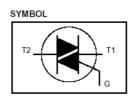
Description:

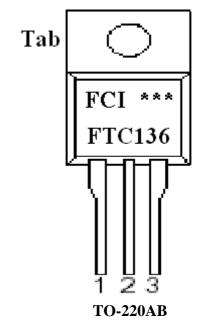
Passivated triacs in a Plastic envelop, intended for

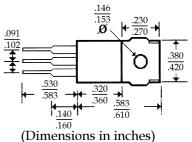
use in applications requiring high bidirectional transient and blocking voltage capability and

high thermal cycling performance. Typical

applications imclude motor control, industrial and


domestic lighting, heating and static switching


FTC131


VDRM 600V I T(RMS) **4A** ITSM 25A

PIN	DESCRIPTION			
1	main terminal 1			
2	main terminal 2			
3	gate			
tab	main terminal 2			

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DRM}	Repetitive peak off-state voltages		-	600¹	٧
T(RIVIS) TSM	RMS on-state current Non-repetitive peak on-state current	full sine wave; T _{mb} ≤ 107 °C full sine wave; T _l = 25 °C prior to surge	-	4	А
		t = 20 ms	-	25	Ą
l²t dl₁/dt	I ² t for fusing Repetitive rate of rise of on-state current after	t = 16.7 ms t = 10 ms l _m = 6 A; l _c = 0.2 A; dl _c /dt = 0.2 A/us	-	27 3.1	A A A ² s
	triggering	T2+ G+ T2+ G- T2- G-	-	50 50 50	A/μs A/μs A/μs
l.	Dook mate comment	Ť2- Ğ+	-	10	A/µs
I _{GM} V _{GM} P _{GM} P _{G(AM)}	Peak gate current Peak gate voltage Peak gate power		-	5 5	V W
P _{G(AM)} T _{stg} T _j	Average gate power Storage temperature Operating junction temperature	over any 20 ms period	-40 -	0.5 150 125	ôcô

¹ Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 3 $A/\mu s$.

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{ft j-rib} R _{ft j-si}		full cycle half cycle in free air	1.1.1	- 60	3.0 3.7 -	KW KW KW

STATIC CHARACTERISTICS

T_i = 25 °C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	M.A	UNIT	
I _{GT}	Gate trigger current	$V_D = 12 \text{ V}; I_T = 0.1 \text{ A} $ $T2+ \text{ G}+$	1	50 63	 35	F 25	mA
 	Latching current	T2+ G- T2- G- T2- G+ V _D = 12 V; I _{GT} = 0.1 A	-	8 11 30	35 35 35 70	25 25 25 70	mA mA mA
1	Editing carron	T2+ G+ T2+ G- T2- G-	-	7 16 5	20 30 20 30	20 30 20 30	mA mA mA
I _H	Holding current	$V_D = 12 \text{ V}; I_{GT} = 0.1 \text{ A}$	-	5	30 15	30 15	mA mA
V _T V _{GT}	On-state voltage Gate trigger voltage	$I_T = 5 \text{ A}$ $V_D = 12 \text{ V}; I_T = 0.1 \text{ A}$ $V_D = 400 \text{ V}; I_T = 0.1 \text{ A};$	0.25	1.4 0.7 0.4	1.7 1	V V V	
In	Off-state leakage current	$T_{j} = 125 \text{ °C}$ $V_{D} = V_{DRIMDAXj}$, $T_{j} = 125 \text{ °C}$	-	0.1	0	mA	

DYNAMIC CHARACTERISTICS

T_I = 25 'C unless otherwise stated

SYMBOL	PARAMETER	CONDITIONS	MIN.		TYP.	MAX.	UNIT
dV _D /dt	Critical rate of rise of off-state voltage	BT136- V _{DM} = 67% V _{DRM(max)} ; T ₁ = 125 °C; exponential	100	F 50	250	1	V/μs
dV _{com} /dt	Critical rate of change of commutating voltage	waveform; gate open circuit V _{DM} = 400 V; T _j = 95 °C; I _{T,RMS} = 4 A; di _{con} dt = 1.8 A/ms; gate	-	-	50	-	V/µs
t _{gt}	Gate controlled turn-on time	open circuit I _{TM} = 6 A; V _D = V _{DRM(max)} ; I _G = 0.1 A; dl ₀ /dt = 5 A/µs	-	-	2	1	μS

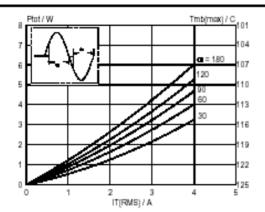


Fig.1. Maximum on-state dissipation, P_{10} , versus rms on-state current, $I_{7|RMS|}$, where α = conduction angle.

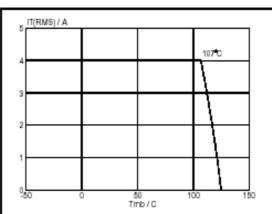


Fig. 4. Maximum permissible rms current I_{τ(FMS)} , versus mounting base temperature T_{mb}.

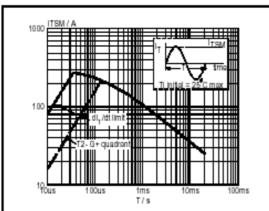


Fig.2. Maximum permissible non-repetitive peak on-state current I_{15M}, versus pulse width t_p for sinusoidal currents, t_p ≤ 20ms.

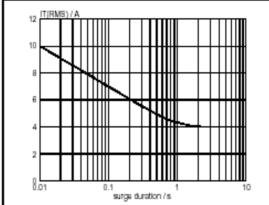


Fig.5. Maximum permissible repetitive rms on-state current I_{TRMS}, versus surge duration, for sinusoidal currents, f = 50 Hz; T_{mb} ≤ 107°C.

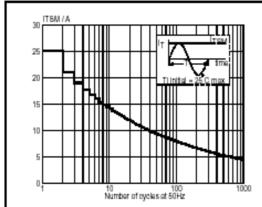
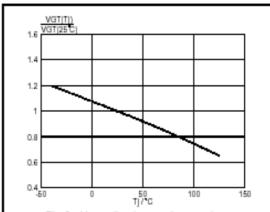
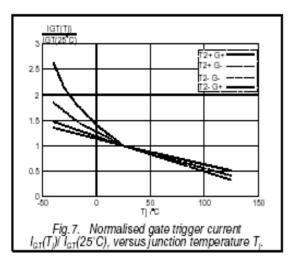
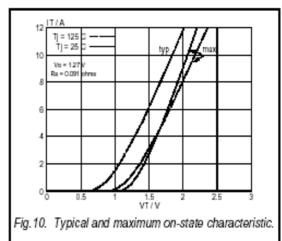
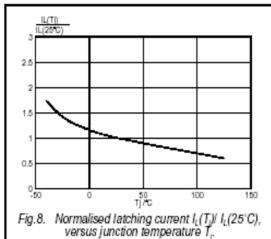
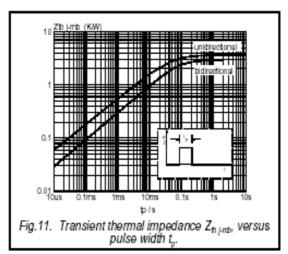
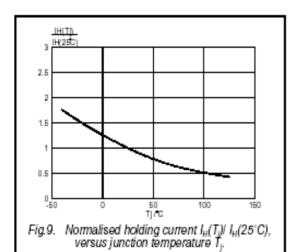


Fig. 3. Maximum permissible non-repetitive peak on-state current I_{TSM}, versus number of cycles, for sinusoidal currents, f = 50 Hz.


Fig.6. Normalised gate trigger voltage $V_{cr}(T_j)/V_{cr}(25^{\circ}C)$, versus junction temperature T_j .

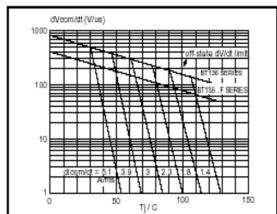


Fig.12. Typical commutation dVldt versus junction temperature, parameter commutation dl₁ldt. The triac should commutate when the dVldt is below the value on the appropriate curve for pre-commutation dl₁ldt.