

400MHz Transceiver IC for Specified Low-Power Station

General Description

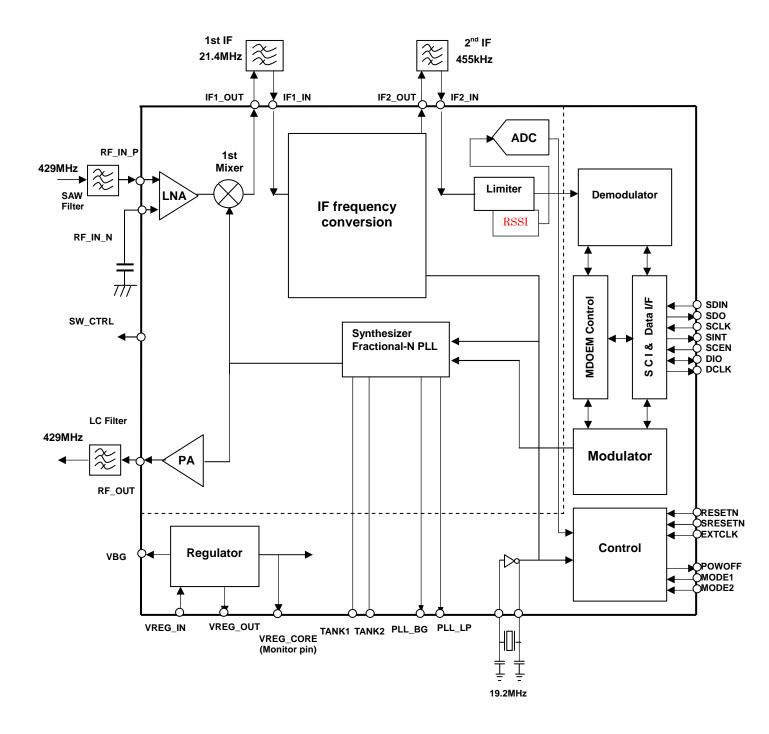
The ML7066 is an transceiver IC that can be used for specified low-power statiom , where the RF section, IF section, modem section and HOST interface section are integrated into one chip. It supports the 400MHz radio communication and complies with RCR STD-30 (426MHz) and ARIB STD-T67 (429MHz). The ML7066 is suitable for auto meter reading, home securithy systems, wireless fire alarm system, and industorial monitoring and control.

Features

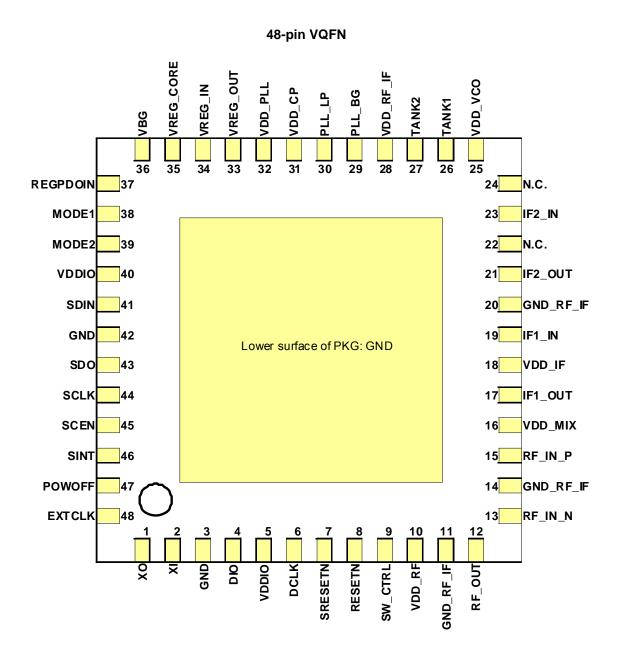
- Complies with RCR STD-30 (low-power radio security system) and ATIB STD-T67 (specified low-power radio statiion)
- Operating Frequency
 426.0250 MHz to 426.8375 MHz
 429.1750 MHz to 429.9250 MHz
 Note: Including the frequency range that are not defined in the standards.
 1200 bps, 2400 bps and 4800 bps with NRZ coding
 600 bps, 1200 bps and 2400 bps with Manchester coding
- 2-FSK modulation
- Voltage regulator installed
- 19.2 MHz oscillator circuit installed
- Synchronous communication interface (SCI) installed
- Up to 8 oeration channel set function installed
- Carrier (Operating frequency) detect function installed
- Up to 16 bytes preamble generator and detecor installed
- Up to 18 bytes start-of-frame delimiter generator and detector installed
- Intermittent operation function installed (periodic transmition and receiving)
- PLL adjustment function available to use 60ppm crystal
- Test pattern generatot installed (CW, PN9, PN15, all "0", all"1")
- Power supply voltage 2.1V to 3.6V
- Current consumption in the following states (typical);

Stop mode:	0.7 uA
Sleep mode:	4 uA
Idle mode:	2 mA
At transmission (@10mW)	29.5 mA
At reception:	15.5 mA

- Package
 - 48-pin VQFN P-VQFN48-0707-0.50-T6 Product name: ML7066GDZ0AB
- Package
 - Lead-free package conforming to RoHS


FEDL7066-01

Issue Date: April. 28, 2011


ZigBee® is a registered trademark of ZigBee Alliance, Inc. Other names are trademarks or registered trademarks of developers and manufacturers.

The information contained herein can change without notice owing to product and/or technical improvements.

Block Diagram

Pin Configuration

Top View

Description of Pins

I/O definition

:	RF input pin
•	Analog input pin
:	Digital input pin
:	Schmitt trigger input pin
:	Input pin with pull-up register
:	Input pin with pull-down register
:	Input pin for 24MHz oscillation circuit
:	RF control output pin
:	Analog output pin
:	Digital output pin
:	Output pin for 24MHz oscillation circuit
:	Open drain output pin

RF Related Pins

Pin No.	Pin Name	Attribute/ value at reset	I/O	Active Level	Description
12	RF_OUT	0	Orf	-	RF output pin
13	RF_IN_N	I	IRF	-	Positive RF input pin (differential)
15	RF_IN_P	Ι	IRF	Ι	Negative RF input pin (differential)
17	IF1_OUT	0	OA	-	1 st IF filter pin (output to filter)
19	IF1_IN	Ι	IA	Ι	1 st IF filter pin (input from filter)
21	IF2_OUT	0	Oa	Ι	2 nd IF filter pin (output to filter)
23	IF2_IN	Ι	la	Ι	2 nd IF filter pin (input from filter)
29	PLL_BG	0	OA	-	Loop filter related pin
30	PLL_LP	0	OA	Ι	Loop filter pin
26	TANK1		IA	-	VCO tank inductor pin 1
27	TANK2		la	_	VCO tank inductor pin 2

Host Interface Pins

Pin No.	Pin Name	Attribute/ value at reset	I/O	Active Level	Description
41	SDIN	I	I	H or L	Synchronous communication interface data input pin
43	SDO	L	0	H or L	Synchronous communication interface data output pin
44	SCLK	I	-	P or N	Synchronous communication interface clock input pin
46	SINTN	Н	0	L	Synchronous communication interface interrupt output pin
45	SCEN	I	lυ	L	Synchronous communication interface chip select input pin

TX/RX Data Related Pins

Pin No.	Pin Name	Attribute/ value at reset	I/O	Active Level	Description
4	DIO	I	ю	HOLL	Data input/output pin (Initial value is Low when switch the state from input to output)
6	DCLK	L	0	P or N	Data clock output pin

Regulator Related Pins

Pin No.	Pin Name	Attribute/ value at reset	I/O	Active Level	Description
33	VREG_OUT	-	_	_	Power supply output pin for the RF block (Typ. 2.2V) Do not use this pin for purposes other than RF power supply.
35	VREG_CORE	-	_	_	Power supply monitor pin for the core (Typ. 2.2V) Do not use this pin for purposes other than monitoring purpose. Decuple this pin to ground with capacitor. (*1)
36	VBG	_	-	-	Back bias pin (Capacitance connection) Decuple this pin to ground with capacitor. (*1)
37	REGPDIN	L	ID	_	Regulator power down pin Always fix this pin to "L" input in normal operation.

*1: Please refer reference circuit.

Power Supply Pins

Pin No.	Pin Name	Attribute/ value at reset	I/O	Active Level	Description
34	VREG_IN	_	_	_	Power supply pin for regulator. (Typ. 3.0 V)
10	VDD_RF	-	_	_	Power supply pin for PA and LNA. Connect to VREG_OUT. (Typ. 2.2V).
25	VDD_VCO	_	_	_	Power supply pin for VCO. Connect to VREG_OUT. (Typ. 2.2V)
16	VDD_MIX	_	_	_	Power supply pin for mixer 1. Connect to VREG_OUT. (Typ. 2.2V)
31	VDD_CP	-	_	-	Power supply pin for charge pump. Connect to VREG_OUT. (Typ. 2.2V)
32	VDD_PLL	-	_	-	Power supply pin for PLL. Connect to VREG_OUT. (Typ. 2.2V)
18	VDD_IF	-	_	-	Power supply pin for IF, Limiter and RSSI. Connect to VREG_OUT. (Typ. 2.2V)
5, 40	VDDIO	-	_	-	Power supply pins for the digital I/O block and internal voltage regulator. (Typ. 3.0 V).
11, 14 20,28	GND_RF_IF	-	_	-	Ground pin for RF and IF block.
3,42	GND	_	_	_	Ground pin for digital block.
EL (*2)	-	-	_	_	Ground pin

(*2) EL is the lower surface of the LSI.

Other Pins

Pin No.	Pin Name	Attribute/ value at reset	I/O	Active Level	Description
8	RESETN	I	ls	L	Hardware reset pin
7	SRESETN	I	lu	L	Software reset pin Wake up pin when in sleep mode. This pin is active when RESETN=1.
2	XI	I	los	P or N	19.2 MHz crystal connection pin 1 External clock input pin.
1	хо	о	Oos	_	19.2 MHz crystal connection pin 2 Leave open when XI (pin #2) is configured as an external clock input pin.
9	SW_CTRL	О	Od	L	Antenna switch control pin L: In transmitting mode HiZ: In receiving mode
47	POWOFF	L	0	н	External component power on/off control pin Active level polarity is changeable by register setting.
48	EXTCLK	I	I	P or N	External 32.768 kHz clock input pin (*3)
38	MODE1	I	Ю	H or L	Bit order on SCI Data setting pin L: LSB first H: MSB first
39	MODE2	I	I	H or L	Operation mode setting pin L: Normal mode H: Test mode Always fix this pin to "L" input in normal operation.
22,24	NC	0	OA	_	Unused. (Open)

(*3) Always EXTCLK input is required for ML7066 operation.

Recommended Handling of Unused Pins

LAPIS Semiconductor recommends handling unused pins as shown below so that the basic operation of the ML7275 is unimpaired.

Pin No.	Pin Name	Recommended pin handling			
1	XO	Open (when XI is configured as an external clock input pin.)			
7	SRESETN	Connect to VDDIO			
47	POWOFF	Open			

NOTE

If any input pins are left open, the current consumption may increase. Therefore, it is recommended that the unused input ports and I/O ports be always fixed with "L" or "H" input.

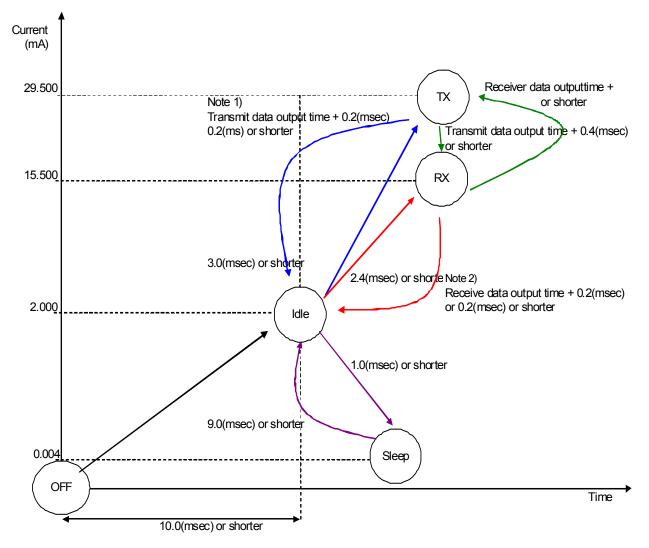
List of Command/Event

The following table shows the command/event specifications of ML7066. Command is send from MCU to the ML7066. Event is send from the ML7066 to MCU.

Command/event name	Туре	code	Function
SET_TRX_STATE.request	Command	0x02	Requests the RF state change
SET TRX STATE.confirm	Event	0x02	Reports the result of RF state change request
SET CHANNEL.request	Command	0x03	Sets the operating channel
SET CHANNEL.confirm	Event	0x04 0x05	Reports the channel setting result
SET_CMP_DATA.request	Command	0x05 0x06	Sets the preamble or start-of-frame delimiter (SFD) pattern
	Command	0,00	for generation (TX) and comparison (RX)
SET CMP DATA.confirm	Event	0x07	Reports the preamble/SFD pattern setting result
SET_RSSI_SETTING.request	Command	0x08	Sets the carrier detect condition
SET_RSSI_SEETING.confirm	Event	0x09	Reports the carrier detect condition setting result
SET TX POW.request	Command	0x0a	Sets the transmitting power
SET TX POW.confirm	Event	0x0b	Reports the transmitting power setting result
SET_TIMER.request	Command	0x0c	Sets the intermitting operation timing
SET TIMER.confirm	Event	0x0d	Reports the intermittent operation setting result
SET PLL FIT.request	Command	0x0e	Adjusts the operating channel center frequency
SET PLL FIT.confirm	Event	0x0f	Reports the result of frequency adjustment request
SET TEST.request	Command	0x10	Sets the test pattern
SET TEST.confirm	Event	0x11	Reports the result of test pattern setting results
SET_CLK.request	Command	0x12	Requests the sleep mode operation and POWOFF pin
			polarity change.
SET_CLK.confirm	Event	0x13	Reports the result of sleep and POWOFF pin polarity
-			request
SET_RESET.request	Command	0x14	Request the reset operation
SET_RESET.confirm	Event	0x15	Reports the result of reset request
SET_CONFIRM.request	Command	0x16	Requests the interrupt masking
SET_CONFIRM.confirm	Event	0x17	Reports the interrupt mask requests
SET_INT.request	Command	0x18	Requests the .confirm event masking
SET_INT.confirm	Event	0x19	Reports the result of .confirm event mask requests
SET_SPD.request	Command	0x18	Sets the data rate
SET_SPD.confirm	Event	0x19	Reports the data rate setting request
SET_CMP_DURATION.request	Command	0x0e	Sets the comparing receive data period
SET_CMP_DURATION.confirm	Event	0x0f	Reports the comparing period setting result
RX_DATA.indication	Event	0x20	Notices existing receive data
RSSI.indication	Event	0x21	Notices RSSI result
GET_TRX_STATE.request	Command	0x22	Reads the RF state report
GET_TRX_STATE.confirm	Event	0x23	Reports the current RF state
GET_CHANNEL.request	Command	0x24	Reads the channel setting
GET_CHANNEL.confirm	Event	0x25	Reports the setting operation channel(s)
GET_CMP_DATA.request	Command	0x26	Reads the setting of the preamble or SFD pattern
GET_CMP_DATA.confirm	Event	0x27	Reports the setting pattern of preamble or SFD
GET_RSSI_SETTING.request	Command	0x28	Reads the carrier detect setting or current RSSI
GET_RSSI_SEETING.confirm	Event	0x29	Reports the carrier detect setting or current RSSI
GET_TX_POW.request	Command	0x2a	Reads the transmitting power setting
GET_TX_POW.confirm	Event	0x2b	Reports the setting value of transmitting power
GET_TIMER.request	Command	0x2c	Reads the intermitting operation timing
GET_TIMER.confirm	Event	0x2d	Reports the setting value of intermittent operation
GET_PLL_FIT.request	Command	0x2e	Reads the PLL adjust value
GET_PLL_FIT.confirm	Event	0x2f	Reports the setting value for PLL adjustment

FEDL7066-01

ML7066


Command/event name	Туре	code	Function
GET_TEST.request	Command	0x30	Reads the test pattern setting
GET_TEST.confirm	Event	0x31	Reports the setting of test pattern
GET_CLK.request	Command	0x32	Reads the POWOFF pin polarity setting
GET_CLK.confirm	Event	0x33	Reports the setting polarity of POWOFF pin
GET_INT.request	Command	0x34	Reads the .confirm event mask setting
GET_INT.confirm	Event	0x35	Reports the setting of .confirm event mask
GET_CONFIRM.request	Command	0x36	Reads the interrupt mask setting
GET_CONFIRM.confirm	Event	0x37	Reports the setting of interrupt mask
INT.indication	Event	0x38	Notices interrupt occurs
GET_SPD.request	Command	0x3a	Reads the data rate
GET_SPD.confirm	Event	0x3b	Reports the data rate setting
GET_CMP_DURATION.request	Command	0x0e	Reads the comparing period setting
GET_CMP_DURATION.confirm	Event	0x0f	Reports the setting value of comparing period
GET_ERRR_COUNTER.request		0x3e	Reads the receiving error status of operating channels
GET_ERR_COUNTER.confirm		0x3f	Reports the receiving data status of operating channels

List of Confirm

Code	Function	Note
0x05	INVALID_PARAMETER	INVALID_PARAMETER
0x06	RX_ON	RX_ON request when in RX_ON state
0x07	SUCCESS	Request accepted
0x08	TRX_OFF	TRX_OFF request when in TRX_OFF state
0x09	TX_ON	TX_ON request when in TX_ON state
0x0a	UNSPOORTED_STTRIBUTE	Data overrun or shortage

ML7066 State Diagram

The following figure shows the state transition time and the consumption current from power-on to each power state (Sleep, Idle, RX, TX).

Note 1:

For the TRX_OFF instruction, the Idle state comes 0.2ms after the data transmission from ML7066 is completed.

For the FORCE_TRX_OFF instruction, it comes 0.2ms after the instruction is received. Note 2:

For the TRX_OFF instruction, the Idle state comes 0.2ms after the time when the unreceived data from ML7066 reduces to the last one byte.

For the EADAE TDY AFF instruction it comes A 2me after the instruction is received

Notes on Operation

This section describes the notes on using the ML7066.

1) Initial settings

Initial settings are required for optimization of the RF characteristics. Perform the following ML7066 initial settings after reset.

	itial Settings				
No.	Direction	Туре	Command	Data	SCI format
1	ML7066 \rightarrow MCU	Confirm	0x15	0x07	SDO: 0C 02 15 07
2	$MCU \rightarrow ML7066$	Request	0x5F	0x8888	SDI: 08 03 5F 88 88
3	$MCU \rightarrow ML7066$	Request	0x42	0x2111	SDI: 08 03 42 11 21
4	$MCU \rightarrow ML7066$	Request	0x40	0xB587	SDI: 08 03 40 87 B5
5	$MCU \rightarrow ML7066$	Request	0x41	0x82E9	SDI: 08 03 41 E9 82
6	$MCU \rightarrow ML7066$	Request	0x47	0x0883	SDI: 08 03 47 83 08
7	$MCU \rightarrow ML7066$	Request	0x43	0xFE01	SDI: 08 03 43 01 FE
8	$MCU \rightarrow ML7066$	Request	0x45	0x0020	SDI: 08 03 45 20 00
9	$MCU \rightarrow ML7066$	Request	0x02	0x09	SDI: 08 02 02 09
10	ML7066 \rightarrow MCU	Confirm	0x03	0x07	SDO: 0C 02 03 07
11	$MCU \rightarrow ML7066$	Request	0x4D	0x0040	SDI: 08 03 4D 40 00
12	Set 2msec WAIT for MCU				
13	$MCU \rightarrow ML7066$	Request	0x02	0x08	SDI: 08 02 02 08
14	ML7066 \rightarrow MCU	Confirm	0x03	0x07	SDO: 0C 02 03 07
15	$MCU \rightarrow ML7066$	Request	0x45	0x0000	SDI: 08 03 45 00 00
16	$MCU \rightarrow ML7066$	Request	0x42	0x2110	SDI: 08 03 42 10 21
17	$MCU \rightarrow ML7066$	Request	0x5F	0x0000	SDI: 08 03 5F 00 00

MI 7066 Initial Settings

2) Notification from ML7066

If ML7066 state settings cause a mismatch between an instruction and an internal status, a confirmation that is not listed in the data sheet may be notified fairly infrequently. If you receive such a confirmation, simply discard it. Example) 04_00 (Confirmation with Length=0)

04_02_02_02 (SET_TRX_STATE.request never has the data 02)

04_05_05_05_05_05_05 (SET_RSSI.indication never has Length=5)

3) Seal

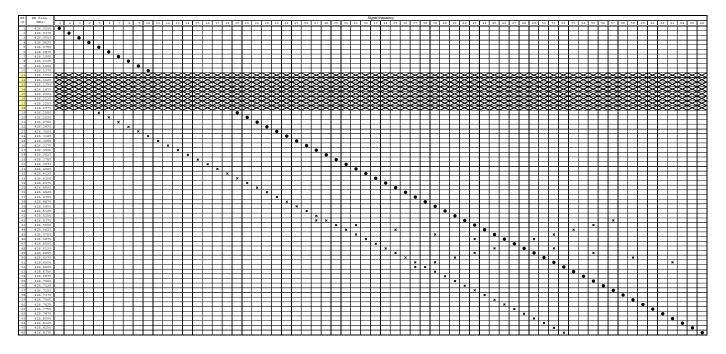
The first and second generations are distinguished by the seal. The seal of the second generation is ML7066B.

Note that the first generation includes the following restriction.

Restrictions: The timer value set in the SET_TIMER.request command should be 15 seconds or shorter.

4) Regulator

The regulator in ML7066 has a built-in overcurrent protection circuit. The current control is switched between the following two levels, based on the supplied voltage. We have verified that the overcurrent protection circuit can prevent an occurred inrush current from affecting the function and lifetime of ML7066. However, it cannot prevent an inrush current of the charge in bypass capacitors or other parts at power-on alone. You should verify the protection on your implementation.


For a low VREG_OUT output voltage (VREG_IN*0.45V or lower): clamped at about 100mA. For a high VREG_OUT output voltage (VREG_IN*0.45V or higher): clamped at about 500mA.

5) Fractional spurious

ML7066 maintains the accuracy of the RF clock frequency by fine-tuning the PLL oscillation frequency, which helps lower the component cost for generating the master clock. The Fractional-N PLL type is used to realize the fine tuning of the PLL oscillation frequency. We found that this PLL type could cause the fractional spurious depending on the combination of the reference clock, integer dividing ratio, and fractional dividing ratio. So, depending on the combination of the used frequencies (channels), a false detection of the RSSI value can occur. The following matrixes show the channel combinations with a possible false detection.

426MHz Band Channel False Detection Matrix

•symbol indicates the combination of the transmission and reception channels by the normal setting. ×symbol indicates the channel combination with a possible false detection.

429MHz Band Channel False Detection Matrix

•symbol indicates the combination of the transmission and reception channels by the normal setting. ×symbol indicates the channel combination with a possible false detection.

a b b b		59 60
1 0.101 0 <th></th> <th></th>		
a a b		
1 02,307 0 <td></td> <td></td>		
1 02.333 1 0 <td></td> <td></td>		
1 0.0101 0 <td></td> <td></td>		
11 12 0.2.373 1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		
11 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 1 00.000 0		
12 40.0103 1 40.0103 1 40.0103 1 1 1 40.0103 1 1 1 40.0103 1 1 1 40.0103 1 <td></td> <td>\pm</td>		\pm
		\pm
11 40.000 1 40.000 4 <t< td=""><td></td><td></td></t<>		
1 47.000 1 47.000 <td>井井</td> <td>-</td>	井井	-
1 40.3797		
		_
23 429.450 2 3 429.450 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	+++	\rightarrow
	++++	\rightarrow
	+++	
	+++-	++
20 429.5375		_
	+ $+$ $+$ $+$	\rightarrow
31 429.575	+++	
36 429.6125		_
37 429.6250		_
38 429.6375		
39 429.6500 X X X X X X X X X X		
	+++	\rightarrow
	+++	\rightarrow
	+++	++
	×	+
	+*+*+	-+-+
		<u> </u>
	\mathbb{R}	SR SF
	<u> </u>	s s s s s s s s s s s s s s s s s s s
	XXXX	зĸя
	YAA	~~¥
	+++	++
	×	
55 429.850 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	×	×
57 429.8750	•	
		_
51 429.4875 1 2 3 4 2 4 3 4 3	•	
9 03.475 0 0.5 0 0	••	
51 429.4875 1 2 3 4 2 4 3 4 3		•

ML7066

Electrical Characteristics

Absolute Maximum Ratings

Item	Symbol	Condition	Rating	Unit
Power supply voltage (I/O) (*1)	Vddio		-0.3~+4.6	V
Power supply voltage (RF) (*2)	VDD_RF		-0.3~+3.6	V
Regulator input voltage	VREGIN		-0.3~VDDIO+0.3	V
Digital input voltage	Vdin		-0.3~VDDIO+0.3	V
RF input voltage	VRFIN		-0.3~VDD_RF+0.3	V
Analog input voltage	VAIN		-0.3~VDDIO+0.3	V
Regulator output voltage	VREGOUT		-0.3~VDD_RF+0.3	V
Digital output voltage	Vdo	Ta=+25°C	-0.3~VDDIO+0.3	V
RF output voltage	Vrfo	VSS=0V	-0.3~VDD_RF+0.3	V
Analog output voltage	Vao		-0.3~VDDIO+0.3	V
Digital input current	lы		-10~+10	mA
RF input current	IRF		-2~+2	mA
Analog input current	IAI		-2~+2	mA
Digital output current	Ido		-10~+10	mA
RF output current	IRFO		-2~+2	mA
Analog output current	IAO		-2~+2	mA
Power dissipation	Pd	Ta=+25°C	660	mW
Storage temperature	Tstg	_	-55~+150	°C

*1: VDDIO pin *2: RF power supply pins: VDD_RF, VDD_MIX, VDD_IF, VDD_VCO, VDD_CP, and VDD_PLL pins

Recommneded Operation Conditions

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
Power supply voltage (I/O)	Vddio	VDDIO pin (*3)		2.1	3.0	3.6	V
Power supply voltage (RF)	VDD_RF	(*2) (*4) F	RX	1.95	2.1	2.3	V
		(*2) (*4)	ГΧ	1.92	2.1	2.3	V
Regulator input voltage	VREGIN	VREG_IN Pin (*3)		2.1	3.0	3.6	V
Operating temperature	Ta	—		-25	+25	+65	°C
Digital input rise time	Tir	Digital input pins (*5)		_	_	20	ns
Digital input fall time	tıF	Digital input pins (*5)		_		20	ns
Digital output load	CDL	All digital output pins				20	pF
Master clock	Fмск	XI pin (*20)		-4ppm	19.2	+4ppm	MHz
Master clock duty ratio	D мск	XI pin		45	50	55	%
Sub clock	Fextclk	EXTCLK pin (*21)		-80ppm	32.768	+80ppm	kHz
Sub clock duty ratio	DEXTCLK	EXTCLK pin		40	50	60	%
SCI clock input frequency	FSCLK	SCLK pin		0.1	2	8	MHz
SCI clock input duty ratio	DSCLK	SCLK pin		45	50	55	%
RF channel frequency1	FRF1	RF_OUT pin, RF_IN pin		426.0250		426.8375	MHz
		12.5kHz interval		720.0200		720.0070	
RF channel frequency2	Frf2	RF_OUT pin, RF_IN pin		429.1750	_	429.9250	MHz
	1.1012	12.5kHz interval		120.1700		120.0200	111112

*3: VDDIO=VREGIN

*4: The VREG_OUT pin should be connected to each RF power supply pin.

*5: Applies to the pins that are indicated as I, Is, Iu in the I/O column in the Pin Descriptions section.

*20: The input clock frequency deviation is shown in the following table.

*21: Reference value. The frequency accuracy of the sub clock only affects timers, and does not matter for the transmit/receive operation.

Reference clock frequency accuracy	21.4MHz quartz filter (BPF) characteristics	455kHz ceramic filter (BPF) characteristics
±4ppm	±6kHz	±6.0kHz
±10ppm	±6kHz	±7.5kHz
±20ppm	±6kHz	±7.5kHz
±40ppm	±6kHz	±7.5kHz
±60ppm	±6kHz	±7.5kHz

Table: Example of Input Clock Frequency and Receive Characteristics

You can use the PLL frequency adjustment function provided in this LSI to support a reference clock frequency with an accuracy worse than \pm 4ppm. When the accuracy of the reference clock frequency is worse than \pm 4ppm, you can adjust it to ensure the required frequency accuracy by the PLL frequency adjustment function.

In terms of the receive characteristics, the bandwidth of the external filter should be wide as shown in this table if the accuracy of the source reference clock frequency is worse than \pm 4ppm, which degrades the C/I characteristics.

In this table, the reference clock frequency accuracy includes the center frequency and the temperature variation.

The temperature variation of the reference clock frequency is uniformly assumed to be ± 20 ppm.

Current Consumption Specifications

(Operation power supply voltage: VDDIO=VREGIN=2.1V - 3.6V, Ta=-25 - +65°C)

		(,	<u> </u>
Item	Symbol	Condition	Min.	Тур. (*7)	Max.	Unit
Current consumption	Idds	Total-stop state	—	0.7	—	μA
(*6)	IDD1	Sleep state	—	4	_	μA
	IDD3 Idle state		—	2	—	mA
	IDD4 Receiv (*8)		—	15.5	—	mA
	IDD5	Transmitting state (*8)	—	29.5	_	mA

*6: The current consumption is the total current of the RF power supply pins (VDD_RF, VDD_MIX, VDD_IF, VDD_VCO, VDD_CP, and VDD_PLL pins) and the digital power supply pins (VDDIO and VREG_IN pins).

*7: The "Typ." condition is VDDIO = VREGIN =3.0V, 25°C.

*8: The value applies to the following conditions (a higher value may occur depending on the MCU operation): SCI interface clock is 2MHz; data transfer rate is 4800bps.

DC Common Characteristics

		_(Operation po	ower supply voltag	e: Vddio=Vregi	N=2.1V -	3.6V, Ta=-25 -	+65°C)
Item	Symbol	Cond	ition	Min.	Тур.	Max.	Unit
	VIH1	(*9)(*10)(*11) XI pi	n excluded	VDDIO X 0.75		Vddio	V
"H" level input voltage	VIH2	XI pin		VREGCORE X 0.9	—	VREGCORE	V
	VIL1	(*9)(*10)(*11) XI pi	n excluded	0		VDDIO X 0.1	V
"L" level input voltage	VIL2	XI pin		0		VREGCORE X 0.25	V
Schmitt trigger "H" level judgment threshold	VT+	(*10)		_	1.2	1.8	V
Schmitt trigger "L" level judgment threshold	VT-	(*10)		0.4	0.8	_	V
	lih1	VIH= VDDIO	(*9)(*10)(*11)	-2		2	μA
	Іін2	VIH= VREGOUT2	(*19)	-2	_	2.3	μA
Input leakage current	lil1	VIL=0V	(*9)(*10)	-2		2	μA
	IIL2	VIL=0V	(*11)	-200	-25	-5	μA
	IIL3	VIL=0V	(*19)	-2.3		2	μA
	Voh1	IOH=-100µA	(*13)	VDDIO - 0.2		Vddio	V
"H" level output voltage	Voh2	IOH=-4mA (VDDIO=	=2.7~3.6V) (* 13)	VDDIO x 0.8		Vddio	V
TT level output voltage	VOHZ	IOH=-4mA (VDDIO=	=2.1~2.7V) (* 1 3)	VDDIO x 0.7	_	Vddio	V
	Vонз	IOH=-100µA	(*18)	1.65		2.35	V
	Vol1	IOL=100µA	(*13)	0		0.2	V
"L" level output voltage	Vol2	IOL=4mA	(*13)	0	_	VDDIO x 0.2	V
	Vol3	IOH=-100µA	(*18)	0	_	0.45	V
	VREGOUT1	When VREG_COF (I REGOUT1=5µA)	RE pin is sleeping	1.2	1.7	2.2	V
Regulator output voltage	VREGOUT2	When VREG_COF transmitting, and re (I REGOUT2=5mA)		1.95	2.2	2.3	V
	Vregout3	When VREG_OUT transmitting and re		1.95	2.2	2.3	V
	CIN	Input pin	(*9)(*10)(*11)	—	6	—	pF
	Соит	Output pin	(*13)	—	9	_	рF
Input canacitanco	Crfi	RF input pin	(*14)	—	9	—	рF
Input capacitance	Crfo	RF output pin	(*15)	—	9	_	pF
	Саі	Analog input pin	(*16)	_	9	_	pF
	CAO	Analog output pin	(*17)	—	9	—	pF

(*9) Applies to the pins indicated as I in the I/O column in the Pin Descriptions section.

*10: Applies to the pins indicated as Is in the I/O column in the "Pin Descriptions" section.

*11: Applies to the pins that are indicated as IU in the I/O column in the Pin Descriptions section.

*13: Applies to the pins that are indicated as O in the I/O column in the Pin Descriptions section, except for the XO pin.

*14: Applies to the pins that are indicated as IRF in the I/O column in the Pin Descriptions section.

*15: Applies to the pins that are indicated as ORF in the I/O column in the Pin Descriptions section.

ML7066

LAPIS Semiconductor Co., Ltd.

*16: Applies to the pins that are indicated as IA in the I/O column in the Pin Descriptions section.

*17: Applies to the pins that are indicated as OA in the I/O column in the Pin Descriptions section.

*18: XO pin.

*19: XI pin.

LAPIS Semiconductor Co., Ltd.

ML7066

RF Characteristics

Data rate	:	1200/2400/4800 bps
Modulation method	:	Binary FSK
Channel interval	:	12.5kHz
Frequency range	:	426.0250MHz~426.8375 MHz
	:	429.1750MHz~429.9250 MHz
Power supply voltage (RF)	:	1.95V - 2.35V (supplied from VREG_OUT)
Operating temperature	:	-25°C~65°C

Item	Condition	Min.	Тур.	Max.	Unit
Transmitting power	at 10mW Mode	5	10	12	mW
Transmitting power	at 1mW Mode	0.5	1	1.2	mW
Transmit adjacent channel leakage	RBW=±4.25kHz	_	_	40	dBc
Occupied bandwidth	99%	4	_	8.5	kHz
Frequency deviation		2	_	_	kHz
Transmit spurious emissions		_	_	2.5	μW
	BER<10 ⁻² Fdev:±1.5kHz at 2400bps		_	-113	dBm
Receiver sensitivity	BER<10 ⁻⁶ Fdev::±1.5kHz at 2400bps	_	_	-107	dBm
Maximum input level	BER<10 ⁻⁶ Fdev::±1.5kHz at 2400bps	0	_	_	dBm
Receiver spurious response	Desired signal : Reference sensitivity + 3dB Interfering signal: CW BER<1%	40	_	_	dB
Receiver C/I adjacent interference 12.5kHz offset	Desired signal: Reference sensitivity + 3dB Interfering signal: Modulation wave BER<1%	30	_	_	dB
Receiver C/I alternate interference 25.0kHzoffset	Desired signal: Reference sensitivity + 3dB Interfering signal: Modulation wave BER<1%	30	_	_	dB
Receiver intermodulation characteristics	Desired signal: Reference sensitivity + 3dB Interfering signal: CW adjacent channel and second adjacent channel. BER<1%	40	-	-	dB
Receiver spurious emissions		_	_	4	nW
RSSI dynamic range		40		_	dB
RSSI minimum sensitive level				-105	dBm
State transition time: transmitting/receiving or receiving/transmitting				1	msec

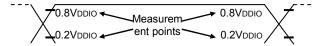
(Notes)

In the Manchester encoding mode, the transmission rates of the baseband (DIO) and on the radio circuit (antenna end) are 600/1200/2400bps and 1200/2400/4800bps respectively.

These RF characteristics shall be measured using the antenna terminal on an application circuit.

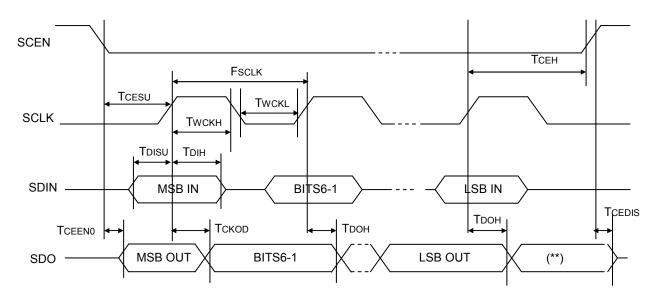
.

Synchronous Communication Interface (SCI) Characteristics

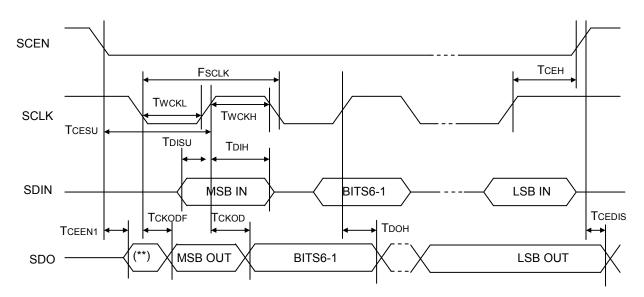

		(Op	peration pow	er supply vo	oltage: 2.1V -	3.6V, Ta=-	–25 - +65°C)	
Item	Symbol	Condition		Min.	Тур.	Max.	Unit	
SCLK clock frequency	FSCLK	except suspend		0.1	2	8	MHz	
SCEN input setup time	TCESU			125	—		ns	
SCEN input hold time	Тсен			125	_	—	ns	
SCLK "H" pulse width	Тwскн			50	_	—	ns	
SCLK "L" pulse width	TWCKL			50	—	—	ns	
SDIN input setup time	TDISU		Load	5	—	—	ns	
SDIN input hold time	Тон		capacita nce	15	—	—	ns	
SCEN output on able time	TCEEN0	Positive Clock	CL=	0	—	40	ns	
SCEN output enable time	TCEEN1	Negative Clock		50pF	0	_	20	ns
SCEN assertion interval	TCEITVL		0001	1	—	—	us	
SCEN output disable time	TCEDIS			_	_	25	ns	
SCI K output dolov time	Тскор			_		100	ns	
SCLK output delay time	TCKODF		1	_		40	ns	
SDO output hold time	Трон			50	_	_	ns	

 $\alpha \alpha \sqrt{T}$

(Notes)


All the timings are measured at the 20% and 80% levels of VDDIO.

Measurement points



All the following measurement points are equivalent to the above ones.

When SCLK is a positive clock

When SCLK is a negative clock

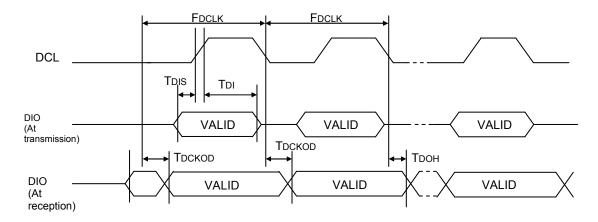
(Notes)

The SINT pin signal occurs at the timing independent of the signals of other clock synchronous serial interface related pins.

The above diagrams show the case of input/output from the MSB. It can be changed to input/output from the LSB through the MODE pin setting.

**: Although the output value is not specified, MSB data is output in the case of input/output from the MSB indicated above.

For input/output from the LSB, LSB data is output.

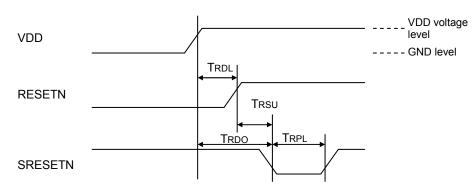

Transmit/Receive Data Interface Characteristics

(Operation power supply voltage: 2.1V - 3.6V, Ta=-25 - +65°	C)	
---	----	--

Item	Symbol	Cond	dition	Min.	Тур.	Max.	Unit
DIO input setup time	TDISU	At transmission		20			ns
DIO input hold time	TDIH	At transmission	Load capacitance	20	_		ns
DCLK output delay time	Трскор	At reception	CL= 50pF	—	_	40	ns
DIO output hold time	Трон	At reception		15			ns

(Notes)

All the timings are measured at the 20% and 80% levels of VDDIO. The DCLK clock frequency FDCLK is 600Hz / 1200Hz / 2400Hz / 4800Hz.



Reset Characteristics

		(Operation po	ower supply v	oltage: 2.1V	- 3.6V, Ta=-	–25 - +65°C)
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
RESETN delay time (at power on)	Trdl	After all power supply pins are powered on	1		—	ms
SRESETN pulse time	TRPLS	RESETN=1	200		—	ns
SRESETN delay time (when operating)	Trdop		1		_	ms
RESETN-SRESETN setup time (when operating)	Trsu		10	_	_	ns

(Notes)

All the timings are measured at the 20% and 80% levels of $\mathsf{V}\mathtt{DDIO}.$

Power ON and Power Down Characteristics

(Operation power supply voltage: 2.1V - 3.6V, Ta=-25 - +65°C)

			11.2	0		
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Power-on time difference	Tpwon	At power on between VDDIO - VREG_IN pins	_	1	5	ms
Power-off time difference	Tpwoff	At power off between VDDIO - VREG_IN pins	_	1	5	ms

(Notes)

No specification for the power-on order. However, each reset time after power on regulated by the RESETN pin must be satisfied.

Timings are measured at the 20% and 80% levels of the minimum value of the power supply voltage of each power supply pin.

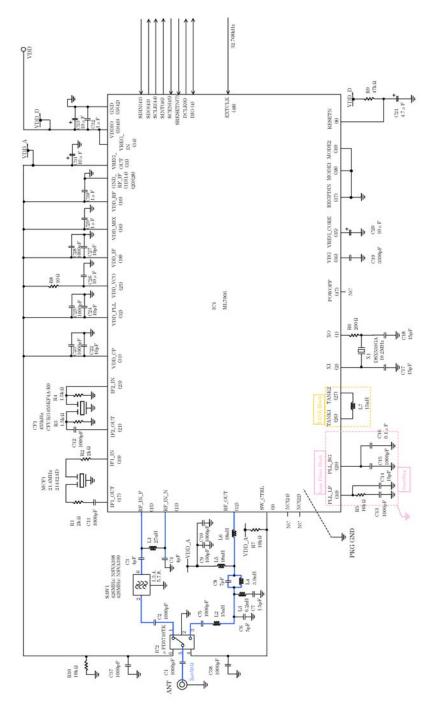
Regulator Characteristics

(Operation power	supply voltage	: 2.1V - 3.6V	, Ta=—25 - +65°C)
(oporation portor	supply tonage		, 10 20 00 0)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Regulator power-on	Topoon	At power on		F	10	
output response time	TREGON	VREG_OUT pin	_	5	10	μs
Regulator power-off	Theore	At power off		F	10	
output response time	TREGOFF	VREG_OUT pin	_	5	10	μs
Pogulator voltago input timo	Tregin		5			m 0
Regulator voltage input time	TREGIN	_	5	-	-	ms

(Notes)

TREGON is the time from when the VREG_IN pin reaches 2.2V to when the 2.1V voltage is output from the VREG_OUT pin at power-on.

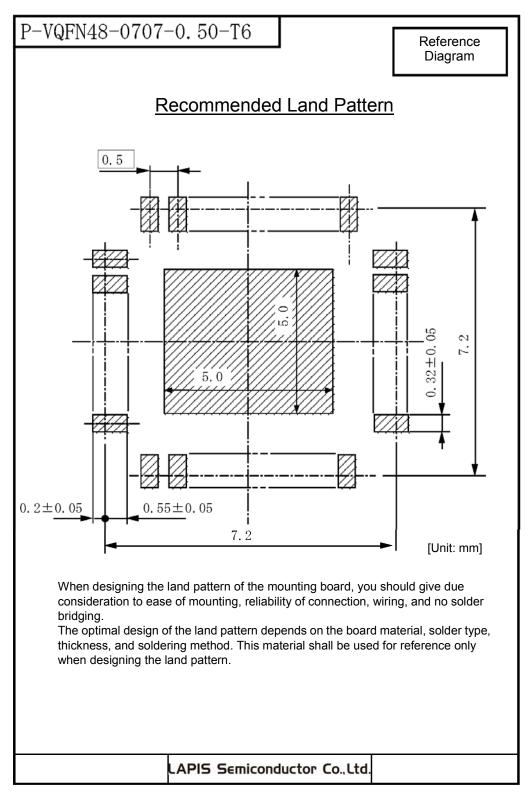

TREGOFF is the time from when the VREG_IN pin reaches 2.2V to when the output level of the VREG_OUT pin begins falling at power-off. Any required voltage output from the regulator should not be used after this time elapsed. TREGIN is the rise time ($0V \rightarrow VDD$ level) of the voltage applied to the VREG_IN pin at power-on.

Application Circuit

The following shows the typical application circuit. This circuit may vary depending on the shipment time or other factor. This This circuit and componet list are used for ML066 evaluation board.

LAPIS Semiconductor recommended that choosing and finalize the best component values by evaluationg on the target board.

ML7066 Evaluation Board Circuit

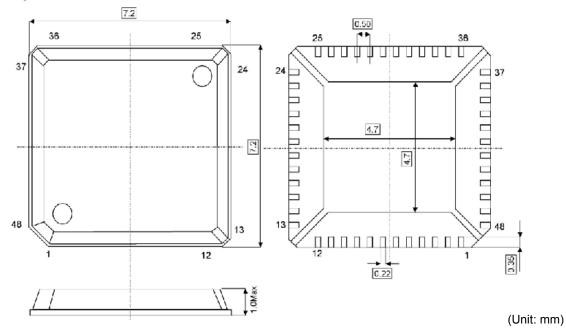

Component List of ML7066 Evaluation Board

Parts No.	Туре No.	Vendors	Remarks
IC1	ML7066	LAPIS Semiconductor	
IC2	μPD5710TK	NEC	CMOS SPDT SW
SAW1	NSVA398	Japan Radio	426MHz band SAW Filter
	NSVA399		429MHz band SAW Filter
MCF1	21412AD	Daishinku	Quartz filter 21.4MHz
CF1	CFUKG455KF4A-R0	Murata Manufacturing	Ceramic filter 455kHz
X1	DSX530GA	Daishinku	Crystal oscillator 19.2MHz
C1	1000pF	Murata Manufacturing	GRM1882 or equivalent
C2	1000pF	Murata Manufacturing	GRM1882 or equivalent
C3	4pF	Murata Manufacturing	GRM1882 or equivalent
C4	4pF	Murata Manufacturing	GRM1882 or equivalent
C5	1000pF	Murata Manufacturing	GRM1882 or equivalent
C6	5pF	Murata Manufacturing	GRM1882 or equivalent
C7	1.5pF	Murata Manufacturing	GRM1884 or equivalent
C8	7pF	Murata Manufacturing	GRM1882 or equivalent
C9	100pF	Murata Manufacturing	GRM1882 or equivalent
C10	1000pF	Murata Manufacturing	GRM1882 or equivalent
C11	1000pF	Murata Manufacturing	GRM1882 or equivalent
C12	1000pF	Murata Manufacturing	GRM1882 or equivalent
C12	1000pF	Murata Manufacturing	GRM1882 or equivalent
C13 C14	15pF	Murata Manufacturing	GRM1882 or equivalent
-		°	GRM1882 or equivalent
C15	1000pF	Murata Manufacturing	
C16	0.1µF	Murata Manufacturing	GRM1882 or equivalent
C17	15pF	Murata Manufacturing	GRM1882 or equivalent
C18	15pF	Murata Manufacturing	GRM1882 or equivalent
C19	3300pF	Murata Manufacturing	GRM1882 or equivalent
C20	10µF	NEC	E/SV line-up or equivalent
C21	4.7µF	NEC	E/SV line-up or equivalent
C22	10pF	Murata Manufacturing	GRM1882 or equivalent
C23	1000pF	Murata Manufacturing	GRM1882 or equivalent
C24	10pF	Murata Manufacturing	GRM1882 or equivalent
C25	1000pF	Murata Manufacturing	GRM1882 or equivalent
C26	10µF	Murata Manufacturing	GRM188 or equivalent
C27	10pF	Murata Manufacturing	GRM1882 or equivalent
C28	1000pF	Murata Manufacturing	GRM1882 or equivalent
C29	1µF	Murata Manufacturing	GRM1882 or equivalent
C30	1µF	Murata Manufacturing	GRM1882 or equivalent
C31	10µF	NEC	E/SV line-up or equivalent
C32	1µF	Murata Manufacturing	GRM1882 or equivalent
C33	10µF	NEC	E/SV line-up or equivalent
C34	1000pF	Murata Manufacturing	GRM1882 or equivalent
C35	1000pF	Murata Manufacturing	GRM1882 or equivalent
L1	27nH	Murata Manufacturing	LQG18 or equivalent
L2	15nH	Murata Manufacturing	LQG18 or equivalent
L3	6.2nH	Murata Manufacturing	LQW18AN6N2D00
L4	3.9nH	Murata Manufacturing	LQW18AN3N9D10
L5	18nH	Murata Manufacturing	LQG18 or equivalent
L6	18nH	Murata Manufacturing	LQG18 or equivalent
L7	15nH	Murata Manufacturing	LQW18AN15NJ10
R1	2kΩ	KOA	RK73B 1J or equivalent
R2	2kΩ	KOA	RK73B 1J or equivalent
R3	1.5kΩ	КОА	RK73B 1J or equivalent
R4	1.5kΩ	КОА	RK73B 1J or equivalent
R5	1.5kΩ	KOA	RK73B 1J or equivalent
R6	200Ω	KOA	RK73B 1J or equivalent
 R7	10kΩ	KOA	RK73B 1J or equivalent
R8	10κΩ	KOA	RK73B 1J or equivalent
	47kΩ	KOA	RK73B 1J or equivalent
R9			

(* 1): This resistor can be inserted anywhere in the connected power line, but mandatory. In some past cases, ML7066 could not start up successfully without this resistor.

Package Information

Recommended PCB Layout



FEDL7066-01

ML7066

Package Dimensions

48 Pin VQFN

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Revision History

Document No.	Date	Pa Previous Edition	ge Current Edition	Description
FEDL7066-01	Apr.28, 2011	_	_	Edition 1

NOTE

Any editorial changes are not listed up.

NOTICE

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2011 LAPIS Semiconductor Co., Ltd.

LAPIS Semiconductor Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/