SEIKO NPC CORPORATION -1

NPC

SM6661A Post-amplifier for Gyroscope

OVERVIEW

The SM6661A is a post-amplifier for use in combination with gyroscope ICs. The SM6661A has a built-in 2-system post-amplifier, so that it can amplify two output signals of gyroscope IC with a single SM6661A. It features a simple method to change the different image stabilizing gain and frequency characteristics depending on the models. It also has a built-in sleep function making it easy to connect the output signal of gyroscope IC to A/D converter.

FEATURES

- Supply voltage range: 3.0 to 3.6V
- Operating ambient temperature range: -20 to +80°C
- 2-system input and output (reverse phase output)
- Corresponds to 2-axis of gyroscope output
- Adjustable output gain and frequency characteristics by external components
- Output gain: 30 to 50dB

(variable amplification control)

- Zero-rate voltage compensation function for simple interface to A/D converter connected to subsequent stage
- Sleep function built-in
- Small package: 16-pin QFN

APPLICATIONS

- DVC
- DSC

ORDERING INFORMATION

Device	Package
SM6661AB	16-pin QFN

PINOUT

(Top view)

PACKAGE DIMENSIONS

(Unit: mm) Weight: 9mg

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	I/O ^{*1}	Type ^{*2}	Description
1	HPF1	0	А	30dB amplifier output pin 1
2	VCC	-	-	Supply pin
3	VREF_IN1	I	А	Gyroscope IC reference voltage input pin 1
4	VSIG_IN1	I	A	Gyroscope IC signal input pin 1
5	GND	-	-	Ground pin
6	VCC/2	0	A	Reference voltage pin Note. Connect smoothing capacitors.
7	VREF_IN2	I	A	Gyroscope IC reference voltage input pin 2
8	VSIG_IN2	I	A	Gyroscope IC signal input pin 2
9	GND	-	-	Ground pin
10	HPF2	0	A	30dB amplifier output pin 2
11	GAIN2	I	A	Variable gain amplifier input pin 2
12	VSIG_OUT2	0	A	Signal output pin 2
13	VCC	-	-	Supply pin
14	SLEEP	lp	D	Sleep mode control pin with built-in pull-up resistor HIGH: sleep mode, LOW: normal operation
15	VSIG_OUT1	0	А	Signal output pin 1
16	GAIN1	I	А	Variable gain amplifier input pin 1

*1. I: input, lp: input with built-in pull-up resistor, O: output *2. A: analog, D: digital

PIN EQUIVALENT CIRCUITS

Number	Name	I/O ^{*1}	Equivalent circuit
3	VREF_IN1	Ι	VSIG_IN1
4	VSIG_IN1		VSIG_IN2
7	VREF_IN2		VREF_IN1
8	VSIG_IN2		VREF_IN2
1	HPF1	0	HPF1
10	HPF2		HPF2
12	VSIG_OUT2	Ο	VSIG_OUT1
15	VSIG_OUT1		VSIG_OUT2
11 16	GAIN2 GAIN1		GAIN1 GAIN2 ■ ₩ ₩ ₩ ₩ ₩ ₩

SM6661A

Number	Name	I/O ^{*1}	Equivalent circuit
6	VCC/2	0	
14	SLEEP	lp	SLEEP \blacksquare

*1. I: input, Ip: input with built-in pull-up resistor, O: output

Note. Resistance values indicate design values.

SPECIFICATIONS

Absolute Maximum Ratings

GND = 0V

Parameter	Pin	Symbol	Rating	Unit
Supply voltage	VCC	V _{CC}	5.0	V
Input voltage	VREF_IN1, VREF_IN2, VSIG_IN1, VSIG_IN2, HPF1, HPF2, GAIN1, GAIN2, SLEEP	V _{IN}	V _{CC} + 0.3 to GND – 0.3	V
Storage temperature range		T _{STG}	- 40 to +125	°C
Power dissipation ^{*1}		PD	0.7	W
Junction temperature		T _{JMAX}	+125	°C

*1. When mounted on a NPC's standard board (76.2mm × 114.3mm, 1.6mm thickness, FR-4 glass-epoxy board).

Thermal resistance $\theta ja = 64^{\circ}C/W$

Recommended Operating Conditions

GND = 0V

Deremeter	Din	Symbol		Unit		
		Symbol	min	typ	max	Unit
Supply voltage	VCC	V _{CC}	3.0	3.3	3.6	V
SLEEP pin applied voltage	SLEEP	V _{SLEEP}	0	-	V _{CC}	V
Operating ambient temperature		Та	-20	25	80	°C
Reference input voltage	VREF_IN1, VREF_IN2, VSIG_IN1, VSIG_IN2	V _{REF_IN}	1.25	1.35	2.10	V
Signal input amplitude ^{*1}	VSIG_IN1, VSIG_IN2	V _{SIG_IN_AC}	-	-	47	mVpp
Output gain variable range	VSIG_OUT1, VSIG_OUT2	G _{RANGE}	30	-	50	dB
Variable gain amplifier feedback resistance		R ₂	27	_	330	kΩ
Output load resistance	VSIG_OUT1, VSIG_OUT2	RL	50	-	-	kΩ

*1. When V_{CC} = 3.0V, 30dB output gain setting

Electrical Characteristics

DC Characteristics

 V_{CC} = 3.3V, GND = 0V, Ta = 25°C, circuit constant is same as "TYPICAL APPLICATION CIRCUIT", unless otherwise noted.

Parameter	Symbol	Condition	Rating			Unit
Falanielei	Symbol	Condition	min	typ	max	Unit
		SLEEP = LOW, V _{CC} = 3.3V	-	5.5	7.5	mA
	SLEEP = LOW, V _{CC} = 3.6V		-	7.0	9.0	mA
Current consumption 2	I _{CC2}	SLEEP = HIGH (sleep mode)	-	-	1.0	μA
High-level input voltage	V _{IH}	SLEEP pin, V _{CC} = 3.0 to 3.6V,	2.0	-	-	V
Low-level input voltage	V _{IL}	$Ta = -20 \text{ to } +80^{\circ}\text{C}$	-	-	0.8	V
High-level input leakage current*1	I _{LH}	SLEEP pin, 3.3V input voltage	-	-	± 1.0	μA
Low-level input current*1	ILL	SLEEP pin, 0.0V input voltage	-38	-33	-28	μA
Input current (SLEEP = HIGH) ^{*1}	I _{LEAK}	VSIG_IN1, VSIG_IN2, VREF_IN1, VREF_IN2 pins	-	-	± 0.1	mA
Input current (SLEEP = LOW) ^{*1}	I _{IN}	VSIG_IN1, VSIG_IN2, VREF_IN1, VREF_IN2 pins, 1.35V input voltage	-0.2	-0.045	+0	mA
High-level output voltage	V _{OH}		V _{CC} -0.3	V _{CC} -0.1	-	V
Low-level output voltage	V _{OL}	1000000000000000000000000000000000000	-	0.1	0.3	V
Offset voltage ^{*2}	V _{OFFSET}	$\label{eq:VSIG_OUT1, VSIG_OUT2 pins,} \\ \mbox{potential difference from VCC/2 pin,} \\ \mbox{R}_1 = 150 \mbox{k}\Omega, \mbox{R}_2 = 330 \mbox{k}\Omega$	-	± 5	±20	mV
VCC/2 pin voltage	V _{VCC/2}	VCC/2 pin	V _{CC} /2-0.1	V _{CC} /2	V _{CC} /2+0.1	V

*1. Sink current is defined as positive value.

*2. R1 and R2 indicate the values of input resistor and feedback resistor for variable gain amplifier respectively. Refer to "TYPICAL APPLICATION CIRCUIT".

AC Characteristics

 V_{CC} = 3.3V, GND = 0V, Ta = 25°C, circuit constant is same as "TYPICAL APPLICATION CIRCUIT", unless otherwise noted.

Poromotor	Symbol	Condition		Unit		
rarameter Symbol		Condition	min	typ	max	onn
30dB amplifier output gain	Gain1	HPF1, HPF2 pins	29	30	31	dB
Output gain ^{*1}	Gain2	VSIG_OUT1, VSIG_OUT2 pins,	35.7	36.8	37.9	dB
Input referred voltage noise ^{*2}	V _{NOISE}	At 1Hz	-	0.05	-	µV _{rms} /√Hz
Lower cutoff frequency*1*3	f _{CL}	$R_1 = 150 k\Omega, C_1 = 22 \mu F$	-	0.05	-	Hz
Upper cutoff frequency ^{*1*4}	f _{CH}	$R_2 = 330 k\Omega$, $C_2 = 2200 pF$	-	219	-	Hz

*1. As for these parameters, the characteristics are determined by external components, and the specifications are guaranteed by design and characteristics evaluation. The rating values are shown without considering variability of external components.

*2. Input referred voltage noise is a design value when short-circuiting between VSIG_IN1 and VREF_IN1 pins, VSIG_IN2 and VREF_IN2 pins, without inputting external signal.

*3. R₁ and C₁ indicate the values of input resistor and input capacitor for variable gain amplifier respectively. Refer to "TYPICAL APPLICATION CIRCUIT". *4. R₂ and C₂ indicate the values of feedback resistor and feedback capacitor for variable gain amplifier respectively. Refer to "TYPICAL APPLICATION CIRCUIT".

FUNCTIONAL DESCRIPTION

Sensor Signal Input and Output

The signal output of gyroscope IC is connected to VSIG_IN1 pin. The first stage amplifier of SM6661A is differential input, so that VREF_IN1 pin is input zero-rate voltage of gyroscope IC. (Normally, the reference voltage output pin of gyroscope IC should be connected to VREF_IN1 pin.)

The amplified signal is output from VSIG_OUT1 pin. Note that the output signal is reverse phase of input signal from VSIG_IN1 pin. The zero-rate voltage of output signal is $V_{CC}/2V$. The description of VSIG_IN2, VREF_IN2 and VSIG_OUT2 pins are the same as above VSIG_IN1, VREF_IN1 and VSIG_OUT1 pins.

VCC/2 Pin

The VCC/2 pin is a reference voltage pin. Smoothing capacitors should be connected between VCC/2 pin and GND. The recommended values of smoothing capacitors are parallel-connected 10 μ F electrolytic capacitor and 0.1 μ F ceramic capacitor.

Output Gain and Frequency Characteristics Setting

The output gain and frequency characteristics of SM6661A are adjustable with connecting external resistors and capacitors as shown below.

Output gain setting

The output gain of SM6661A is adjustable by changing the value of external resistors R_1 and R_2 . The SM6661A has a built-in 30dB amplifier, so that the output gain "Gain2" is determined by the formula below;

$$Gain2 = 20 \times \log{(\frac{R_2}{R_1})} + 30 \text{ [dB]}$$

Frequency characteristics setting

The frequency characteristics of SM6661A is adjustable by changing the value of external capacitors C_1 and C_2 . The lower cutoff frequency " f_{CL} " and upper cutoff frequency " f_{CH} " are determined by the formula below; (These values should be set to meet the condition " $f_{CL} < f_{CH}$ ", in order to construct the band-pass filter.)

$$f_{CL} = \frac{1}{(2\pi \times R_1 \times C_1)} \quad [\text{Hz}]$$
$$f_{CH} = \frac{1}{(2\pi \times R_2 \times C_2)} \quad [\text{Hz}]$$

External components setting

The values of R_1 and C_1 should be set considering the time constant (τ) that is determined by the formula below;

$$\tau = R_1 \times C_1 [s]$$

The R_2 resistor value is determined by R_1 resistor value and output gain setting. Note that the offset voltage increases as the R_2 value increases. The R_2 recommended value is $27k\Omega$ to $330k\Omega$.

Sleep Mode Function

The SM6661A has the sleep mode function. When SLEEP pin set to "High", the SM6661A operation becomes sleep mode. In sleep mode operation, the current consumption becomes up to 1.0μ A and VSIG_OUT1 and VSIG_OUT2 pins are setting high-impedance.

Control pin	SM6661A operation	
SLEEP	- SM000TA Operation	
LOW	Normal operation	
HIGH	Sleep mode	

TYPICAL APPLICATION CIRCUIT

Total gain	36.8dB
f _{CL}	0.05Hz
f _{CH}	219Hz

TYPICAL PERFORMANCES

 V_{CC} = 3.3V, GND = 0V, Ta = 25°C, circuit constant is same as "TYPICAL APPLICATION CIRCUIT", unless otherwise noted.

Figure 1. Current consumption 1 vs. Supply voltage

Figure 2. Current consumption 1 vs. Ambient temperature

Figure 3. Input current vs. Supply voltage

Figure 4. Output gain vs. Frequency

Figure 5. Output gain vs. Ambient temperature (at 10Hz input frequency)

Figure 6. Output gain vs. Frequency (when changing output gain setting^{*1})

- *1. Each setting is measured without connecting feedback capacitor C2 for variable gain amplifier, high-frequency bandwidth is not limited. Output gain setting of each characteristics are shown below;
 - [A]: 50.0 dB setting (R₁ = $33k\Omega$, R₂ = $330k\Omega$) [B]: 36.8 dB setting ($R_1 = 150k\Omega$, $R_2 = 330k\Omega$)

 - [C]: 30.0 dB setting ($R_1 = 330k\Omega$, $R_2 = 330k\Omega$)

Figure 7. Output current vs. Output voltage^{*1} (VSIG_OUT1, VSIG_OUT2 pins)

Figure 9. Crosstalk vs. Frequency^{*3}

*1. I_S indicates the source current of VSIG_OUT1 or VSIG_OUT2 pins.

- *2. When short-circuiting between VSIG_IN1 and VREF_IN1 pins, VSIG_IN2 and VREF_IN2 pins, without inputting external signal. Measurement equipment: Agilent 35670A FFT Dynamic Signal Analyzer, in "FFT ANALYSIS" mode Input referred voltage noise at 1Hz frequency: 0.05μVrms/√Hz (calculated based on 35μVrms/√Hz output noise at 1Hz frequency and 36.8 dB output gain "Gain2")
- *3. When measured without connecting feedback capacitor C₂ for variable gain amplifier, high-frequency bandwidth is not limited.

Figure 8. Output noise vs. Frequency^{*2}

RECOMMENDED FOOTPRINT PATTERN

(Unit: mm)

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance.

In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

- 2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.
- 3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.
- 4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the massproduction products.
- 5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals form appropriate government agencies.

NC0801AE 2010.03