

250 Watts, 50V, 1025-1150MHz 10μs Pulse, 1% Duty

FEATURES

Silicon MOSFET Technology
Operation from 24V to 50V
High Power Gain
Extreme Ruggedness
Internal Input and Output Matching
Excellent Thermal Stability
All Gold Bonding Scheme
Pb-free and RoHS Compliant

PACKAGE

TYPICAL PERFORMANCE

MODE	FREQUENCY	VDD	IDQ	Power	GAIN	EFFICIENCY	IRL
	(MHz)	(V)	(mA)	(W)	(dB)	(%)	(dB)
Class AB	1150	50	100	250	19.5	48	20:1

Table 1: Typical RF Performance in broadband text fixture at 25°C temperature with RF pulse conditions of pulse width = 10µs and pulse duty cycle = 1%.

DESCRIPTION

The high power HVV1012-250 device is an enhancement mode RF MOSFET power transistor designed for pulsed applications in the L-Band from 1025MHz to 1150MHz. The high voltage MOSFET technology produces over 250W of pulsed output power while offering high gain, high efficiency, and ease of matching with a 50 V supply. The vertical device structure assures high reliability and ruggedness as the device is specified to withstand a 20:1 VSWR at all phase angles under full rated output power.

ORDERING INFORMATION

Device Part Number: HVV1012-250

Evaluation Kit Part Number: HVV1012-250-EK

REV. A

250 Watts, 50V, 1025-1150MHz 10μs Pulse, 1% Duty

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typical	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown	VGS=0V,ID=5mA	95	102	-	V
IDSS	Drain Leakage Current	VGS=0V,VDS=48V	-	50	200	μΑ
Igss	Gate Leakage Current	VGS=5V,VDS=0V	-	1	5	μA
G _P ¹	Power Gain	F=1150MHz	17.5	19.5	-	dB
IRL^1	Input Return Loss	F=1150MHz	-	-7	-4	dB
η D ¹	Drain Efficiency	F=1150MHz	46	48	-	%
VGS(Q) ²	Gate Quiescent Voltage	VDD=50V,IDQ=100mA	1.1	1.45	1.8	V
VTH	Threshold Voltage	VDD=5V, ID=300μA	0.7	1.2	1.7	V

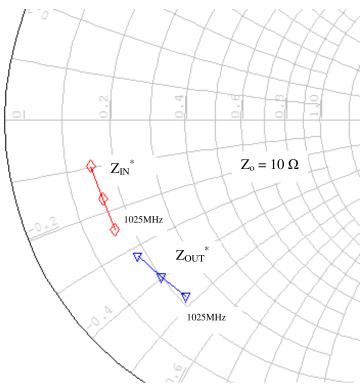
PULSE CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Typical	Max	Unit
T _r ¹	Rise Time	F=1150MHz	-	<40	50	nS
T_f^1	Fall Time	F=1150MHz	-	<15	50	nS
PD ¹	Pulse Droop	F=1150MHz	-	0.25	0.5	dB

THERMAL CHARACTERISTICS

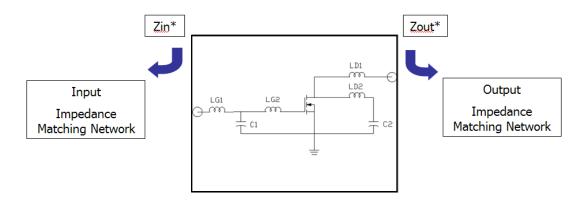
Symbol	Parameter	Max	Unit
θ_{1C}^{1}	Thermal Resistance	0.10	°C/W

RUGGEDNESS PERFORMANCE

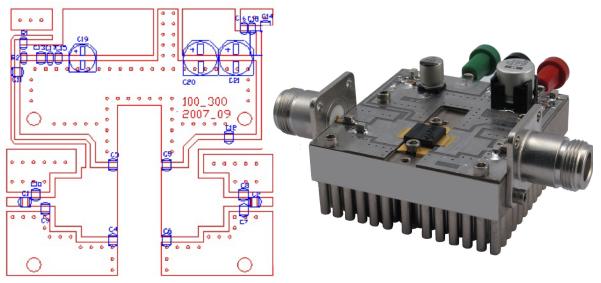

Sy	/mbol	Parameter	Test Condition	Max	Units
LN	4T¹	Load	F = 1150 MHz	20:1	VSWR
		Mismatch			
		Tolerance			

The HVV1012-250 device is capable of withstanding an output load mismatch corresponding to a 20:1 VSWR at rated output power and nominal operating voltage across the frequency band of operation.

 1 NOTE: All parameters measured under pulsed conditions at 250W output power measured at the 10% point of the pulse with pulse width = 10 μ sec, duty cycle = 1% and VDD = 50V, IDQ = 100mA in a broadband matched test fixture.


²NOTE: Amount of gate voltage required to attain nominal quiescent current.

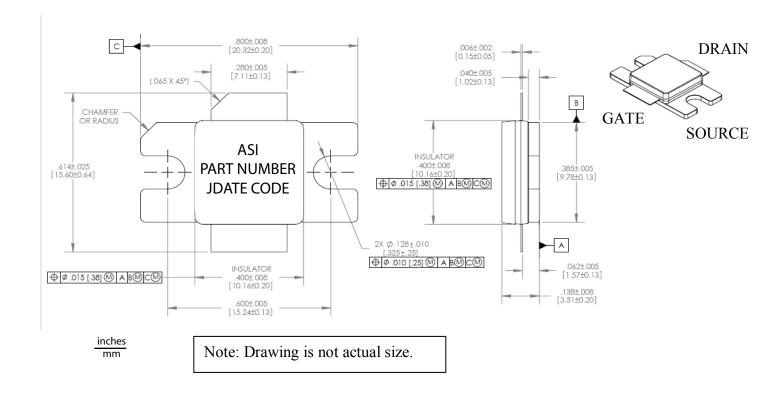
250 Watts, 50V, 1025-1150MHz 10μs Pulse, 1% Duty



Test Circuit Impedance

Frequency	Zin*(ohms)	Zout*(ohms)	
1025MHz	1.64-j2.43	2.17-j4.75	
1087MHz	1.60-j1.71	2.00-j3.94	
1150MHz	1.51 - j0.97	1.80-j3.20	

250 Watts, 50V, 1025-1150MHz 10μs Pulse, 1% Duty



Demonstration Board Outline

Demonstration Circuit Board Picture

Files for Demonstration Board available online

Part	Description	Part Number	Manufacturer
C1, C2:	100 pF ATC 100B Chip Capacitor	100B101JP500X	ATC
C3,C4:	3.9 pF ATC 100B Chip Capacitor	100B3R9JP500X	ATC
C5:	5.6 pF ATC 100B Chip Capacitor	100B5R6JP500X	ATC
C6,C9:	4.7 pF ATC 100B Chip Capacitor	100B4R7JP500X	ATC
C7,C8:	2.0 pF ATC 100B Chip Capacitor	100B2R0JP500X	ATC
C10:	2.4 pF ATC 100B Chip Capacitor	100B2R4JP500X	ATC
C11:	15 pF ATC 100B Chip Capacitor	100B150JP500X	ATC
C12:	27 pF ATC 100B Chip Capacitor	100B270JP500X	ATC
C13, C14:	47 pF ATC 100B Chip Capacitor	100B470JP500X	ATC
C15, C16:	10K pF 100V Chip Capacitor (X7R 1206)	C1206C103K1RACTU	Kemet
C17, C18:	1K pF 100V Chip Capacitor (X7R 1206)	C1206C102K1RACTU	Kemet
C19:	10 uF 63V Elect FK SMD	PCE3479CT-ND	Digi Key
C20, C21:	100 uF 63V Elect FK SMD	PCE3483CT-ND	Digi Key
R1:	10 Ohms Chip Resistor (1206)	ERJ8GEYJ100V	Panasonic
R2:	1.0 K Ohms Chip Resistor (1206)	ERJ8GEYJ102V	Panasonic
RF Connectors	Type "N" RF connectors	5919CC-TB-7	Coaxicom
DC Drain Conn	Connector Jack Banana Nylon Red	J151-ND	DIGI-KEY
DC Ground Conn	Connector Jack Banana Nylon Black	J152-ND	DIGI-KEY
DC Gate Conn.	Connector Jack Banana Nylon Green	J153-ND	DIGI-KEY
PCB Board	PCB: Arlon, 30 mils thick, 2.55 Dielectric, 2	oz Copper # (DS2346)	DS Electronics
Device Clamp	Cool Innovation Nylon Clamp Foot	FXT000158 Rev. B	Cool Innovation
Heat Sink	Cool Innovations Aluminum Heat Sink	3-252510RS3411	Cool Innovation
S.S. Screws (4)	4-40 X 1/4 Stainless Steel Socket Hex Head	P242393	Copper State Bolt
Alloy Screws (4)	4-40 X 1/2 Alloy Socket Cap screw Hex	SCAS-0440-08C	Small Parts Inc
Metal Washer (6)	#4 Washer Zinc PLTD Steel Lock	ZSLW-004-M	Small Parts Inc
Alloy Screws (2)	4-40 X 3/4 Alloy Socket Cap Screw Head	SCAS-0440-12M	Small Parts Inc

ASI Semiconductor, Inc. (ASI) reserves the right to make changes to information published in this document at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Information in this document is believed to be accurate and reliable. However, ASI does not give any representations or warranties, either express or implied, as to the accuracy or completeness of such information and shall have no liability no liability for consequences resulting from the use of such information. No license, either expressed or implied, is conveyed under any ASI intellectual property rights, including any patent rights.