ILE4260-2

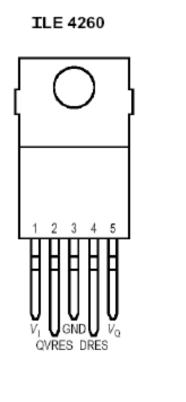
5-V Low-Drop Voltage Regulator

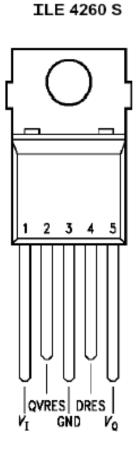
ILE 4260 is a 5-V low-drop fixed-voltage regulator in P-TO220-5 package. The maximum input voltage is 42 V (65 V≤ 400 ms). The device can produce an output current of more than 500 mA. It is shortcircuit-proof and incorporates temperature protection that disables the circuit at unpermissibly high temperatures.

Due to the wide temperature range of -40 to 150 °C, the ILE 4260 is also suitable for use in automotive applications.

The IC regulates an input voltage VI in the range $6 < V_1 < 35$ V to V_Q nominal =5.0 V. A reset signal is generated for an output voltage of $V_Q < 4.75$ V. The reset delay can be set externally with a capacitor. If the output current is reduced below 10 mA, the regulator switches internally to standby and the reset generator is turned off.

The standby current drops to max. 700 µA.

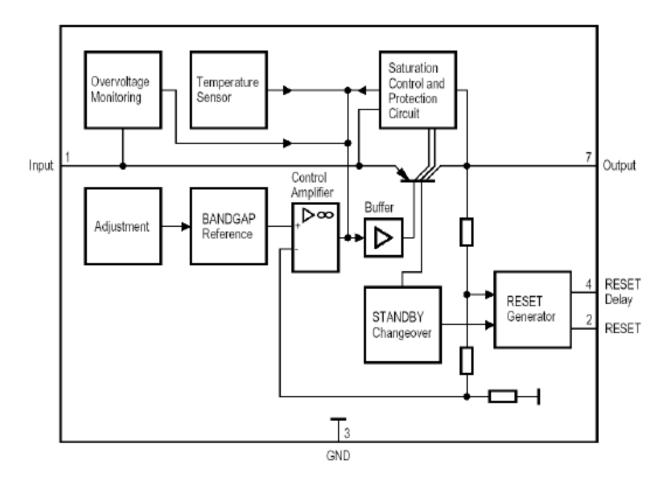

ILE4260S-2 ILE4260S-2 ILE4260-2 ILE4260-2 ILE 4260S-2 P-TO220-5-2 ILE 4260-2 P-TO220-5-2 ILE 4260-2 P-TO220-5-1 T_A = -40° ÷ 125° C for all packages


Features

- Low-drop voltage
- Very low quiescent current
- Low starting current consumption
- Integrated temperature protection
- Protection against reverse polarity
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (≤ 400 ms)
- Short-circuit proof
- Suited for automotive electronics
- Wide temperature range

Pin Definitions and Functions (ILE 4260 and ILE 4260 S)

Pin No.	Symbol	Function
1	Vı	Input; block directly to ground at the IC by a 470-nF capacitor
2	QVRES	Reset output ; open collector output controlled by the reset delay
3	GND	Ground
4	DRES	Reset delay; wired to ground with a capacitor
5	VQ	5-V output voltage; block to ground with a 22-µF capacitor



Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the output voltage goes below 96% of its typical value, an external capacitor is discharged on pin 4 by the reset generator. If the voltage on the capacitor reaches the lower threshold VST, a reset signal is issued on pin 2 and not cancelled again until the upper threshold VDT is exceeded. For an output current of less than IQN off = 10 mA the standby changeover turns off the reset generator. The latter is turned on again when the output current increases, the output voltage drops below 4.2 V or the delay capacitor is discharged by external measures.

The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Remarks	
Farameter	Symbol	min	max	Unit	Remarks	
Input (Pin 1)						
Input voltage	$V_{\rm I}$	- 42	42	V	_	
	V_{I}	-	65	V	<i>t</i> ≤ 400 ms	
Input current	I	_	1.6	А	-	
Reset Output (Pin 2)						
Voltage	VR	-0.3	42	V	-	
Current	IR	_	_	_	internally limited	
Ground (Pin 3)						
Current	Ignd	-0.5	_	А	-	
Reset Delay (Pin 4)						
Voltage	VD	- 0.3	42	V	_	
Current	ID	_	_	_	internally limited	
Output (Pin 5)						
Differential voltage	$V_{\rm I} - V_{\rm Q}$	- 5.25	V_1	V	_	
Current	IQ	-	1.4	А	_	
Temperature						
Storage temperature	Tstg	- 50	150	°C	_	
Operating Range	•			-		
Input voltage	V_{I}	_	32	V	1)	
Junction temperature	Tj	- 40	165	°C	-	
Thermal Resistances	; ;					
Junction ambient	Rthja	_	65	K/W	_	
Junction case	Rthjc	_	3	K/W	_	

1) See diagram "Output Current versus Input Voltage"

* Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

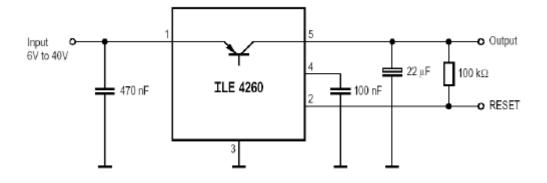
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Characteristics

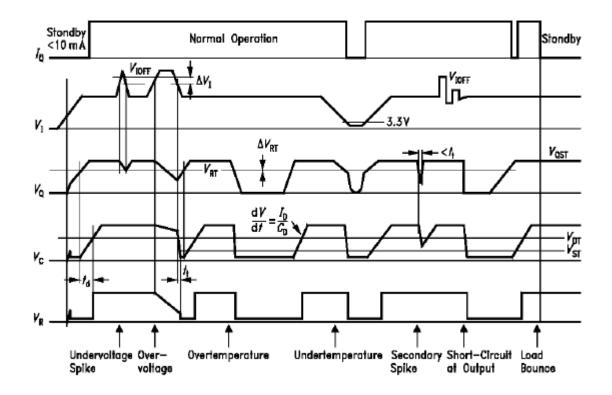
 V_i = 13.5 V; T_j = 25 °C; (unless otherwise specified)

	Symbol		Limit Values			
Parameter		min.	typ.	max.	Unit	Test Condition
Normal Operation						
Output voltage	V _Q	4.75	5.0	5.25	V	$25 \text{ mA} \le I_Q \le 500 \text{ mA}$
						$6 V \le V_1 \le 28 V$
						$-40 \text{ °C} \le T_{j} \le 125 \text{ °C}$
Short -circuit current	I _{SC}	500	1000	-	mA	V ₁ =17 V to 28 V;
						$V_{\rm Q} = 0 \ {\rm V}$
Current consumption $I_{\rm q} = I_{\rm l} - I_{\rm Q}$	l _q	_	8.5	10	mA ₁₎	$6 V \le V_{\rm l} \le 28 V$ $I_{\rm Q} = 150 \text{ mA}$
Current consumption $I_{\rm q} = I_{\rm l} - I_{\rm Q}$	/ _q	_	50	65	mA ₁₎	$6 V \le V_1 \le 28 V$ $IQ = 500 mA$
Current consumption $I_{\rm q} = I_{\rm l} - I_{\rm Q}$	I _q	-	-	80	mA ₁₎	$V_{\rm l} \le 6 {\rm V} I_{\rm Q} = 500 {\rm mA}$
Drop voltage	V _{DR}	-	0.35	0.5	V	$M = 4.5 \text{ V}; I_Q = 0.5 \text{ A}$
Drop voltage	V _{DR}	_	0.2	0.3	V	$VI = 4.5 \text{ V}; I_Q = 0.15 \text{ A}$
Load regulation	ΔV_{Q}	_	15	35	mV	25mA≤ <i>I</i> _Q ≤ 500 mA
Supply-voltage regulation	ΔV_{Q}	-	15	50	mV	$V_{\rm l} \le 6$ V to 28 V; $I_{\rm Q} = 100$ mA
Supply-voltage regulation	ΔV_{Q}	-	5	25	mV	$V_{\rm l} \le 6$ V to 16 V; $I_{\rm Q} = 100$ mA
Ripple rejection	SVR	-	54	-	dB	<i>f</i> = 100 Hz;
						$V_{\rm r} = 0.5 \ V_{\rm pp}$
Temperature drift of output voltage ₁₎	α _{VQ}	_	2× 10_4	_	1/°C	_
Standby Operation						
Quiscent current; $I_q = I_l - I_Q$	/q	-	500	700	μA	$10V \le V_{l} \le 16 V;$ $I_{Q} = 0mA$
Quiscent current; $I_q = I_1 - I_Q$	I _q	_	750	850	μA	$10V \le V_l \le 16 V;$ $I_Q = 5mA$

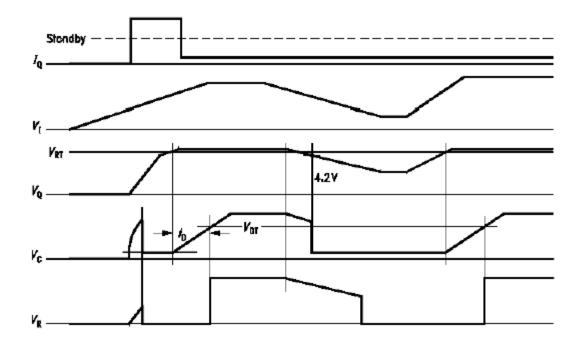
Characteristics (cont'd)


 $V_{i} = 13.5 \text{ V}; T_{j} = 25 \text{ °C}; \text{ (unless otherwise specified)}$

	Symbol		Limit Valu	ies	Unit	Test Condition
Parameter		min.	typ.	max.		
Standby Off/Normal On		1		1		
Current consumption	I _{qSOFF}	_	1.0	1.2	mA	see test diagram
Current consumption	I _{qNON}	-	1.7	2.2	mA	see test diagram
Normal Off/Standby On						
Current consumption	I _{qNOFF}	-	1.55	2.00	mA	see test diagram
Current consumption	I _{qSON}	_	850	1050	μA	see test diagram
Switching threshold		7.5	10	12.5	mA	see test diagram
Switching hysteresis	Δ <i>I</i> Q	2.25	3	4	mA	see test diagram
Reset Generator						
Switching threshold	V _{RT}	94	96	97	%	in % of $V_{\rm o}$;
						$I_{\rm Q} > 500 {\rm mA}; V_{\rm I} = 6 {\rm V}$
Saturation voltage	V _R	-	0.25	0.40	V	$I_{\rm R} = 3 {\rm mA}; V_{\rm I} = 4.5 {\rm V}$
Reverse current	I _R	_	-	1	μA	V _R = 5 V
Charge current	I _D	7	10	13	μA	_
Switching threshold	V _{ST}	0.9	1.1	1.3	V	_
Delay switching threshold	V _{DT}	2.15	2.50	2.75	V	_
Delay time	t _D	-	25	_	ms	<i>C</i> _D = 100 nF
Delay time	t _t	_	5	_	μs	<i>C</i> _D = 100 nF
General Data		- <u>-</u>		•		
Turn-Off voltage	VIOFF	40	43	45	V	<i>I</i> _Q < 1 mA
Turn-Off hysteresis	ΔV_{l}	_	3.0	_	V	-
Leakage current	I _{QS}	_	500	_	μA	$V_{\rm Q} = 0 \text{ V}; V_{\rm I} = 45 \text{ V}$
Reverse output current	I _{QR}	-	-	1.5	mA	$V_{\rm Q} = 5$ V; $V_{\rm I} = $ open

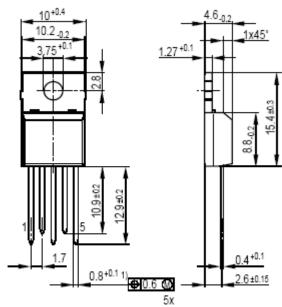

1) See diagram

Application Circuit

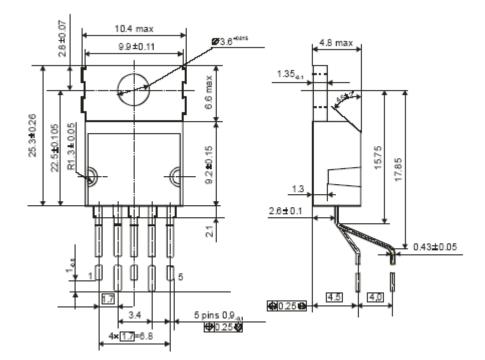


Time Responce


Time Response in Standby Condition



January, 2011, Rev. 01


Package Dimensions

1) 1.0.15 at dam bar (max 1.8 from body) 1) 1.0.15 im Dichtstegbereich (max 1.8 vom Körper)

P-TO220-5-1

