
FF4CH	Baud rate generator	BRG	R/W	-	-	\bigcirc	Undefined
FF4DH				-	-		
FF60H	Realtime output port register	RTP		\bigcirc	\bigcirc	-	
FF61H	Realtime output port reset register	RTPR		\bigcirc	\bigcirc	-	OOH
FF62H	Port read control register	PRDC		\bigcirc	\bigcirc	-	
FF68H	A/D converter mode register	ADM		\bigcirc	\bigcirc	-	
FF6AH	A/D conversion result register (for 16-bit access)	ADCR	R	-	-	\bigcirc	Undefined
FF6BH	A/D conversion result register (for upper 8-bit access)	ADCRH		-	\bigcirc	-	
FF70H	Compare register 00	CM00	R/W	-	-	\bigcirc	
FF71H				-	-		
FF72H	Compare register 01	CM01	R/W	-	-	\bigcirc	
FF73H				-	-		
FF74H	Compare register 02	CM02		-	-	\bigcirc	
FF75H				-	-		
FF76H	Compare register 03	CM03		-	-	\bigcirc	
FF77H				-	-		
$\begin{aligned} & \text { FF7CH } \\ & \text { FF7DH } \end{aligned}$	Compare register 10	CM10		-	-	\bigcirc	
				-	-		
FF7EH	Compare register 11	CM11		-	-	\bigcirc	
FF7FH				-	-		
FF80H	Clocked serial interface mode register	CSIM		\bigcirc	\bigcirc	-	OOH
FF82H	Serial bus interface control register	SBIC		\bigcirc	\bigcirc	-	
FF86H	Serial I/O shift register	SIO		\bigcirc	\bigcirc	-	Undefined

Note Upper or lower half of 18-bit register.

Table 2-2. List of Special Function Registers (3/4)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Unit			On Reset	
				1 bit	8 bits	16 bits			
FF88H	Asynchronous serial interface mode register	ASIM			R/W	\bigcirc	\bigcirc	-	80 H
FF8AH	Asynchronous serial interface status register	ASIS		R	\bigcirc	\bigcirc	-	OOH	
FF8CH	Serial receive buffer :UART	RXB			-	\bigcirc	-	Undefined	
FF8EH	Serial send shift register :UART	TXS		W	-	\bigcirc	-		
FFB0H	Timer control register	TMC		R/W	\bigcirc	\bigcirc	-	OOH	
FFB1H	Baud rate generator mode register	BRGM			\bigcirc	\bigcirc	-		
FFB2H	Prescalar mode register	PRM			\bigcirc	\bigcirc	-		
FFB8H	Timer output control register 0	TOC0			\bigcirc	\bigcirc	-		
FFB9H	Timer output control register 1	TOC1			\bigcirc	\bigcirc	-		
FFBFH	RPU mode register	RPUM			\bigcirc	\bigcirc	-		
FFCOH	Standby control register	STBC		R/W ${ }^{\text {Note }}$	\bigcirc	\bigcirc	-	$0000 \times 000 \mathrm{~B}$	
FFC1H	CPU control word	CCW		R/W	\bigcirc	\bigcirc	-	OOH	
FFC2H	Watchdog timer mode register	WDM		R/W ${ }^{\text {Note }}$	\bigcirc	\bigcirc	-		
FFC4H	Memory expansion mode register	MM		R/W	\bigcirc	\bigcirc	-		
FFC6H	Programmable wait control register	PWC			\bigcirc	\bigcirc	-	22 H	
FFC9H	Fetch cycle control register	FCC			\bigcirc	\bigcirc	-	OOH	
FFDOH to FFDFH	External acces area	IFOL IFOH IFO			\bigcirc	\bigcirc	-	Undefined	
FFEOH	Interrupt request flag rgister 0L			\bigcirc	\bigcirc	\bigcirc	OOH		
FFE1H	Interrupt request flag rgister OH			\bigcirc	\bigcirc				
FFE2H	Interrupt request flag rgister 1L	IF1L	IF1		\bigcirc	\bigcirc		\bigcirc	
FFE3H	-	-			-	-	-		
FFE4H	Interrupt mask flag rgister OL	MKOL	MKO		\bigcirc	\bigcirc	\bigcirc	FFH	
FFE5H	Interrupt mask flag rgister 0 H	MKOH			\bigcirc	\bigcirc			
FFE6H	Interrupt mask flag rgister 1L	MK1L	MK1		\bigcirc	\bigcirc	\bigcirc	$\times \times \times \times \times 111$ B	
FFE7H	-	-			-	-		-	
FFE8H	Priority specify bufer register OL	PB0L	H PB0		\bigcirc	\bigcirc	\bigcirc	OOH	
FFE9H	Priority specify bufer register OH	PBOH			\bigcirc	\bigcirc			
FFEAH	Priority specify bufer register 1L	PB1L	P PB1		\bigcirc	\bigcirc	\bigcirc		
FFEBH	-	-			-	-		-	
FFECH	Interrupt servicing mode specify register OL	ISMOL	H ISM0		\bigcirc	\bigcirc	\bigcirc	OOH	
FFEDH	Interrupt servicing mode specify register OH	ISMOH			\bigcirc	\bigcirc			
FFEEH	Interrupt servicing mode specify register 1L	ISM1L	- ISM1		\bigcirc	\bigcirc	\bigcirc		
FFEFH	-	-			-	-		-	

Note Write enable in case of special instructions.

Table 2-2. List of Special Function Registers (4/4)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipulable Bit Unit			On Reset	
				1 bit	8 bits	16 bits			
FFFOH	Context switching enable register OL	CSE0L	CSEO		R/W	\bigcirc	\bigcirc		00H
FFF1H	Context switching enable register OH	CSEOH		\bigcirc		\bigcirc			
FFF2H	Context switching enable register 1L	CSE1L	CSE1	\bigcirc		\bigcirc	\bigcirc		
FFF3H	-	-		-		-		-	
FFF4H	External interupt mode register 0	INTM0		\bigcirc		\bigcirc	-	00H	
FFF5H	External interupt mode register 1	INTM1		\bigcirc		\bigcirc	-		
FFF8H	In-service priority register	ISPR		R	-	\bigcirc	-		
FFF9H	Priority specify register	PRSL		R/W	\bigcirc	\bigcirc	-		

2.3 DATA MEMORY ADDRESSING

In the μ PD78322, the internal RAM space (FC80H to FEFFH) and the special function register area (FF00H to FFFFH) are mapped in the FC80H to FFFFH area. In the FE20H to FF1FH space of the data memory, short direct addressing enables direct addressing by 1-byte data in an instruction word.

Figure 2-6. Data Memory Addressing

Note When $\overline{\mathrm{EA}}=\mathrm{L}$, or with the $\mu \mathrm{PD} 78320$, this is external memory.

Caution For word access (including stack operations) to the main RAM area (FE00H-FEFFH), the address that specifies the operand must be an even value.

2.3.1 General Register Addressing

The general registers consist of eight register banks, each consisting of sixteen 8-bit registers or eight 16-bit registers.
General register addressing is carried out using the register specify field of 3 or 4 bits supplied from an instruction word, the register bank select flag (RBS0 to RBS2) and the register set select flag (RSS) in the PSW.

2.3.2 Short Direct Addressing

Short direct addressing which enables direct address specification by 1-byte data in an instruction word is applied to the FE20H to FF1FH space. The short direct memory is accessed as 8 -bit or 16-bit data. When accessing the memory as 16bit data, specification of even data for 1-byte address specify data will cause 2-byte data specified by continuous addresses of even and odd addresses to be accessed. (Do not specify odd number for address specify data.)

2.3.3 Special Function Register (SFR) Addressing

This addressing is applied to operations for the special function register (SFR) mapped in the SFR area of FF00H to FFFFH. Addressing is performed by 1-byte data in the instruction word corresponding to the lower 8 bits of the special function register address. For 16-bit access of 16-bit manipulable SFR, 2-byte data specified by continuous even and odd addresses is accessed as is the case with short direct addressing.

3. BLOCK FUNCTIONS

3.1 BUS CONTROL UNIT (BCU)

In the BCU, the necessary bus cycle is started according to the physical address obtained by the execution unit (EXU). If no bus cycle startup request is made from the EXU, a prefetch address is generated and instruction prefetch is carried out. The prefetched operation code is fetched into the instruction queue.

3.2 EXECUTION UNIT (EXU)

In the EXU, address calculation, arithmetic logical operation and data transfer are controlled by microprograms. A 256byte RAM is built in the EXU.

The 256-byte main RAM in the EXU is accessible by the relevant instruction faster than peripheral RAM (384 bytes).

3.3 ROM/RAM

This block consists of a 16K-byte ROM and a 384-byte peripheral RAM. However, the μ PD78320 does not incorporate ROM.

ROM access can be disabled by $\overline{E A}$ pin.

3.4 INTERRUPT CONTROLLER

Various interrupt requests (NMI, INTP0 to INTP6) generated either externally or from the peripheral hardware are serviced by the context switch, vectored interrupt or macro service function.

The 3-level interrupt priority is also specified.

3.5 PORT FUNCTIONS

Table 3-1 lists the digital input/output ports.
Each port can carry out many control operations including 8 and other bit data input/output manipulations.

Table 3-1. Port Functions and Features

Port Name	Function	Feature	Remarks
Port 0	8-bit input/outpput	Specifiable bit-wise for input/output. Also specifiable for realtime output port.	Dual-function as pins RTP0 to RTP7
Port 2	8-bit input	Input port pin. Functions as an external interrupt input.	Dual-function as pins NMI, INTP0 to INTP5, INTP6/TI
Port 3	5-bit input/output	Specifiable bit-wise for port pins or control pins.	$\begin{aligned} & \text { Dual-function as pins } \\ & \mathrm{T} \mathrm{\times D}, \mathrm{RxD}, \mathrm{SO} / \mathrm{SB} 0, \mathrm{~S} / / \mathrm{SB} 1 \text {, } \\ & \frac{\mathrm{SCK}}{} \end{aligned}$
Port 4	8-bit input/output	Specifiable in 8 -bit units for input or output. Functions as the multiplexed address/data bus (ADO to AD7) in the external memory expansion mode.	- -
Port 5	8-bit input/output	Specifiable bit-wise for input or output. Functions as the address bus (A8 to A15) in the external memory expansion mode. Pins which are not used as the address bus can be used as a port.	-
Port 7	8-bit input	Input port pin. Also functions as analog input to the A/D converter.	Dual-function as pins ANO to AN7
Port 8	6-bit input/output	Specifiable bit-wise for the port pin or control pin.	Dual-function as pins TO00 to TO03, TO10 to TO11
Port 9	4-bit input/output	Specifiable bit-wise for input/output. P90 and P91 function as $\overline{\mathrm{RD}}$ output and $\overline{\mathrm{WR}}$ output, respectively, in the external memory expansion mode. P92 and P93 function as TAS output and TMD output, respectively, in the external memory high-speed fetch mode.	-

3.6 CLOCK GENERATOR

The clock generator generates and controls internal system clocks (CLK) supplied to the CPU.
It is configured as shown in Figure 3-1.

Figure 3-1. Clock Generator Block Diagram

Remarks 1. fxx : Crystal oscillator frequency
2. $f x$: External clock frequency
3. fclk: Internal system clock frequency

The system clock oscillator oscillates by a crystal resonator connected to X1 and X2 pins. It stops oscillating when set to the standby mode (STOP).

External clocks can be input to the system clock oscillator. In such cases, input a clock signal to the X1 pin and input the inverted clock signal to the X2 pin. The X2 pin can also be left open.

Caution When using external clocks, do not set the STBC STP bit.

The divider generates internal system clocks (fclk) by dividing a system clock oscillator output (fxx for crystal oscillation and fx for external clocks) into two parts.

Figure 3-2. Externally-Mounted System Clock Oscillator
(a) Crystal oscillator

(b) External clock
(i) When the inverted phase of an external clock to be input to the X 1 pin is input to the X 2 pin

Cautions 1. When the system clock oscillator is used, the following points should be noted concerning wiring within broken lines shown in Figure 3-2, in order to prevent the effects of wiring capacitance, etc.

- Keep the wiring as short as possible.
- Do not cross any other signal lines, and keep clear of lines in which a high fluctuating current flows.
- Ensure that oscillator capacitor connection points are always at the same potential as Vss.

Do not ground in a ground pattern in which a high current flows.

- Do not take a signal from the oscillator.

2. When an external clock is input to the $X 1$ pin and the $X 2$ pin is left open, ensure that no loads such as wiring capacitance are connected to the X 2 pin.

3.7 REALTIME PULSE UNIT (RPU)

This unit can measure pulse intervals and frequencies, and generate programmable pulse outputs.
It consists mainly of two timers. To flexibly cope with many applications, the configuration of registers connected to the timers can be changed using programs. To meet various applications, toggle output (6 max.) or set/reset output (4 max.) can be selected as timer output.

3.7.1 Configuration

The realtime pulse unit is configured mainly of timer 0 (TMO) which functions as a 16-bit or 18-bit free running timer and timer 1 (TM1) which functions as a 16-bit timer/event counter shown in Figure 3-3.

Figure 3-3. Realtime Pulse Unit Configuration

3.7.2 Realtime Output Function

The realtime output port can set/reset port outputs bit-wise in synchronization with the trigger signal transmitted from the RPU (Realtime Pulse Unit). It enables to generate multi-channel synchronous pulses easily.

Figure 3-4. Realtime Output Port

3.8 A/D CONVERTER

The μ PD78322 incorporates a high-speed, high-resolution 10-bit analog/digital (A/D) converter. This A/D converter is equipped with eight analog inputs (AN0 to AN7) and A/D conversion result register (ADCR) which holds the conversion results.

Upon termination of conversion, the interrupt which can start the macro service is generated.

Figure 3-5. A/D Converter Block Diagram

3.9 SERIAL INTERFACE

The μ PD78322 is equipped with the following two independent channels for the serial interface function.

- Asynchronous serial interface
- Clocked serial interface
- 3-wire serial I/O mode
- Serial bus interface mode (SBI mode)

Since the μ PD78322 incorporates a baud rate generator, it can set any serial transfer rate irrespective of the operating frequency. The baud rate generator functions for the 2-channel serial interface in common.

The serial transfer rate can be selected from 75 bps to 19.2 Kbps by setting the mode register.

Figure 3-6. Asynchronous Serial Interface Block Diagram

Figure 3-7. Block Diagram of Clocked Serial Interface

3.10 WATCHDOG TIMER

The watchdog timer is used to prevent program overrun and deadlock. Normal operation of the program or system can be confirmed by checking that no watchdog timer interrupt has been generated. Thus, an instruction to clear the watchdog timer (timer start) is set into each program module.

If the watchdog timer clear instruction is not cleared within the time period set into the watchdog timer and the watchdog timer overflows, a watchdog timer interrupt is generated, and a low level is generated to $\overline{W D T O}$ pin, thereby notifying of an error in the program.

The watchdog timer can also be used to maintain the oscillation stabilization time of the oscillator after the stop mode has been released.

Figure 3-8 shows the watchdog timer configuration.
Figure 3-8. Watchdog Timer Configuration

4. INTERRUPT FUNCTIONS

4.1 OVERVIEW

In the μ PD78322, various interrupt requests generated externally or from the on-chip peripheral hardware are handled in the following three servicing modes.

Interrupt requests are classified into the following three groups.

- Nonmaskable interrupt requests
- Maskable interrupt requests
- Interrupt requests by software

Figure 4-1 shows the maskable interrupt request servicing modes. Table 4-1 gives a listing of interrupt factors which can be serviced.

Figure 4-1. Interrupt Request Servicing Modes

Table 4-1. List of Interrupt Factors

Interrupt Request Type	Default Priority	Interrupt Factor		Generator Unit	Macro Servicez	Vector Table Address
		Request Signal	Function			
Software	-	-	BRK instruction	-	-	003EH
	-	-	Operation code trap	-	-	003CH
Nonmaskable	-	NMI	NMI pin input	(External interrupt)	-	0002H
	-	INTWDT	Watchdog timer	(WDT)	-	0004H
Maskable	0	INTOV	Timer 0 overflow	(RPU)	Available	0006H
	1	INTP0	INTP0 pin input	(External)		0008H
	2	INTP1	INTP1 pin input	(External)		000AH
	3	INTP2	INTP2 pin input	(External)		000CH
	4	INTP3	INTP3 pin input	(Exteranl)		000EH
	5	INTP4/INTCCX0	INTP4 pin input/CCX0 match signal	(RPU/exteranl)		0010H
	6	INTP5/INTCC01	INTP5 pin input/CC01 match signal	(RPU/exteranl)		0012H
	7	INTP6/TI	INTP6 pin input/TI input	(Exteranl)		0014H
	8	INTCM00	CM00 match signal	(RPU)		0016H
	9	INTCM01	CM01 match signal	(RPU)		0018H
	10	INTCM02	CM02 match signal	(RPU)		001AH
	11	INTCM03	CM03 match signal	(RPU)		001 CH
	12	INTCM10	CM10 match signal	(RPU)		001EH
	13	INTCM11	CM11 match signal	(RPU)		0020H
	14	INTSR	Serial receive terminate interrupt	(UART)		0024H
	15	INTST	Serial send terminate interrupt	(UART)		0026H
	16	INTCSI	Serial send/receive interrupt	(CSI)		0028H
	17	INTAD	A/D conversion terminate interrupt	(A/D)		002AH
-	-	INTSER ${ }^{\text {Note }}$	Serial receive error signal	(UART)	-	__Note
Reset	-	RESET	Reset input	-	-	0000H

Note This is a test factor. A vectored interrupt is not generated.

4.2 MACRO SERVICE

The macro service function is executed at the interrupt request to carry out data operation and data transfer in hardware terms between the special function register area and the memory space.

Upon startup of the macro service, the CPU stops program execution temporarily. 1-byte/2-byte data operation, transfer, etc. are automatically carried out between the special function register (SFR) and the memory. Upon termination of the macro service, the interrupt request flag is reset to 0 and the CPU restarts program execution. When the CPU carries out the macro service operations as many as set into the macro service counter (MSC), a vectored interrupt request is generated after completion.

Figure 4-2. Macro Service Processing Sequence Example

4.3 CONTEXT SWITCHING FUNCTION

This is the function to first select the specified register bank in hardware terms by generating an interrupt request or executing BRKCS instruction, to branch the selected register bank to the vector address prestored in the register bank, and also to stack the current PC and PSW contents into the register bank.

4.3.1 Context Switching Function by Interrupt Request

The context switching function start is enabled by setting the $\times \times$ CSE bit preset at each interrupt request to 1 .
If an unmasked interrupt request for which the context switching function has been enabled is generated in the El state, the register bank which is specified by the lower 3 bits of the low address (even address) of the corresponding interrupt vector table address is selected. The vector address prestored in the selected register bank is transferred to the PC, the PC and PSW contents are saved into the register bank, and the operation is branched to the interrupt service routine.

Return is by means of executing the RETCS instruction.

Figure 4-3. Context Switching by Interrupt Request Generation

4.3.2 Context Switching Function by BRKCS Instruction

The context switching function can be started by executing BRKCS instruction.
The context switched register bank is specified by the lower 3-bit immediate data of the 2nd operation code of BRKCS instruction. When BRKCS instruction is executed, the register bank specified by the 3 -bit immediate data is selected, the vector address prestored in the register bank is set and branched to the PC, and the PC and PSW contents are saved into the register bank.

Return is by means of executing the RETCSB instruction.

Figure 4-4. Context Switching by Execution of BRKCS Instruction

5. STANDBY FUNCTIONS

The μ PD78322 has the standby function to decrease the power consumption of the system. The following two modes are available for execution of the standby function.

- HALT mode Mode for halting the CPU operation clock. The total power consumption of the system can be decreased by intermittent operation in combination with the normal operating mode.
- STOP mode Mode for stopping the whole system by stopping the oscillator. Considerably low power consumption with leak current only can be set.

Each mode is set by the software. Figure $5-1$ shows standby mode (STOP/HALT mode) transition.

Figure 5-1. Standby Status Transition

6. EXTERNAL DEVICE EXPANSION FUNCTION

The μ PD78322 can expand external devices (data memory, program memory or peripheral device) for areas (4000H to FFFFH) except the internal ROM and RAM areas. Tables 6-1 through 6-3 shows the pin used for external device access and the pin function setting procedure.

Table 6-1. Pin Function Setting (μ PD78322)

EA Pin	Memory Expansion Mode Register		Fetch Cycle Control Register	Pin Function						Remarks
	MM0 to MM2	MM7		P40 to P47	P50 to P57	P90	P91	P92	P93	
1	Port mode	0	00H	General port						
		1	Setting prohibited							
	Expansion mode	0	00H	AD0 to AD7	Set to A8 to A15 in steps	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	Generalpurpose port		External device connection mode
		1	Except 00H					$\overline{\text { TAS }}$	TMD	μ PD71P301 connection mode

For P50 to P57 pins, the number of bits which serve as address buses can be changed according to the externally expanded memory size. The memory can be expanded in steps from 256 bytes to about 48 K bytes. The pins which are not used as the address bus can be used as the general-purpose input/output port.

Table 6-2. Port and Address Setting for Port 5 (μ PD78322)

P57	P56	P55	P54	P53	P52	P51	P50	External Address Space
Port	256 bytes or less							
Port	Port	Port	Port	A11	A10	A9	A8	4 K bytes or less
Port	Port	A13	A12	A11	A10	A9	A8	16 K bytes or less
A15	A14	A13	A12	A11	A10	A9	A8	About 48K bytes or less

Table 6-3. Setting Pin Function (μ PD78320)

$\overline{E A}$ Pin	Memory Expansion Mode Register MM7	Fetch Cycle Control Register	Pin Function						Remarks
			AD0 to AD7	A8 to A15	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	P92	P93	
ASTB	-	-	AD to AD7	A8 to A15	$\overline{\mathrm{RD}}$	WR	TAS	TMD	μ PD78322 emulation mode
0	0	00H						ral- port	External device connection mode
	1	Except 00H					$\overline{\text { TAS }}$	TMD	μ PD71P301 connection mode

7. OPERATION AFTER RESET

If the $\overline{\text { RESET }}$ input pin is set to the low level, the system reset is applied and each hardware becomes as initialized status (reset status). If RESET input becomes high level, the reset state is released and program execution is started. Initialize the contents of various registers in the program as required.

Change the number of cycles for the programmable wait control register and the fetch cycle control register as required in particular.

The RESET input pin is equipped with an analog delay noise eliminator to prevent malfunctioning due to noise.

Cautions 1. While $\overline{\operatorname{RESET}}$ is active (low level), all pins remain high impedance (except $\overline{\mathrm{WDTO}}, \mathrm{AV}$ ref, $A V_{d d}, A V \mathrm{ss}$, Vdd, Vss, X1 and X2).
2. If RAM has been expanded externally, mount a pull-up resistor to the P90/RD and P91/WR pins. It is possible that the P90/RD and P91/WR pins become high impedance resulting in an external RAM contents corruption. In addition, signals may collide on the address/data bus, resulting in the destruction of the input/output circuit.

Figure 7-1. Reset Signal Acknowledge

For reset operation upon power-up, secure the oscillation stabilization time of about 40 msec from power-up to reset acknowledge as shown in Figure 7-2.

Figure 7-2. Reset Upon Power-Up

8. INSTRUCTION SET

This chapter covers instruction operations.
For the operation codes and the number of instruction execution clock cycles, see μ PD78322 User's Manual (IEU-1248).

(1) Operand identifier and description method

In each instruction operand field, enter the operand using the description method for the instruction operand identifier (refer to the assembler specification for details). If two or more factors are included in the description method field, select one factor. The capital alphabetic letters and $+,-, \#, \$$, ! and [] symbols are keywords and should be described as they are.

In case of immediate data, describe appropriate numeric values or labels. When describing labels, make sure to describe \#, \$, ! and [] symbols.

Table 8-1. Operand Identifier and Description Method

Identifier	Description Method
$\begin{aligned} & r \\ & \text { r1 } \\ & \text { r2 } \end{aligned}$	```R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15 R0, R1, R2, R3, R4, R5, R6, R7 C, B```
rp rp1 rp2	RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7 RP0, RP1, RP2, RP3, RP4, RP5, RP6, RP7 DE, HL, VP, UP
sfr sfrp	Special function register code (see Table 2-2) Special function register code (16-bit manipulation enable register; see Table 2-2)
post	RP0, RP1, RP2, RP3, RP4, RP5/PSW, RP6, RP7 (Two or more instructions can be described. Only PUSH and POP instructions can be described for RP5 and only PUSHU and POPU instructions can be described for PSW.)
mem	[DE], [HL], [DE+], [HL+], [DE-], [HL-], [VP], [UP] ; Register indirect mode $[\mathrm{DE}+\mathrm{A}],[\mathrm{HL}+\mathrm{A}],[\mathrm{DE}+\mathrm{B}],[\mathrm{HL}+\mathrm{B}],[\mathrm{VP}+\mathrm{DE}],[\mathrm{VP}+\mathrm{HL}]$; Based indexed mode [DE+byte], [HL+byte], [VP+byte], [UP+byte], [SP+byte] ; Based mode word[A], word[B], word[DE], word[HL] ; Indexed mode
saddr saddrp	FE20H to FF1FH immediate data or label FE20H to FF1EH immediate data (bit0 $=0$) or label (for 16 -bit manipulation)
\$addr16 !addr16 addr11 addr5	0000 H to FDFFH immediate data or label; relative addressing 0000 H to FDFFH immediate data or label; immediate addressing (Up to FFFFH describable by MOV instruction) 800 H to FFFH immediate data or label 40 H to 7 EH immediate data $(\text { bit0 }=0)^{\text {Note }}$ or label
word byte bit n	16-bit immediate data or label 8-bit immediate data or label 3-bit immediate data or label 3-bit immediate data (0 to 7)

Note Do not make word access to bit0 = 1 (odd address).

Remarks 1. Although $r p$ and $r p 1$ have the same describable register names, they generate different codes.
2. r, r1, rp, rp1 and post can be described with absolute names ($R 0$ to R15, RP0 to RP7) as well as functional names (X, A, C, B, E, D, L, H, AX, BC, DE, HL, VP, UP (see Table 2-1 for details of the relationships between the absolute and functional names).
3. Immediate addressing is enabled for all spaces. Relative addressing is only enabled from the first address of the subsequent instruction to the range of -128 to +127 .

	Mnemonic	Operand	$$	Operation	Flags				
					S	Z	AC	P/V	CY
	MOV	r1, \#byte	2	$\mathrm{r} 1 \leftarrow$ byte					
		saddr, \#byte	3	(saddr) \leftarrow byte					
		sfrNote, \#byte	3	$\mathrm{sfr} \leftarrow$ byte					
		r, r1	2	$r \leftarrow r 1$					
		A, r1	1	$\mathrm{A} \leftarrow \mathrm{r} 1$					
		A, saddr	2	$\mathrm{A} \leftarrow$ (saddr)					
		saddr, A	2	(saddr) $\leftarrow \mathrm{A}$					
		saddr, saddr	3	(saddr) \leftarrow (saddr)					
		A, sfr	2	$\mathrm{A} \leftarrow \mathrm{sfr}$					
		sfr, A	2	$\mathrm{sfr} \leftarrow \mathrm{A}$					
		A, mem	1-4	$\mathrm{A} \leftarrow(\mathrm{mem})$					
		mem, A	1-4	(mem) $\leftarrow \mathrm{A}$					
		A, [saddrp]	2	$\mathrm{A} \leftarrow(($ saddrp) $)$					
		[saddrp], A	2	$(($ saddrp) $) \leftarrow \mathrm{A}$					
		A, !addr16	4	$\mathrm{A} \leftarrow$ (addr16)					
		laddr16, A	4	(addr16) $\leftarrow \mathrm{A}$					
		PSWL, \#byte	3	PSW L \leftarrow byte	\times	\times	\times	\times	\times
		PSWH, \#byte	3	PSW ${ }_{\text {H }} \leftarrow$ byte					
		PSWL, A	2	PSW L $\leftarrow \mathrm{A}$	\times	\times	\times	\times	\times
		PSWH, A	2	$\mathrm{PSW}_{\mathrm{H}} \leftarrow \mathrm{A}$					
		A, PSWL	2	$\mathrm{A} \leftarrow \mathrm{PSW}$ L					
		A, PSWH	2	$\mathrm{A} \leftarrow \mathrm{PSW}{ }_{\text {H }}$					
		A, r1	1	$A \leftrightarrow r 1$					
		r, r1	2	$r \leftrightarrow r 1$					
		A, mem	2-4	$\mathrm{A} \leftrightarrow$ (mem)					
	XCH	A, saddr	2	A \leftrightarrow (saddr)					
		A, sfr	3	$\mathrm{A} \leftrightarrow \mathrm{sfr}$					
		A, [saddrp]	2	A $\leftrightarrow($ (saddrp) $)$					
		saddr, saddr	3	(saddr) \leftrightarrow (saddr)					

Note If STBC and WDM are described for sft, a different dedicated instruction having a different number of bytes is used.

Remark For the symbols in the Flags column, refer to the table below.

Symbol	Description
(Blank)	No change
0	Clear to 0.
1	Set to 1.
\times	Set/clear according to the result.
P	P/V flag operates as a parity flag
V	P/V flag operates as an overflow flag.
R	The previously saved value is restored.

$\begin{aligned} & \text { 등 } \\ & \text { 을 } \\ & \text { 른 은 } \\ & \text { 드 } \end{aligned}$	Mnemonic	Operand	$\stackrel{\infty}{\underset{\sim}{\infty}}$	Operation	Flags				
					S	Z	AC		CY
	MOVW	rp1, \#word	3	rp1 \leftarrow word					
		saddrp, \#word	4	(saddrp) \leftarrow word					
		sfrp, \#word	4	sfrp \leftarrow word					
		rp, rp1	2	$\mathrm{rp} \leftarrow \mathrm{rp} 1$					
		AX, saddrp	2	$A X \leftarrow$ (saddrp)					
		saddrp, AX	2	(saddrp) $\leftarrow A X$					
		saddrp, saddrp	3	(saddrp) \leftarrow (saddrp)					
		AX, sfrp	2	$A X \leftarrow$ sfrp					
		sfrp, AX	2	$\operatorname{sfrp} \leftarrow A X$					
		rp1, !addr16	4	$\mathrm{rp1} \leftarrow($ addr16)					
		!addr16, rp1	4	(addr16) $\leftarrow \mathrm{rp1}$					
		AX, mem	2-4	$A X \leftarrow$ (mem)					
		mem, AX	2-4	$($ mem $) \leftarrow A X$					
	XCHW	AX, saddrp	2	AX \leftrightarrow (saddrp)					
		AX, sfrp	3	AX \leftrightarrow sfrp					
		saddrp, saddrp	3	(saddrp) \leftrightarrow (saddrp)					
		rp,rp1	2	$\mathrm{rp} \leftrightarrow \mathrm{rp1}$					
		AX, mem	2-4	$\mathrm{AX} \leftrightarrow$ (mem)					
	ADD	A, \#byte	2	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte	\times	\times	\times	V	\times
		saddr, \#byte	3	(saddr), CY \leftarrow (saddr) + byte	\times	\times	\times	V	\times
		sfr, \#byte	4	sfr, CY \leftarrow sfr + byte	\times	\times	\times	V	\times
		r, r1	2	$r, C Y \leftarrow r+r 1$	\times	\times	\times	V	\times
		A, saddr	2	$A, C Y \leftarrow A+$ (saddr $)$	\times	\times	\times	V	\times
		A, sfr	3	$A, C Y \leftarrow A+s f r$	\times	\times	\times	V	\times
		saddr, saddr	3	(saddr), CY \leftarrow (saddr) + (saddr)	\times	\times	\times	V	\times
		A, mem	2-4	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{mem})$	\times	\times	\times	V	\times
		mem, A	2-4	(mem) , CY $\leftarrow(\mathrm{mem})+\mathrm{A}$	\times	\times	\times	V	\times
	ADDC	A, \#byte	2	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+$ byte +CY	\times	\times	\times	V	\times
		saddr, \#byte	3	(saddr), CY \leftarrow (saddr) + byte + CY	\times	\times	\times	V	\times
		sfr, \#byte	4	sfr, CY $\leftarrow \mathrm{sfr}+$ byte + CY	\times	\times	\times	V	\times
		r, r1	2	$r, C Y \leftarrow r+r 1+C Y$	\times	\times	\times	V	\times
		A, saddr	2	$A, C Y \leftarrow A+$ (saddr $)+C Y$	\times	\times	\times	V	\times
		A, sfr	3	$A, C Y \leftarrow A+s f r+C Y$	\times	\times	\times	V	\times
		saddr, saddr	3	(saddr), $\mathrm{CY} \leftarrow$ (saddr) + (saddr) +CY	\times	\times	\times	V	\times
		A, mem	2-4	$A, C Y \leftarrow A+($ mem $)+C Y$	\times	\times	\times	V	\times
		mem, A	2-4	(mem), CY $\leftarrow($ mem $)+A+C Y$	\times	\times	\times	V	\times

$\begin{aligned} & \text { 등 을 } \\ & \text { 은 } \\ & \text { 른 } \\ & \text { 드 } \end{aligned}$	Mnemonic	Operand	$\stackrel{\infty}{\underset{\sim}{\infty}}$	Operation	Flags				
					S	Z	AC	P/V	CY
uo!!כnısu! uo!̣eıədo t!q-8	SUB	A, \#byte	2	A, CY \leftarrow A - byte	\times	\times	\times	V	\times
		saddr, \#byte	3	(saddr), CY \leftarrow (saddr) - byte	\times	\times	\times	V	\times
		sfr, \#byte	4	sfr, CY \leftarrow sfr - byte	\times	\times	\times	V	\times
		r, r1	2	$r, C Y \leftarrow r-r 1$	\times	\times	\times	V	\times
		A, saddr	2	$A, C Y \leftarrow A-$ (saddr)	\times	\times	\times	V	\times
		A, sfr	3	$A, C Y \leftarrow A-s f r$	\times	\times	\times	V	\times
		saddr, saddr	3	(saddr), CY \leftarrow (saddr) - (saddr)	\times	\times	\times	V	\times
		A, mem	2-4	A, CY \leftarrow A - (mem)	\times	\times	\times	V	\times
		mem, A	2-4	(mem), $\mathrm{CY} \leftarrow$ (mem) - A	\times	\times	\times	V	\times
	SUBC	A, \#byte	2	A, CY $\leftarrow A$ - byte - CY	\times	\times	\times	V	\times
		saddr, \#byte	3	(saddr), CY \leftarrow (saddr) - byte - CY	\times	\times	\times	V	\times
		sfr, \#byte	4	sfr, CY \leftarrow sfr - byte - CY	\times	\times	\times	V	\times
		r, r1	2	$r, C Y \leftarrow r-r 1-C Y$	\times	\times	\times	V	\times
		A, saddr	2	A, CY $\leftarrow \mathrm{A}-$ (saddr) - CY	\times	\times	\times	V	\times
		A, sfr	3	$A, C Y \leftarrow A-s f r-C Y$	\times	\times	\times	V	\times
		saddr, saddr	3	(saddr), $\mathrm{CY} \leftarrow$ (saddr) - (saddr) - CY	\times	\times	\times	V	\times
		A, mem	2-4	$A, C Y \leftarrow A-(\mathrm{mem})-\mathrm{CY}$	\times	\times	\times	V	\times
		mem, A	2-4	(mem), CY \leftarrow (mem) - A - CY	\times	\times	\times	V	\times
	AND	A, \#byte	2	$A \leftarrow A \wedge$ byte	\times	\times		P	
		saddr, \#byte	3	(saddr) \leftarrow (saddr) \wedge byte	\times	\times		P	
		sfr, \#byte	4	$\mathrm{sfr} \leftarrow \mathrm{sfr} \wedge$ byte	\times	\times		P	
		r, r1	2	$r \leftarrow r \wedge r 1$	\times	\times		P	
		A, saddr	2	$A \leftarrow A \wedge$ (saddr)	\times	\times		P	
		A, sfr	3	$A \leftarrow A \wedge s f r$	\times	\times		P	
		saddr, saddr	3	(saddr) $\leftarrow($ saddr $) \wedge$ (saddr)	\times	\times		P	
		A, mem	2-4	$A \leftarrow A \wedge(\mathrm{mem})$	\times	\times		P	
		mem, A	2-4	$($ mem $) \leftarrow($ mem $) \wedge A$	\times	\times		P	

$\begin{aligned} & \text { 등 } \\ & \text { 을 } \\ & \stackrel{y}{\omega} \text { 응 } \\ & \underline{S} \end{aligned}$	Mnemonic	Operand	∞	Operation	Flags				
			๓		S	Z	AC	P/V	CY
	OR	A, \#byte	2	$A \leftarrow A \vee$ byte	\times	\times		P	
		saddr, \#byte	3	(saddr) \leftarrow (saddr) \vee byte	\times	\times		P	
		sfr, \#byte	4	sfr $\leftarrow \mathrm{sfr} \vee$ byte	\times	\times		P	
		r, r1	2	$r \leftarrow r \vee r 1$	\times	\times		P	
		A, saddr	2	$A \leftarrow A \vee($ saddr $)$	\times	\times		P	
		A, sfr	3	$A \leftarrow A \vee s f r$	\times	\times		P	
		saddr, saddr	3	(saddr) \leftarrow (saddr) \vee (saddr)	\times	\times		P	
		A, mem	2-4	$A \leftarrow A \vee($ mem $)$	\times	\times		P	
		mem, A	2-4	$($ mem $) \leftarrow($ mem $) \vee A$	\times	\times		P	
	XOR	A, \#byte	2	$A \leftarrow A \forall$ byte	\times	\times		P	
		saddr, \#byte	3	(saddr) \leftarrow (saddr) \forall byte	\times	\times		P	
		sfr, \#byte	4	$\mathrm{sfr} \leftarrow \mathrm{sfr} *$ byte	\times	\times		P	
		r, r1	2	$r \leftarrow r * r 1$	\times	\times		P	
		A, saddr	2	$A \leftarrow A \forall$ (saddr)	\times	\times		P	
		A, sfr	3	$A \leftarrow A \forall s f r$	\times	\times		P	
		saddr, saddr	3	(saddr) \leftarrow (saddr) \forall (saddr)	\times	\times		P	
		A, mem	2-4	$A \leftarrow A *$ (mem $)$	\times	\times		P	
		mem, A	2-4	$($ mem $) \leftarrow($ mem $) \forall A$	\times	\times		P	
	CMP	A, \#byte	2	A - byte	\times	\times	\times	V	\times
		saddr, \#byte	3	(saddr) - byte	\times	\times	\times	V	\times
		sfr, \#byte	4	sfr - byte	\times	\times	\times	V	\times
		r, r1	2	$r-r 1$	\times	\times	\times	V	\times
		A, saddr	2	A - (saddr)	\times	\times	\times	V	\times
		A, sfr	3	A - sfr	\times	\times	\times	V	\times
		saddr, saddr	3	(saddr) - (saddr)	\times	\times	\times	V	\times
		A, mem	2-4	A - (mem)	\times	\times	\times	V	\times
		mem, A	2-4	(mem) - A	\times	\times	\times	V	\times

	Mnemonic	Operand	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	Operation	Flags				
					S	Z	AC	P/V	CY
	ADDW	AX, \#word	3	$A X, C Y \leftarrow A X+$ word	\times	\times	\times	V	\times
		saddrp, \#word	4	(saddrp), CY \leftarrow (saddrp) + word	\times	\times	\times	V	\times
		sfrp, \#word	5	sfrp, CY \leftarrow sfrp + word	\times	\times	\times	V	\times
		rp, rp1	2	$\mathrm{rp}, \mathrm{CY} \leftarrow \mathrm{rp}+\mathrm{rp1}$	\times	\times	\times	V	\times
		AX, saddrp	2	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}+$ (saddrp)	\times	\times	\times	V	\times
		AX, sfrp	3	$A X, C Y \leftarrow A X+$ sfrp	\times	\times	\times	V	\times
		saddrp, saddrp	3	(saddrp), $\mathrm{CY} \leftarrow$ (saddrp) + (saddrp)	\times	\times	\times	V	\times
	SUBW	AX, \#word	3	$A X, C Y \leftarrow A X$ - word	\times	\times	\times	V	\times
		saddrp, \#word	4	(saddrp), CY \leftarrow (saddrp) - word	\times	\times	\times	V	\times
		sfrp, \#word	5	sfrp, CY \leftarrow sfrp - word	\times	\times	\times	V	\times
		rp, rp1	2	rp, CY $\leftarrow \mathrm{rp}-\mathrm{rp1}$	\times	\times	\times	V	\times
		AX, saddrp	2	$\mathrm{AX}, \mathrm{CY} \leftarrow \mathrm{AX}$ - (saddrp)	\times	\times	\times	V	\times
		AX, sfrp	3	$A X, C Y \leftarrow A X-$ sfrp	\times	\times	\times	V	\times
		saddrp, saddrp	3	(saddrp), CY \leftarrow (saddrp) - (saddrp)	\times	\times	\times	V	\times
	CMPW	AX, \#word	3	AX - word	\times	\times	\times	V	\times
		saddrp, \#word	4	(saddrp) - word	\times	\times	\times	V	\times
		sfrp, \#word	5	sfrp - word	\times	\times	\times	V	\times
		rp, rp1	2	rp - rp1	\times	\times	\times	V	\times
		AX, saddrp	2	AX - (saddrp)	\times	\times	\times	V	\times
		AX, sfrp	3	AX - sfrp	\times	\times	\times	V	\times
		saddrp, saddrp	3	(saddrp) - (saddrp)	\times	\times	\times	V	\times
	MULU	r1	2	$A X \leftarrow A \times r 1$					
	DIVUW	r1	2	$A X$ (quotient), $r 1$ (remainder) $\leftarrow A X \div r 1$					
	MULUW	rp1	2	AX(higher 16 bits), rp1(lower 16 bits) $\leftarrow A X \times r p 1$					
	DIVUX	rp1	2	$\begin{aligned} & \text { AXDE(quotient), rp1 (remainder) } \leftarrow \text { AXDE } \\ & \div \text { rp1 } \end{aligned}$					
	MULW	rp1	2	AX(higher 16 bits), rp1(lower 16 bits) $\leftarrow \mathrm{AX} \times \mathrm{rp} 1$					

	Mnemonic	Operand	$\stackrel{』}{\underset{\sim}{\infty}}$	Operation	Flags				
					S	Z	AC		CY
	INC	r1	1	$r 1 \leftarrow r 1+1$	\times	\times	\times	V	
		saddr	2	(saddr) \leftarrow (saddr) +1	\times	\times	\times	V	
	DEC	r1	1	$r 1 \leftarrow r 1-1$	\times	\times	\times	V	
		saddr	2	(saddr) \leftarrow (saddr) - 1	\times	\times	\times	V	
	INCW	rp2	1	$\mathrm{rp} 2 \leftarrow \mathrm{rp} 2+1$					
		saddrp	3	(saddrp) $\leftarrow($ saddrp $)+1$					
	DECW	rp2	1	$\mathrm{rp} 2 \leftarrow \mathrm{rp2}-1$					
		saddrp	3	(saddrp) $\leftarrow($ saddrp) -1					
	ROR	r1, n	2	$\left(\mathrm{CY}, \mathrm{r} 1_{7} \leftarrow \mathrm{r} 1_{0}, \mathrm{r} 1_{\mathrm{m}-1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times				P	\times
	ROL	r1, n	2	$\left(\mathrm{CY}, \mathrm{r} 1_{0} \leftarrow \mathrm{r} 1_{7}, \mathrm{r} 1_{\mathrm{m}+1} \leftarrow \mathrm{r} 1_{\mathrm{m}}\right) \times \mathrm{n}$ times				P	\times
	RORC	r1, n	2	$(\mathrm{CY} \leftarrow \mathrm{r} 10, \mathrm{r} 17 \leftarrow \mathrm{CY}, \mathrm{r} 1 \mathrm{~m}-1 \leftarrow \mathrm{r} 1 \mathrm{~m}) \times \mathrm{n}$ times				P	\times
	ROLC	r1, n	2	$(\mathrm{CY} \leftarrow \mathrm{r} 17, \mathrm{r} 10 \leftarrow \mathrm{CY}, \mathrm{r} 1 \mathrm{~m}+1 \leftarrow \mathrm{r} 1 \mathrm{~m}) \times \mathrm{n}$ times				P	\times
	SHR	r1, n	2	$(C Y \leftarrow r 10, r 17 \leftarrow 0, \mathrm{r} 1 \mathrm{~m}-1 \leftarrow \mathrm{r} 1 \mathrm{~m}) \times \mathrm{n}$ times	\times	\times	0	P	\times
	SHL	r1, n	2	$(\mathrm{CY} \leftarrow \mathrm{r} 17, \mathrm{r} 10 \leftarrow 0, \mathrm{r} 1 \mathrm{~m}+1 \leftarrow \mathrm{r} 1 \mathrm{~m}) \times \mathrm{n}$ times	\times	\times	0	P	\times
	SHRW	rp1, n	2	$(C Y \leftarrow r p 10, r p 115 \leftarrow 0, r p 1 m-1 \leftarrow r p 1 m) \times n$ times	\times	\times	0	P	\times
	SHLW	rp1, n	2	$(C Y \leftarrow r p 115, \mathrm{rp} 10 \leftarrow 0, \mathrm{rp} 1 \mathrm{~m}+1 \leftarrow \mathrm{rp} 1 \mathrm{~m}) \times \mathrm{n}$ times	\times	\times	0	P	\times
	ROR4	[rp1]	2	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp1})_{3-0}, \\ & (\mathrm{rp1})_{7-4} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{3-0} \leftarrow(\mathrm{rp1})_{7-4} \end{aligned}$					
	ROL4	[rp1]	2	$\begin{aligned} & \mathrm{A}_{3-0} \leftarrow(\mathrm{rp1})_{7-4}, \\ & (\mathrm{rp1})_{3-0} \leftarrow \mathrm{~A}_{3-0}, \\ & (\mathrm{rp} 1)_{7-4} \leftarrow(\mathrm{rp} 1)_{3-0} \end{aligned}$					
	ADJBA ADJBS		2	Decimal Adjust Accumulator	\times	\times	\times	P	\times
	CVTBW		1	$\begin{aligned} & \text { When } A_{7}=0, X \leftarrow A, A \leftarrow O O H \\ & \text { When } A_{7}=1, X \leftarrow A, A \leftarrow F F H \end{aligned}$					

	Mnemonic	Operand	$\stackrel{\sim}{\infty}_{\sim}^{\infty}$	Operation	Flags				
					S	Z	AC	P/V	CY
	XOR1	CY, saddr. bit	3	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (saddr.bit)					\times
		CY, sfr. bit	3	$C Y \leftarrow C Y *$ sfr.bit					\times
		CY, A. bit	2	$C Y \leftarrow C Y *$ A.bit					\times
		CY, X. bit	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall \mathrm{X}$.bit					\times
		CY, PSWH. bit	2	$C Y \leftarrow C Y * P S W H . b i t$					\times
		CY, PSWL. bit	2	$C Y \leftarrow C Y * P S W L$. bit					\times
	SET1	saddr. bit	2	(saddr.bit) $\leftarrow 1$					
		sfr. bit	3	sfr.bit $\leftarrow 1$					
		A. bit	2	A.bit $\leftarrow 1$					
		X. bit	2	X.bit $\leftarrow 1$					
		PSWH. bit	2	PSW. .bit $_{\leftarrow} \leftarrow 1$					
		PSWL. bit	2	PSWL.bit $\leftarrow 1$	\times	\times	\times	\times	\times
	CLR1	saddr. bit	2	(saddr.bit) $\leftarrow 0$					
		sfr. bit	3	sfr.bit $\leftarrow 0$					
		A. bit	2	A.bit $\leftarrow 0$					
		X. bit	2	X.bit $\leftarrow 0$					
		PSWH. bit	2	PSW..bit $\leftarrow 0$					
		PSWL. bit	2	PSWL.bit $\leftarrow 0$	\times	\times	\times	\times	\times
	NOT1	saddr. bit	3	(saddr.bit) $\leftarrow \overline{\text { (saddr.bit) }}$					
		sfr. bit	3	sfr.bit $\leftarrow \overline{\text { sfr.bit }}$					
		A. bit	2	A.bit $\leftarrow \overline{\text { A.bit }}$					
		X. bit	2	X.bit $\leftarrow \overline{\text { X.bit }}$					
		PSWH. bit	2	PSWH.bit $\leftarrow \overline{\text { PSWH.bit }}$					
		PSWL. bit	2	PSWL.bit $\leftarrow \overline{\text { PSWL.bit }}$	\times	\times	\times	\times	\times
	SET1	CY	1	$\mathrm{CY} \leftarrow 1$					1
	CLR1	CY	1	$C Y \leftarrow 0$					0
	NOT1	CY	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$	\times				

	Mnemonic	Operand	$\stackrel{\infty}{\substack{\infty \\ \multirow{4}{0}{}}}$	Operation	Flags				
						Z	AC	P/V	CY
	CALL	!addr16	3	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+3) \mathrm{H},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+3)\llcorner, \\ & \mathrm{PC} \leftarrow \text { addr16 }, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$					
	CALLF	!addr11	2	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+2) \mathrm{H},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+2)\llcorner, \\ & \mathrm{PC}_{15-11} \leftarrow 00001, \mathrm{PC}_{10-0} \leftarrow \mathrm{addr11}, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$					
	CALLT	[addr5]	1	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+1) \mathrm{H},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+1)\llcorner, \\ & \mathrm{PCH} \leftarrow(\mathrm{TPF}, 00000000, \text { addr5 }+1), \\ & \mathrm{PCL} \leftarrow(\mathrm{TPF}, 00000000, \text { addr5 }), \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$					
	CALL	rp1	2	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+2) \mathrm{H},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+2) \mathrm{L}, \\ & \mathrm{PCH} \leftarrow \text { rp1н, } \mathrm{PC} \leftarrow \mathrm{rp1} \mathrm{~L}, \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$					
		[rp1]	2	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow(\mathrm{PC}+2) \mathrm{H},(\mathrm{SP}-2) \leftarrow(\mathrm{PC}+2) \mathrm{L}, \\ & \mathrm{PC} H \leftarrow(\mathrm{rp} 1+1), \mathrm{PCL} \leftarrow(\mathrm{rp} 1), \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$					
	BRK		1	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{PSW}, \mathrm{H},(\mathrm{SP}-2) \leftarrow \mathrm{PSW}, \\ & (\mathrm{SP}-3) \leftarrow(\mathrm{PC}+1) \mathrm{H},(\mathrm{SP}-4) \leftarrow(\mathrm{PC}+1) \mathrm{L}, \\ & \mathrm{PCL} \leftarrow(003 \mathrm{EH}), \mathrm{PCH} \leftarrow(003 \mathrm{FH}), \mathrm{SP} \leftarrow \mathrm{SP}-4 \\ & \mathrm{IE} \leftarrow 0 \end{aligned}$					
	RET		1	$\mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PC}+\leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$					
	RETB		1	$\begin{aligned} & \mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PCH} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PSWL} \leftarrow(\mathrm{SP}+2), \mathrm{PSW}+(\mathrm{SP}+3) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$	R	R	R	R	R
	RETI		1	$\begin{aligned} & \mathrm{PCL} \leftarrow(\mathrm{SP}), \mathrm{PCH} \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PSWL} \leftarrow(\mathrm{SP}+2), \mathrm{PSW}+(\mathrm{SP}+3) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$	R	R	R	R	R
	PUSH	sfrp	3	$\begin{aligned} & (\mathrm{SP}-1) \leftarrow \mathrm{sfrH} \\ & (\mathrm{SP}-2) \leftarrow \mathrm{sfrL} \\ & \mathrm{SP} \leftarrow \mathrm{SP}-2 \end{aligned}$					
		post	2	$\begin{aligned} & \{(\mathrm{SP}-1) \leftarrow \text { posth, }(\mathrm{SP}-2) \leftarrow \text { postı }, \mathrm{SP} \leftarrow \mathrm{SP}-2\} \\ & \times \mathrm{n} \text { times }{ }^{\text {Note }} \end{aligned}$					
		PSW	1	$(S P-1) \leftarrow \mathrm{PSW}$ H, $(S P-2) \leftarrow \mathrm{PSW}$ L, $\mathrm{SP} \leftarrow \mathrm{SP}-2$					
	PUSHU	post	2	$\begin{aligned} & \{(\mathrm{UP}-1) \leftarrow \text { posth, }(U P-2) \leftarrow \text { postL, } \mathrm{UP} \leftarrow U P-2\} \\ & \times \mathrm{n} \text { times } \mathrm{Note} \end{aligned}$					
	POP	sfrp	3	$\begin{aligned} & \text { sfrıL } \leftarrow(S P) \\ & \text { sfrH } \leftarrow(S P+1) \\ & S P \leftarrow S P+2 \end{aligned}$					
		post	2	$\begin{aligned} & \{\text { postL } \leftarrow(\mathrm{SP}), \text { posth } \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2\} \\ & \times \mathrm{n} \text { times } \mathrm{Sote} \end{aligned}$					
		PSW	1	PSW L↔(SP), $\mathrm{PSW}+\leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+2$	R	R	R	R	R
	POPU	post	2	$\begin{aligned} & \{\text { postı } \leftarrow(\mathrm{UP}), \text { posth } \leftarrow(\mathrm{UP}+1), \mathrm{UP} \leftarrow \mathrm{UP}+2\} \\ & \times \mathrm{n} \text { times Note } \end{aligned}$					
	MOVW	SP, \#word	4	$\mathrm{SP} \leftarrow$ word					
		SP, AX	2	$\mathrm{SP} \leftarrow \mathrm{AX}$					
		AX, SP	2	$A X \leftarrow S P$					
	INCW	SP	2	$\mathrm{SP} \leftarrow \mathrm{SP}+1$					
	DECW	SP	2	$\mathrm{SP} \leftarrow \mathrm{SP}-1$					
	CHKL	sfr	3	(pin level) \forall (signal level before output buffer)	\times	\times		P	
	CHKLA	sfr	3	$\mathrm{A} \leftarrow$ (pin level) \forall (signal level before output buffer)	\times	\times		P	

Note n indicates the number of registers described as post.

	Mnemonic	Operand	$\stackrel{』}{\underset{\sim}{\infty}}$	Operation	Flags
					S Z AC P/V CY
	BR	!addr16	3	$\mathrm{PC} \leftarrow$ addr16	
		rp1	2	$\mathrm{PCH} \leftarrow \mathrm{rp1} 1 \mathrm{} ,\mathrm{PCL} \leftarrow \mathrm{rp} 1 \mathrm{~L}$	
		[rp1]	2	$\mathrm{PCH} \leftarrow(\mathrm{rp1} 1+1), \mathrm{PCL} \leftarrow(\mathrm{rp1})$	
		\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8	
	BC	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{CY}=1$	
	BL				
	BNC	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{CY}=0$	
	BNL				
	BZ	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{Z}=1$	
	BE				
	BNZ	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{Z}=0$	
	BNE				
	BV	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{P} / \mathrm{V}=1$	
	BPE				
	BNV	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{P} / \mathrm{V}=0$	
	BPO				
	BN	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+$ jdisp8 if $\mathrm{S}=1$	
	BP	\$ addr16	2	$\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{S}=0$	
	BGT	\$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp8}$ if $(\mathrm{P} / \mathrm{V} \forall \mathrm{S}) \vee \mathrm{Z}=0$	
	BGE	\$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp} 8$ if $\mathrm{P} / \mathrm{V} \forall \mathrm{S}=0$	
	BLT	\$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp} 8$ if $\mathrm{P} / \mathrm{V} \forall \mathrm{S}=1$	
	BLE	\$ addr16	3	$P C \leftarrow P C+3+j d i s p 8$ if $(P / V \forall S) \vee Z=1$	
	BH	\$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{Z} \vee \mathrm{CY}=0$	
	BNH	\$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{Z} \vee \mathrm{CY}=1$	
	BT	saddr. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if (saddr.bit)=1	
		sfr. bit, \$ addr16	4	$\mathrm{PC} \leftarrow \mathrm{PC}+4+\mathrm{jdisp} 8$ if sfr.bit=1	
		A. bit, \$ addr 16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{A} . \mathrm{bit}=1$	
		X. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=1$	
		PSWH. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW н. $\mathrm{bit}=1$	
		PSWL. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSWL.bit=1	
	BF	saddr. bit, \$ addr16	4	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if (saddr.bit) $=0$	
		sfr. bit, \$ addr16	4	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ +jdisp8 if sfr.bit=0	
		A. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if A.bit=0	
		X. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if $\mathrm{X} . \mathrm{bit}=0$	
		PSWH. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW H.bit $=0$	
		PSWL. bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSWL.bit=0	

	Mnemonic	Operand	$$	Operation	Flags				
					S	Z	AC	P/V	CY
	BTCLR	saddr.bit, \$ addr16	4	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if $($ saddr.bit) $=1$ then reset (saddr.bit)					
		sfr.bit, \$ addr16	4	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit=1 then reset sfr.bit					
		A.bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+\mathrm{jdisp} 8$ if $\mathrm{A} . \mathrm{bit}=1$ then reset A.bit					
		X.bit, \$ addr16	3	$\begin{aligned} \mathrm{PC} \leftarrow & \mathrm{PC}+3+\text { jdisp8 if } \mathrm{X} . \text { bit=1 } \\ & \text { then reset } \mathrm{X} . \text { bit } \end{aligned}$					
		PSWH.bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW н.bit $=1$ then reset PSWH.bit					
		PSWL.bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW L.bit=1 then reset PSWL.bit	\times	\times	\times	\times	\times
	BFSET	saddr.bit, \$ addr16	4	$\begin{aligned} \mathrm{PC} \leftarrow & \leftarrow \mathrm{PC}+4+\mathrm{jdisp} 8 \text { if }(\text { saddr.bit) }=0 \\ & \text { then set (saddr.bit) } \end{aligned}$					
		sfr.bit, \$ addr16	4	$\mathrm{PC} \leftarrow \mathrm{PC}+4+$ jdisp8 if sfr.bit=0 then set sfr.bit					
		A.bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+j d i s p 8 \text { if } \mathrm{A} . \mathrm{bit}=0$ then set A.bit					
		X.bit, \$ addr16	3	$\begin{aligned} \mathrm{PC} \leftarrow & \leftarrow \mathrm{PC}+3+\text { jdisp8 if } \mathrm{X} . \mathrm{bit}=0 \\ & \text { then set } \mathrm{X} . \text { bit } \end{aligned}$					
		PSWH.bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW . .bit $=0$ then set PSWh.bit					
		PSWL.bit, \$ addr16	3	$\mathrm{PC} \leftarrow \mathrm{PC}+3+$ jdisp8 if PSW L.bit $=0$ then set PSWL.bit	\times	\times	\times	\times	\times
	DBNZ	r2, \$ addr16	2	$\mathrm{r} 2 \leftarrow \mathrm{r} 2-1,$ then $\mathrm{PC} \leftarrow \mathrm{PC}+2+\mathrm{jdisp} 8$ if $\mathrm{r} 2 \neq 0$					
		saddr, \$ addr16	3	$\begin{aligned} & \text { (saddr) } \leftarrow(\text { saddr })-1, \\ & \quad \text { then } \mathrm{PC} \leftarrow \mathrm{PC}+3+\text { jdisp8 if }(\text { saddr }) \neq 0 \end{aligned}$					
	BRKCS	RBn	2	$\begin{aligned} & \mathrm{PC}+\leftrightarrow \mathrm{R} 5, \mathrm{PCL} \leftrightarrow \mathrm{R} 4, \mathrm{R} 7 \leftarrow \mathrm{PSW} \mathrm{C}_{\mathrm{H}}, \\ & \mathrm{R} 6 \leftarrow \mathrm{PSW} \mathrm{~L}, \mathrm{RBS} 2-0 \leftarrow \mathrm{n}, \mathrm{RSS} \leftarrow 0, \mathrm{IE} \leftarrow 0 \end{aligned}$					
	RETCS	!addr16	3	$\begin{aligned} & \mathrm{PC}_{H} \leftarrow \mathrm{R} 5, \mathrm{PC} L \leftarrow \mathrm{R} 4, \mathrm{R} 5, \mathrm{R} 4 \leftarrow \text { addr16, } \\ & \mathrm{PSW}_{H} \leftarrow \mathrm{R} 7, \mathrm{PSW}_{L} \leftarrow \mathrm{R} 6 \end{aligned}$	R	R	R	R	R
	RETCSB	!addr16	4	$\begin{aligned} & \mathrm{PC}_{H} \leftarrow \mathrm{R} 5, \mathrm{PCL} \leftarrow \mathrm{R} 4, \mathrm{R} 5, \mathrm{R} 4 \leftarrow \text { addr16, } \\ & \mathrm{PSW}_{H} \leftarrow \mathrm{R} 7, \mathrm{PSW}_{L} \leftarrow \mathrm{R} 6 \end{aligned}$	R	R	R	R	R

	Mnemonic	Operand	$\underset{\sim}{\infty}$	Operation	Flags				
						Z	AC	P/V	CY
	MOVM	[DE +], A	2	$\begin{aligned} & (\mathrm{DE}+) \leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \end{aligned}$					
		[DE -], A	2	$(\mathrm{DE}-) \leftarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$					
	MOVBK	$[\mathrm{DE}+],[\mathrm{HL}+]$	2	$\begin{aligned} & (\mathrm{DE}+) \leftarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \end{aligned}$					
		[DE -], [HL -]	2	$\begin{aligned} & (\mathrm{DE}-) \leftarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \end{aligned}$					
	XCHM	[DE +], A	2	$\begin{aligned} & (D E+) \leftrightarrow A, C \leftarrow C-1 \\ & \text { End if } C=0 \end{aligned}$					
		[DE -], A	2	$(\mathrm{DE}-) \leftrightarrow \mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$					
	XCHBK	[DE +], [HL +]	2	$(\mathrm{DE}+) \leftrightarrow(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$					
		[DE -], [HL -]	2	$(\mathrm{DE}-) \leftrightarrow(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$					
	CMPME	[DE +], A	2	$\begin{aligned} & (\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=0 \end{aligned}$	\times	\times	\times	V	\times
		[DE -], A	2	$\begin{aligned} & (\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=0 \end{aligned}$	\times	\times	\times	V	\times
	CMPBKE	[DE +], [HL +]	2	$\begin{aligned} & (\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=0 \end{aligned}$	\times	\times	\times	V	\times
		[DE -], [HL -]	2	$\begin{aligned} & (\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=0 \end{aligned}$	\times	\times	\times	V	\times
	CMPMNE	[DE +], A	2	$\begin{aligned} & (\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=1 \end{aligned}$	\times	\times	\times	V	\times
		[DE -], A	2	$\begin{aligned} & (\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=1 \end{aligned}$	\times	\times	\times	V	\times
	CMPBKNE	[DE +], [HL +]	2	$\begin{aligned} & (\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=1 \end{aligned}$	\times	\times	\times	V	\times
		[DE -], [HL -]	2	$\begin{aligned} & (\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{Z}=1 \end{aligned}$	\times	\times	\times	V	\times
	CMPMC	[DE +], A	2	$\begin{aligned} & (\mathrm{DE}+)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{CY}=0 \end{aligned}$	\times	\times	\times	V	\times
		[DE -], A	2	$(\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	\times	\times	\times	V	\times

	Mnemonic	Operand	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	Operation	Flags				
					S	Z	AC	P/V	CY
	CMPBKC	[DE +], [HL +]	2	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	\times	\times	\times	V	\times
		[DE -], [HL -]	2	$(\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=0$	\times	\times	\times	V	\times
	CMPMNC	[DE +], A	2	$\begin{aligned} & (D E+)-A, C \leftarrow C-1 \\ & \text { End if } C=0 \text { or } C Y=1 \end{aligned}$	\times	\times	\times	V	\times
		[DE -], A	2	$\begin{aligned} & (\mathrm{DE}-)-\mathrm{A}, \mathrm{C} \leftarrow \mathrm{C}-1 \\ & \text { End if } \mathrm{C}=0 \text { or } \mathrm{CY}=1 \end{aligned}$	\times	\times	\times	V	\times
	CMPBKNC	$[\mathrm{DE}+\mathrm{]},[\mathrm{HL}+]$	2	$(\mathrm{DE}+)-(\mathrm{HL}+), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	\times	\times	\times	V	\times
		[DE -], [HL -]	2	$(\mathrm{DE}-)-(\mathrm{HL}-), \mathrm{C} \leftarrow \mathrm{C}-1$ End if $\mathrm{C}=0$ or $\mathrm{CY}=1$	\times	\times	\times	V	\times
	MOV	STBC, \#byte	4	STBC \leftarrow byte ${ }^{\text {Note }}$					
		WDM, \#byte	4	WDM \leftarrow byte ${ }^{\text {Note }}$					
	SWRS		1	$\mathrm{RSS} \leftarrow \overline{\mathrm{RSS}}$					
	SEL	RBn	2	RBS2-0 $\leftarrow \mathrm{n}, \mathrm{RSS} \leftarrow 0$					
		RBn, ALT	2	RBS2-0 $\leftarrow \mathrm{n}$, RSS $\leftarrow 1$					
	NOP		1	No Operation					
	El		1	$\mathrm{IE} \leftarrow 1$ (Enable Interrupt)					
	DI		1	IE $\leftarrow 0$ (Disable Interrupt)					

Note If the operation code of STBC register and WDM register manipulation instructions is abnormal, an operation code trap interrupt is generated.

Operation in the event of trap:
$(\mathrm{SP}-1) \leftarrow \mathrm{PSW},(\mathrm{SP}-2) \leftarrow \mathrm{PSW}$,
$(\mathrm{SP}-3) \leftarrow(\mathrm{PC}-4)$ н, $(\mathrm{SP}-4) \leftarrow(\mathrm{PC}-4) \mathrm{L}$,
$\mathrm{PCL} \leftarrow(003 C H), \mathrm{PC}+\leftarrow(003 \mathrm{DH})$,
$\mathrm{SP} \leftarrow \mathrm{SP}-4, \mathrm{IE} \leftarrow 0$

9. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol		Test Conditions	Rating	Unit
Supply voltage	VDD			-0.5 to +7.0	V
	AVdo			-0.5 to $V_{\text {dD }}+0.5$	V
	AVss			-0.5 to +0.5	V
Input voltage	V ,		Note 1	-0.5 to VDD +0.5	V
Output voltage	Vo			-0.5 to VDD +0.5	V
Output current low	lob	All output pins		4.0	mA
		All output pins total		90	mA
Output current high	Іон	All output pins		-1.0	mA
		All output pins total		-20	mA
Analog input voltage	Vian	Note 2	$A V_{D D}>V_{D D}$	-0.5 to VDD +0.5	V
			$V_{D D} \geq A V_{D D}$	-0.5 to AVDD +0.5	
A/D converter reference input voltage	AVref		$A V_{\text {dD }}>\mathrm{V}_{\text {dD }}$	-0.5 to $V_{\text {DD }}+0.3$	V
			$V_{D D} \geq A V_{D D}$	-0.5 to $A V_{\text {dD }}+0.3$	
Operating ambient temperature	$\mathrm{T}_{\text {A }}$			-10 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Notes 1. Except the pin described in Note 2.
2. P70/ANI0 to P77/ANI7 pins.

Caution If the absolute maximum rating of any one of the parameters is exceeded even momentarily, the quality of the product may be degraded. In other words, the product may be physically damaged if any of the absolute maximum ratings is exceeded. Be sure to use the product without exceeding these ratings.

RECOMMENDED OPERATING CONDITION

Oscillation Frequency	T_{A}	$V_{D D}$
$8 \mathrm{MHz} \leq \mathrm{fxx} \leq 16 \mathrm{MHz}$	-10 to $+70^{\circ} \mathrm{C}$	$+5.0 \mathrm{~V} \pm 10 \%$

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Ss}=\mathrm{V} D=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cl_{1}	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .			10	pF
Output capacitance	Co				20	pF
I/O capacitance	Cıo				20	pF

OSCILLATOR CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}$, $\mathrm{VdD}=+5 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Parameter	MIN.	MAX.	Unit
Ceramic resonator or crystal resonator		Oscillation frequency (fxx)	8	16	MHz
External clock		X1 input frequency (fx)	8	16	MHz
		X1 input rise/fall time (txr, txF)	0	20	ns
		X1 input high/low level width (twxh, twxL)	25	80	ns

Caution When using the system clock oscillation circuit, wire the part encircled in the dotted line in the following manner to avoid the influence of the wiring capacity, etc.

- Make the wiring as short as possible.
- Avoid intersecting other signal conductors. Avoid approaching lines in which very high fluctuating currents run.
- Make sure that the grounding point of the oscillation circuit capacitor always has the same electrical potential as Vss. Avoid grounding with a grand pattern in which very high currents run.
- Do not fetch signals from the oscillation circuit.

RECOMMENDED OSCILLATOR CONSTANT

Ceramic Resonator

Manufacturer	Product Name	Frequency[MHz]	Recommended Constant	
			C1 [pF]	C2 [pF]
Murata Mfg. Co., Ltd.	$\begin{aligned} & \text { CSA8.00MT } \\ & \text { CSA12.0MT } \end{aligned}$	$\begin{array}{r} 8.0 \\ 12.0 \end{array}$	30	30
	CSA14.74MXZ040 CSA16.00MX040	$\begin{aligned} & 14.74 \\ & 16.0 \end{aligned}$	15	15
	CST8.00MTW CST12.0MTW CST14.74MXWOC3 CST16.00MXW0C3	$\begin{gathered} 8.0 \\ 12.0 \\ 14.74 \\ 16.0 \end{gathered}$	On-chip	On-chip

Crystal Resonator

Manufacturer	Product Name	Frequency[MHz]	Recommended Constant	
			C1 [pF]	C2 [pF]
Kinseki Co., Ltd.	HC49/U-S	8 to 16	10	10
	HC49/U			

DC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input voltage low	VIL			0		0.8	V
Input voltage high	$\mathrm{V}_{\mathbf{H} 1}$	Note 1		2.2			V
	Vінг	Note 2		0.8Vdo			
Output voltage low	VoL	$\mathrm{loL}=2.0 \mathrm{~mA}$				0.45	V
Output voltage high	Vor	$\mathrm{IOH}=-400 \mu \mathrm{~A}$		VDD - 1.0			V
Input leakage current	ILI	$0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}$				± 10	$\mu \mathrm{A}$
Output leakage current	ILo	$0 \mathrm{~V} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD}}$				± 10	$\mu \mathrm{A}$
VDD supply current	lod1	Operating mode			40	65	mA
	ldo2	HALT mode			20	35	mA
Data retention voltage	Vdddr	STOP mode		2.5			V
Data retention current	Idodr	STOP mode	$\mathrm{V}_{\text {dodr }}=2.5 \mathrm{~V}$		2	10	$\mu \mathrm{A}$
			VDDDR $=5.0 \mathrm{~V} \pm 10$ \%		10	50	$\mu \mathrm{A}$

Notes 1. Except the pin descried in Note 2.
2. $\overline{R E S E T}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{P} 20 / \mathrm{NMI}, \mathrm{P} 21 / I N T P 0, \mathrm{P} 22 / I N T P 1, \mathrm{P} 23 / I N T P 2, \mathrm{P} 24 / I N T P 3, \mathrm{P} 25 / I N T P 4, \mathrm{P} 26 / \mathrm{INTP} 5$, P27/INTP6/TI, P32/SO/SB0, P33/SI/SB1, P34/ $\overline{\text { SCK }}$ pins.
$\star \quad$ AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{VDD}=+5 \mathrm{~V} \pm 10 \%$, V ss $=0 \mathrm{~V}$)
Non-consecutive read/write operation (with general-purpose memory connected)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
System clock cycle time	tcyk		125	250	ns
Address setup time (vs. ASTB \downarrow)	tsast		32		$n s$
Address hold time (vs. ASTB \downarrow)	thsta		32		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from address	tDar		85		ns
Address float time from $\overline{\mathrm{RD}} \downarrow$	tFrA			0	ns
Data input time from address	tDaid			222	$n s$
Data input time from $\overline{\mathrm{RD}} \downarrow$	tDRID			112	ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	tDStR		42		ns
Data hold time (vs. $\overline{\mathrm{RD}} \uparrow$)	thrid		0		ns
Address active time from $\overline{\mathrm{RD}} \uparrow$	tDRA		50		ns
$\overline{\mathrm{RD}}$ low-level width	twrL		157		ns
ASTB high-level width	twsth		37		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from address	tDaw		85		ns
Data output time from ASTB \downarrow	tostod			102	ns
Data output time from $\overline{\mathrm{WR}} \downarrow$	towod			40	ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	tDSTw		42		ns
Data setup time (vs. $\overline{\mathrm{WR}} \uparrow$)	tsodw		147		ns
Data hold time (vs. $\overline{\mathrm{WR}} \uparrow$)	thwod		32		ns
ASTB \uparrow delay time from $\overline{W R} \uparrow$	towst		42		ns
$\overline{\mathrm{WR}}$ low-level width	twwL		157		$n s$

tcyk DEPENDENT BUS TIMING DEFINITION

Parameter	Expression	MIN./MAX.	Unit
tSAST	0.5T-30	MIN.	ns
thsta	0.5T-30	MIN.	ns
tDar	T-40	MIN.	ns
toaid	$(2.5+n) T-90$	MAX.	ns
torid	$(1.5+n) T-75$	MAX.	ns
tostr	0.5T-20	MIN.	ns
tora	0.5T-12	MIN.	ns
twrL	$(1.5+n) T-30$	MIN.	ns
twsth	0.5T-25	MIN.	ns
toaw	T-40	MIN.	ns
tostod	$0.5 T+40$	MAX.	ns
tostw	0.5T-20	MIN.	ns
tsodw	$1.5 \mathrm{~T}-40$	MIN.	ns
thwod	0.5T-30	MIN.	ns
towst	0.5T-20	MIN.	ns
twwL	$(1.5+n) T-30$	MIN.	ns

Remarks 1. $T=$ tcyk $=1 /$ fclk (fclk is an internal system clock frequency)
2. n indicates the number of wait cycles defined by user software.
3. Depends on toyk for the bus timing shown in this table only.

SERIAL OPERATION ($\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions		MIN.	MAX.	Unit
Serial clock cycle time	tcysk	$\overline{\text { SCK }}$ output	Internal division by 8	1		$\mu \mathrm{s}$
		$\overline{\text { SCK }}$ input	External clock	1		$\mu \mathrm{s}$
Serial clock low-level width	twskL	$\overline{\text { SCK output }}$	Internal division by 8	420		ns
		$\overline{\text { SCK }}$ input	External clock	420		ns
Serial clock high-level width	twskн	$\overline{\text { SCK }}$ output	Internal division by 8	420		ns
		$\overline{\text { SCK }}$ input	External clock	420		ns
SI setup time (vs. $\overline{\mathrm{SCK}} \uparrow$)	tsrxsk			80		ns
SI hold time (vs. $\overline{\mathrm{SCK}} \uparrow$)	thskrx			80		ns
SO delay time from $\overline{\text { SCK }} \downarrow$	tosktx	$\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$			210	ns

OTHER OPERATION ($\mathrm{T}_{\mathrm{A}}=-10$ to $+70^{\circ} \mathrm{C}, \mathrm{VdD}=+5 \mathrm{~V} \pm 10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	MAX.	Unit
NMI high/low-level width	twnih, twnil		5		$\mu \mathrm{S}$
INTP0 high/low-level width	twioh, twiol		8T		tcyk
INTP1 high/low-level width	twinh, twill		8T		tcyk
INTP2 high/low-evel width	twi2H, twi2L		8T		tcyk
NTP3 high/low-level width	twi3H, twi3L		8T		tcyk
NTP4 high/low-level width	twi4h, twi4L		8T		tcyk
INTP5 high/low-level width	twish, twisk		8T		tcyk
INTP6 high/low-level width	twi6H, twi6L		8T		tcyk
$\overline{\text { RESET }}$ high/low-level width	twrsh, twrsL		5		$\mu \mathrm{s}$
TI high/low-level width	twtin, twtil	In TM1 event counter mode	8T		tcyk

A/D CONVERTER CHARACTERISTICS ($T_{A}=-10$ to $+70^{\circ} \mathrm{C}$, $\mathrm{VdD}=+5 \mathrm{~V} \pm 10 \%$, Vss =AVss $=0 \mathrm{~V}$,
$\left.V_{D D}-0.5 \mathrm{~V} \leq A V_{D D} \leq V_{D D}\right)$

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Resolution				10			bit
Total error Note 1		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{REF}} \leq \mathrm{AV} \mathrm{DD}$				± 0.4	\%FSR
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq \mathrm{AV}$ dD				± 0.7	\%FSR
Quantization error						$\pm 1 / 2$	LSB
Conversion time	tconv			144			tcyk
Sampling time	tsamp			24			tcyk
Zero scale error Note 1		$4.5 \mathrm{~V} \leq \mathrm{AV}$ REF $\leq \mathrm{AV} \mathrm{VD}$			± 1.5	± 2.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {ref }} \leq \mathrm{AV}$ dD			± 1.5	± 4.5	LSB
Full scale error Note 1		$4.5 \mathrm{~V} \leq \mathrm{AV}$ REF $\leq A V_{\text {dD }}$			± 1.5	± 2.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }} \leq \mathrm{AV} \mathrm{VDD}$			± 1.5	± 4.5	LSB
Non-linear error Note 1		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{REF}} \leq \mathrm{AV} \mathrm{VD}$			± 1.5	± 2.5	LSB
		$3.4 \mathrm{~V} \leq \mathrm{AV}$ ReF $\leq \mathrm{AV}$ dD			± 1.5	± 4.5	LSB
Analog input voltage Note 2	Vian			-0.3		AVDd	V
Reference voltage	$A V_{\text {ref }}$			3.4		AVdo	V
AV $\mathrm{ReF}^{\text {current }}$	Alref				1.0	3.0	mA
AVod supply current	Aldo				2.0	6.0	mA
A/D converter data		ST	$A V_{\text {DDR }}=2.5 \mathrm{~V}$		2.0	10	$\mu \mathrm{A}$
retention current	A	S	$A V_{\text {ddr }}=5 \mathrm{~V} \pm 10 \%$		10	50	$\mu \mathrm{A}$

Notes 1. Quantization error excluded.
2. When $-0.3 \mathrm{~V} \leq \mathrm{V}_{\text {IAN }} \leq 0 \mathrm{~V}$, the conversion result becomes 000 H .

When 0 V < Vian < AVref, the conversion is performed at a resolution of 10 bits.
When $A V_{\text {ref }} \leq V_{\text {IAN }} \leq A V_{D d}$, the conversion result is $3 F F H$.

Non-Consecutive Read Operation

Non-Consecutive Write Operation

(CLK)

Serial Operation

Interrupt Input Timing

INTPn

Remark $\mathrm{n}=0$ to 6

Reset Input Timing

TI Pin Input Timing

10. PACKAGE DRAWINGS

68 PIN PLASTIC OFJ ($\square 950$ mil)

P68L-50A1-2
NOTE
Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	25.2 ± 0.2	0.992 ± 0.008
B	24.20	0.953
C	24.20	0.953
D	25.2 ± 0.2	0.992 ± 0.008
E	1.94 ± 0.15	$0.076_{-0.006}^{+0.007}$
F	0.6	0.024
G	4.4 ± 0.2	$0.173_{-0.008}^{+0.009}$
H	2.8 ± 0.2	$0.110_{-0.008}^{+0.009}$
I	$0.9 \mathrm{MIN}$.	$0.035 \mathrm{MIN}$.
J	3.4	0.134
K	$1.27($ T.P.)	0.050 (T.P.)
M	0.40 ± 1.0	$0.016_{-0.005}^{+0.004}$
N	0.12	0.005
P	23.12 ± 0.20	$0.910_{-0.00}^{+0.009}$
O	0.15	0.006
T	R 0.8	R
U	$0.20_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$

74 PIN PLASTIC QFP ($\square \mathbf{2 0)}$

NOTE

Each lead centerline is located within $0.20 \mathrm{~mm}(0.008 \mathrm{inch})$ of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.2 ± 0.4	$0.913_{-0.017}^{+0.017}$
B	20.0 ± 0.2	$0.787_{-0.008}^{+0.009}$
C	20.0 ± 0.2	$0.787_{-0.008}^{+0.009}$
D	23.2 ± 0.4	$0.913_{-0.017}^{+0.017}$
F1	2.0	0.079
F_{2}	1.0	0.039
G_{1}	2.0	0.079
G2	1.0	0.039
H	0.40 ± 0.10	$0.016_{-0.005}^{+0.004}$
I	0.20	0.008
J	1.0 (T.P.)	0.039 (T.P.)
K	1.6 ± 0.2	0.063 ± 0.008
L	0.8 ± 0.2	$0.031_{-0.009}^{+0.009}$
M	0.15 ${ }_{-0.05}^{+0.10}$	$0^{0.006}+0.004$
N	0.10	0.004
P	3.7	0.146
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	4.0 MAX.	0.158 MAX .
S74GJ-100-5BJ-3		

80 PIN PLASTIC QFP (14×20)

NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	23.6 ± 0.4	0.929 ± 0.016
B	20.0 ± 0.2	$0.795_{-0.008}^{+0.009}$
C	14.0 ± 0.2	$0.551_{-0.008}^{+0.009}$
D	17.6 ± 0.4	0.693 ± 0.016
F	1.0	0.039
G	0.8	0.031
H	0.35 ± 0.10	$0.014_{-0.005}^{+0.004}$
I	0.15	0.006
J	$0.8($ T.P. $)$	0.031 (T.P.)
K	1.8 ± 0.2	$0.071_{-0.009}^{+0.008}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.003}^{+0.004}$
N	0.10	0.004
P	2.7	0.106
Q	0.1 ± 0.1	0.004 ± 0.004
R	$5^{\circ} \pm 5^{\circ}$	$5^{\circ} \pm 5^{\circ}$
S	3.0 MAX.	0.119 MAX.
		P80GF-80-3B9-3

11. RECOMMENDED SOLDERING CONDITIONS

The μ PD78322 should be soldered and mounted under the conditions recommended in the table below.
For detail of recommended soldering conditions, refer to the information document "Semiconductor Device Mounting Technology Manual" (IE-1207).

For soldering methods and conditions other than those recommended below, contact our salesman.

Table 11-1. Soldering Conditions for Surface Mount Type
$\star \quad \mu$ PD78320GF-3B9 : 80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
$\star \quad \mu$ PD78322GF- $x \times x-3 B 9$: 80-pin plastic QFP $(14 \times 20 \mathrm{~mm})$
$\star \quad \mu$ PD78320GJ-5BJ : 74-pin plastic QFP $(20 \times 20 \mathrm{~mm})$
$\star \quad \mu$ PD78322GJ- $\times \times \times-5$ BJ : 74-pin plastic QFP $(20 \times 20 \mathrm{~mm})$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 sec . max. (at $210^{\circ} \mathrm{C}$ or above), Number of times: twice or less <Caution> (1) The second reflow should be started after the temperature of the device which would have been changed by the first reflow has returned to normal. (2) Please avoid flux water washing after the first reflow.	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 sec . max. (at $200^{\circ} \mathrm{C}$ or above), Number of times: twice or less <Caution> (1) The second reflow should be started after the temperature of the device which would have been changed by the first reflow has returned to normal. (2) Please avoid flux water washing after the first reflow.	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max. Time: 10 sec. max., Number of times: Once Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Pin part heating	Pin temperature: $300{ }^{\circ} \mathrm{C}$ max. Time: 3 sec . max. (Per device side)	\square

$\begin{array}{ll}\mu \text { PD78320L } & : \text { 68-pin plastic QFJ (} \square 950 \mathrm{mil} \text {) } \\ \mu \text { PD78322L- } \times \times x & : \\ \text { 68-pin plastic QFJ (} \square 950 \mathrm{mil} \text {) }\end{array}$

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $230{ }^{\circ} \mathrm{C}$, Time: 30 sec. max. (at $210{ }^{\circ} \mathrm{C}$ or above), Number of times: Once	IR30-00-1
VPS	Package peak temperature: $215{ }^{\circ} \mathrm{C}$, Time: 40 sec. max. (at $200{ }^{\circ} \mathrm{C}$ or above), Number of times: Once	$\mathrm{VP} 15-00-1$
Pin part heating	Pin part temperature: $300^{\circ} \mathrm{C}$ max. Time: 3 sec. max. (Per device side)	-

Caution Use more than one soldering method should be avoided (except in the case of pin part heating).

APPENDIX A. LIST OF 78K/III SERIES PRODUCTS (1/2)

		μ PD78322	μ PD78320	μ PD78312 ${ }^{\text {Note }}$	μ PD78310 ${ }^{\text {Note }}$	μ PD78312A	μ PD78310A		
Basic instruction		111		96					
Minimum instruction execution time		250 ns (at 16 MHz operation)		500 ns (at 12 MHz operation)					
Internal memory	ROM	16384×8 bits	-	8192×8 bits	-	8192×8 bits	-		
	RAM	640×8 bits		256×8 bits					
Memory space		64K bytes							
I/O lines	Input	16 (including 8 analog inputs)		12 (including 4 analog inputs)					
	Output	-		1					
	I/O	39	21	40	24	40	24		
Pulse unit		Real-time pulse unit -18-/16-bit free running timer $\times 1$ -16-bit timer/event counter $\times 1$ -16-bit compare register $\times 6$ - 18 -bit capture register $\times 4$ - 18 -bit capture/compare register $\times 2$ - Real-time output port $\times 8$		Multi-function pulse I/O unit - 16 -bit presettable up/down-counter $\times 2$ - 16 -bit free running counter capture function $\times 2$ - 16 -bit interval time $\times 2$ - High-precision PWM output $\times 2$ - Real-time output port : 4 bits $\times 2$					
		Count unit mode 4 (4-multiplication mode) function not available	Count unit mode 4 (4-multiplication mode) function available						
		Count start function by interval time external trigger not available	Count start function by interval timer external trigger available						
Serial communication interface				- Dedicated on-chip baud rate generator - UART ... 1 channel $\left.\begin{array}{l}\text { - SBI } \\ \text { - } 3 \text {-wire serial I/O }\end{array}\right\}$... 1 channel		- 8 bits (full-duplex transmission/reception) - Dedicated on-chip baud rete generator - 2 transfer modes (asynchronous mode, I/O interface mode)			
A/D converter				Eight 10-bit resolution inputs		Four 8-bit resolution inputs			
Interrupt		- 8 external, 14 internal (shared with external : 2) -3-level programmable priority		- 4 external, 13 internal - 8 -level programmable priority					
		- 3 processing modes (vectored interrupt, context switching and macro service functions)							

Note Maintenance product

LIST OF 78K/III SERIES PRODUCTS (2/2)

	μ PD78322	μ PD78320	μ PD78312 ${ }^{\text {Note }}$	μ PD78310 ${ }^{\text {Note }}$	μ PD78312A	μ PD78310A
Test source	Internal : 1		-			
Instruction set	Instructions for μ PD78312 and 78310 significantly added.				Following instructions added for μ PD78312 and 78310 - MOVW rp1, !addr16 instruction - MOVW !addr16, rp1 instruction	
Pulse unit	- On-chip watchdog timer - Standby function (STOP/HALT)					
			- 20-bit time base counter - Pseudo static RAM refresh function			
Package	-68-pin plastic QFJ ($\square 950$ mil) -74-pin plastic QFP $(20 \times 20 \mathrm{~mm})$ - 80 -pin plastic QFP $(14 \times 20 \mathrm{~mm})$		- 64-pin plastic shrink DIP (750 mil) -64-pin plastic QFP $(14 \times 20 \mathrm{~mm})$ -64-pin plastic QUIP -68-pin plastic QFJ ($\square 950$ mil)			

Note Maintenance product

APPENDIX B. TOOLS

B. 1 DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78322.

Language Processor

$78 \mathrm{~K} / \mathrm{III}$ series relocatable assembler (RA78K/III)	Refers to the relocatable assembler which can be used commonly for the $78 \mathrm{~K} / \mathrm{III}$ series. Equipped with the macro function, the relocatable assembler is aimed at improved development efficiency. The assembler is also accompanied by the structured assembler which can describe the program control structure explicitly, thus making it possible to improve the productivity and the maintainability of the program.			
	Host machine			Part number
		OS	Supply medium	
	PC-9800 series	MS-DOS ${ }^{\text {TM }}$	3.5-inch 2HD	μ S5A13RA78K3
			5-inch 2HD	μ S5A10RA78K3
	IBM PC/AT ${ }^{\text {TM }}$ and its compatible machine	PC DOS ${ }^{\text {™ }}$	3.5-inch 2HC	μ S7B13RA78K3
			5-inch 2HC	μ S7B10RA78K3
	$\begin{aligned} & \text { HP9000 series } \\ & \text { 700™ } \end{aligned}$	HP-UX ${ }^{\text {™ }}$	DAT	μ S3P16RA78K3
	SPARCstation ${ }^{\text {TM }}$	SunOS ${ }^{\text {TM }}$	Cartridge tape (QIC-24)	μ S3K15RA78K3
	NEWS ${ }^{\text {TM }}$	NEWS-OS ${ }^{\text {TM }}$		μ S3R15RA78K3
78K/III series C compiler (CC78K/III)	Refers to the C compiler which can be commonly used in the $78 \mathrm{~K} / \mathrm{III}$ series. This compiler is a program converting the programs written in the C language to those object codes which are executable by microcontrollers. When using this compiler, the $78 \mathrm{~K} / \mathrm{III}$ series relocatable assembler (RA78K/III) is required.			
	Host machine			Part number
		OS	Supply medium	
	PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13CC78K3
			5-inch 2HD	μ S5A10CC78K3
	IBM PC/AT and its compatible machine	PC DOS	3.5-inch 2HC	μ S7B13CC78K3
			5-inch 2HC	μ S7B10CC78K3
	HP9000 series 700	HP-UX	DAT	μ S3P16CC78K3
	SPARCstation	SunOS	Cartridge tape (QIC-24)	μ S3K15CC78K3
	NEWS	NEWS-OS		μ S3R15CC78K3

Remark Relocatable assembler and C compiler operations are assured only on the host machine and the OS above.

PROM Writing Tools

Hardware	PG-1500	This PROM programmer allows programming, in stand-alone mode or via operation from a host computer, of a single-chip microcontroller with on-chip PROM by connection of the board provided and a separately available programmer adapter. It can program typical 256 K -bit to 4 M -bit PROMs.			
	UNISITE 2900	PROM programmer made by Data I/O Japan Corporation.			
	PA-78P322GF PA-78P322GJ PA-78P322K PA-78P322KC PA-78P322KD PA-78P322L	PROM programmer adapters for writing programs to the $\mu \mathrm{PD} 78 \mathrm{P} 322$ with a general PROM programmer such as the PG-1500. PA-78P322GF ... For μ PD78P322GF PA-78P322GJ ... For μ PD78P322GJ PA-78P322K ... For μ PD78P322K PA-78P322KC ... For μ PD78P322KC PA-78P322KD ... For μ PD78P322KD PA-78P322L ... For μ PD78P322L			
Software	PG-1500 controller	Connects PG-1500 and host machine via a serial and parallel interface, and controls the PG-1500 on the host machine.			
		Host Machine	OS	Supply medium	Part number
		PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13PG1500
				5 -inch 2HD	μ S5A10PG1500
		IBM PC/AT and its compatible machine	PC DOS	3.5-inch 2HC	μ S7B13PG1500
				5-inch 2HC	μ S7B10PG1500

Remark Operation of the PG-1500 controller is guaranteed only on the host machines and operating systems quoted above.

Debugging Tools

Hardware	IE-78327-R IE-78320-R ${ }^{\text {Note }}$	These are the in-circuit emulators which can be used for the development and debugging of application systems. Debugging is performed by connecting them to a host machine. The IE-78327-R can be used commonly for both the μ PD78322 subseries and the μ PD78328 subseries. The IE-78320-R can be used for the μ PD78322 subseries.			
	$\begin{aligned} & \text { EP-78320GF-R } \\ & \text { EP-78320GJ-R } \\ & \text { EP-78320L-R } \end{aligned}$	These are the emulation probes for connecting the IE-78327-R or IE-78320-R to a target system. EP-78320GF-R: for 80-pin plastic QFP EP-78320GJ-R: for 74-pin plastic QFP EP-78320L-R: for 68-pin plastic QFJ			
	IE-78327-R control program	This program is for controlling the IE-78327-R from a host machine. It can execute commands automatically, thus enabling more efficient debugging.			
		Host machine	OS	Supply medium	Part number
				3.5-inch 2HD	μ S5A13IE78327
				5-inch 2HD	μ S5A10IE78327
		IBM PC/AT and its		3.5-inch 2HC	μ S7B13IE78327
		compatible machine		5-inch 2HC	μ S7B10IE78327
Software	IE-78320-R control program ${ }^{\text {Note }}$	This program is for controlling the IE-78320-R from a host machine. It can execute commands automatically, thus enabling more efficient debugging.			
		Host machine	OS	Supply medium	Part number
		PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13IE78320
				5-inch 2HD	μ S5A10IE78320
		IBM PC/AT and its compatible machine	PC DOS	5-inch 2HC	μ S7B10IE78320

Remarks 1. The operation of each software is assured only on the host machine and the OS above.
2. μ PD78322 subseries: μ PD78320, 78322, 78P322, 78323, 78324, 78P324, 78320(A), 78320(A1), 78320(A2), 78322(A), 78322(A1), 78322(A2), 78323(A), 78323(A1), 78323(A2), 78324(A), 78324(A1), 78324(A2), 78P324(A), 78P324(A1), 78P324(A2)
μ PD78328 subseries: μ PD78327, 78328, 78P328, 78327(A), 78328(A)
Note The existing product IE-78320-R is a maintenance product. If you are going to newly purchase an in-circuit emulator, please use the alternative product IE-78327-R.

Note The socket is supplied with the emulation probe.

Remark It is also possible to use the host machine and the PG-1500 by connecting them directly by the RS-232C.
Renk

B. 2 EVALUATION TOOLS

To evaluate the functions of the μ PD78322, the following tools are made available.

Part Number	Host Machine	Function
EB-78320-98	PC-9800 series	By connecting to a host machine, it is possible to evaluate the functions equipped by the μ PD78322 in a simple manner. The command system of this product basically conforms to that of IE-78327-R and IE-78320-R. Therefore, it is easy to move to the development work of application systems by IE-78327-R or IE- $78320-R . ~ I n ~ a d d i t i o n ~ a ~ t u r b o ~ a c c e s s ~ m a n a g e r ~$ $(\mu$ PD71P301) Note can be mounted on the board.
EB-78320-PC	IBM PC/AT or its compatible machine	

Note The turbo access manager (μ PD71P301) is a maintenance product.

Cautions 1. This product is not a development tool of μ PD78322 application systems.
2. This product is not equipped with the emulation function for executing the ROM incorporated in the μ PD78322.

B. 3 EMBEDDED SOFTWARE

The following embedded software programs are available to perform program development and maintenance more efficiently.

Eeal-time OS

Real-time OS (RX78K/III)	The RX78K/III is designed to provide a multi-task environment in the field of control application where real-time operation is required. By using this real-time OS, the performance of the whole system can be improved by allocating CPU's idle time to other processings. The RX78K/III provides the system call based on the μ ITRON specifications. The RX78K/III package provides tools (configurators) for creating RX78K/III's nucleus and multiple information table.			
	Host machine			Part number
		OS	Supply medium	
	PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13RX78320
			5-inch 2HD	μ S5A10RX78320
	IBM PC/AT and its compatible machine	PC DOS	3.5-inch 2 HC	$\mu \mathrm{S7B13RX78320}$
			5-inch 2HC	$\mu \mathrm{S7B10RX} 78320$

Caution To purchase the operating system above, you need to fill in a purchase application form beforehand and sign a contract allowing you to use the software.
 Remark When using the real-time OS RX78K/III, you need the assembler package RA78K/III (optional) as well.

Fuzzy Inference Development Support System

Fuzzy knowledge data creation tools (FE9000, FE9200)	This program supports inputting/editing/evaluating (through simulation) of the fuzzy knowledge data (fuzzy rules and membership functions).				
	Host machine	OS		Supply medium	Part number
	PC-9800 series	MS-DOS		3.5-inch 2HD	μ S5A13FE9000
				5-inch 2HD	μ S5A10FE9000
	IBM PC/AT and its compatible machine	PC DOS	Winsows ${ }^{\text {TM }}$	3.5-inch 2HC	μ S7B13FE9200
				5-inch 2HC	μ S7B10FE9200
Translator (FT78K3) ${ }^{\text {Note }}$	This program converts the fuzzy knowledge data obtained with fuzzy knowledge data creation tools to an assembler source program for RA78K/III.				
	Host machine				Part number
			S	Supply medium	
	PC-9800 series	MS-DOS		3.5-inch 2HD	μ S5A13FT78K3
				5-inch 2HD	μ S5A10FT78K3
	IBM PC/AT and its compatible machine	PC DOS		3.5-inch 2HC	μ S7B13FT78K3
				5-inch 2HC	μ S7B10FT78K3
Fuzzy inference module (FI78K/III) Note	This program executes fuzzy inference. Fuzzy inference is executed by being linked to the fuzzy knowledge data converted by the translator.				
	Host machine				Part number
			S	Supply medium	
	PC-9800 series	MS-DOS		3.5-inch 2HD	μ S5A13FI78K3
				5-inch 2HD	μ S5A10FI78K3
	IBM PC/AT and its compatible machine	PC DOS		3.5-inch 2HC	μ S7B13F178K3
				5-inch 2HC	μ S7B10FI78K3
Fuzzy inference debugger (FD78K/III)	This is a support software program for evaluating and adjusting the fuzzy knowledge data at a hardware level by using the in-circuit emulator.				
	Host machine				Part number
			S	Supply medium	
	PC-9800 series	MS-DOS		3.5-inch 2HD	μ S5A13FD78K3
				5-inch 2HD	μ S5A10FD78K3
	IBM PC/AT and its compatible machine	PC DOS		3.5-inch 2HC	μ S7B13FD78K3
				5-inch 2HC	μ S7B10FD78K3

Note Under development

NOTES FOR CMOS DEVICES

①) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I / O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

For this product, the following User's Manual is available as a separate volume. Please refer to it in conjunction with manual.

- $\quad \mu$ PD78322 User's Manual : IEU1248

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

$$
\begin{array}{ll}
\text { License not needed } & : \mu \text { PD78320 } \\
\text { The customer must judge the need for license : } \mu \text { PD78322 }
\end{array}
$$

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

> MS-DOS and Windows are trademarks of Microsoft Corporation.
> PC/AT and PC DOS are trademarks of IBM Corporation.
> HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
> SPARCstation is a trademark of SPARC International, Inc.
> SunOS is a trademark of Sun Microsystems, Inc.
> NEWS and NEWS-OS are trademark of Sony Corporation.
> TRON is an abbreviation of The Realtime Operating system Nucleus.
> ITRON is an abbreviation of Industrial TRON.

