New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

BLW89

U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor suitable for transmitting applications in class-A, B or C in the u.h.f. and v.h.f. range for a nominal supply voltage of 28 V. The transistor is resistance stabilized and is guaranteed to withstand infinite VSWR at rated output power. High reliability is ensured by a gold sandwich metallization.

The transistor is housed in a $\frac{1}{2}$ " capstan envelope with a ceramic cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

R.F. performance up to T_h = 25 o C in an unneutralized common-emitter class-B circuit

mode of operation	V _{CE}	f	PL	G _p	η
	V	MHz	W	dB	%
c.w.	28	470	2	> 12	> 50

MECHANICAL DATA

Dimensions in mm

Torque on nut: min. 0,75 Nm (7,5 kg cm) max. 0,85 Nm Diameter of clearance hole in heatsink: max. 4,2 mm. Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

(8,5 kg cm)

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

V Quality Semi-Conductors
Downloaded from: http://www.datasheetcatalog.com/

BLW89

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage				
(peak value); V _{BE} = 0	VCESM	max.	60	٧
open base	VCEO	max.	30	٧
Emitter-base voltage (open collector)	$V_{\sf EBO}$	max.	4	٧
Collector current				
d.c. or average	Ic; Ic(AV)	max.	0,32	Α
(peak value); f > 1 MHz	^I CM	max.	1,0	Α
Total power dissipation (d.c. and r.f.) up to $T_{mb} = 50 ^{\circ}\text{C}$	P _{tot}	max.	9,6	W
Storage temperature	T_{stg}	–65 to ⋅	+ 150	оС
Operating junction temperature	Τį	max.	200	oC

Fig. 2 D.C. SOAR.

Fig. 3 Power derating curve vs. temperature.

THERMAL RESISTANCE (dissipation = 3,5 W; T_{mb} = 72 °C, i.e. T_h = 70 °C)

From junction to mounting base (d.c. and r.f. dissipation)

R_{th j-mb} = 13,0 K/W R_{th mb-h} = 0,6 K/W

From mounting base to heatsink

CHARACTERISTICS

$T_j = 25 ^{\circ}\text{C}$			
Collector-emitter breakdown voltage VBE = 0; IC = 2 mA	V _{(BR)CES}	>	60 V
Collector-emitter breakdown voltage open base; I _C = 10 mA	V(BR)CEO	>	30 V
Emitter-base breakdown voltage open collector; I _E = 1 mA	V(BR)EBO	>	4 V
Collector cut-off current V _{BE} = 0; V _{CE} = 30 V	ICES	<	1 mA
Second breakdown energy; L = 25 mH; f = 50 Hz open base R_{BE} = 10 Ω	E _{SBO} ESBR	> >	0,5 mJ 0,5 mJ
D.C. current gain * I _C = 0,15 A; V _{CE} = 5 V	hFE	typ. 10	40 to 100
Collector-emitter saturation voltage * $I_C = 0.5 \text{ A}$; $I_B = 0.1 \text{ A}$	V CEsat	typ.	0,9 V
Transition frequency at f = 500 MHz * -IE = 0,15 A; V _{CB} = 28 V -IE = 0,50 A; V _{CB} = 28 V	f _T f _T	typ. typ.	1,20 GHz 0,85 GHz
Collector capacitance at f = 1 MHz IE = Ie = 0; VCB = 28 V	C _c	typ.	5,5 pF
Feedback capacitance at $f = 1 \text{ MHz}$ $I_C = 10 \text{ mA}$; $V_{CE} = 28 \text{ V}$	c _{re}	typ.	2 pF
Collector-stud capacitance	C _{cs}	typ.	1,2 pF