

HT6026 Remote Control Encoder

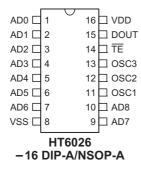
Features

- Operating voltage: 4V~18V
- · Low standby current
- Low power and high noise immunity CMOS technology
- 3⁹ difference codes

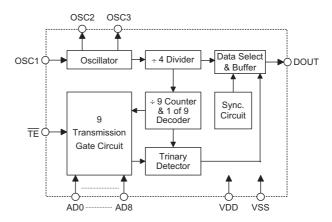
Applications

- Burglar alarm system
- · Smoke and fire alarm system
- Garage door controllers
- Car alarm system

- · Two transmission words minimum
- · Built-in oscillator needs only 5% resistor
- Interface with RF or infrared transmission medium
- Minimal external components
- 16-pin DIP/NSOP package
- Security system
- · Cordless telephones
- · Other remote control systems

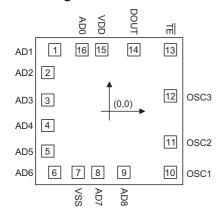

General Description

The HT6026 is a CMOS LSI encoder designed for use in remote control system. It is capable of encoding 9 bits of information which consists of N address bits and 9□N data bits. Each address/data input is externally trinary programmable by external switches. The programma-


ble address/data is transmitted along with the header bits via an RF or an infrared transmission medium upon receipt of a trigger signal $(\overline{\text{TE}})$.

The HT6026 is pin compatible with the MC145026.

Pin Assignment



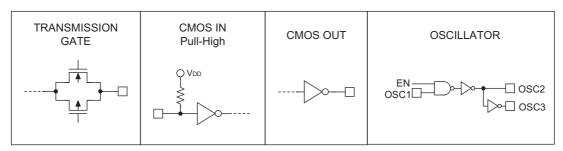
Block Diagram

Pad Assignment

Chip size: $1650 \times 1680 \; (\mu m)^2$

Pad Coordinates

Unit: μm


Pad No.	Х	Υ	Pad No.	х	Υ
1	-598.00	689.00	9	160.00	-687.00
2	-674.00	433.00	10	670.00	-687.00
3	-674.00	126.00	11	670.00	-347.00
4	-674.00	-162.00	12	670.00	172.00
5	-674.00	-449.00	13	670.50	689.50
6	-598.00	-687.00	14	270.00	689.00
7	-342.00	-687.00	15	-84.00	689.00
8	-127.00	-687.00	16	-299.00	689.00

 $^{^{\}star}$ The IC substrate should be connected to VSS in the PCB layout artwork.

Pin Description

Pin No.	Pin Name	I/O	Internal Connection	Description
1~7	AD0~AD6	ı	Transmission Gate	Input pins for address/data AD0~AD6 setting They can be externally set to V _{DD} , V _{SS} or left open
8	VSS	_	_	Negative power supply, ground
9~10	AD7~AD8	ı	Transmission Gate	Input pins for address/data AD7~AD8 setting They can be externally set to V _{DD} , V _{SS} or left open
11 12 13	OSC1 OSC2 OSC3	1 0 0	Oscillator	Oscillator input pin
14	TE	ı	CMOS IN Pull-High	Transmission enable, active low
15	DOUT	0	CMOS OUT	Encoder data serial transmission output
16	VDD	_	_	Positive power supply

Approximate Internal Connection Circuits

Rev. 1.10 2 February 20, 2009

Absolute Maximum Ratings

Supply Voltage	V_{SS} =0.3V to V_{SS} +24V	Storage Temperature	50°C to 125°C
Input Voltage	V_{SS} -0.3V to V_{DD} +0.3V	Operating Temperature	20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

Ta=25°C

Complete al	Symbol Parameter		Test Conditions	B.d.:	-		11
Symbol	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	_	_	4	_	18	V
	Ot and the Original to	5V	On all later at a ma	_	0.1	0.3	μА
I _{STB}	Standby Current	15V	Oscillator stops	_	0.1	0.5	μΑ
	0	5V	No load, f _{OSC} =18kHz	_	500	900	μА
I _{DD}	Operating Current	15V	No load, f _{OSC} =22kHz	_	2000	3000	μΑ
		5V	\/ -0.0\/ (Causes)	-1.0	-1.7	_	mA
		15V	V _{OH} =0.9 V _{DD} (Source)	-8.0	-14.0	_	mA
I _{DOUT}	Output Drive Current	5V	V _{OL} =0.1 V _{DD} (Sink)	0.8	1.5	_	mA
		15V		5.0	10.0	_	mA
V _{IH}	"H" Input Voltage	_	_	0.7V _{DD}	_	V _{DD}	V
V _{IL}	"L" Input Voltage	_	_	0	_	0.3V _{DD}	V
	==	5V	\/— 0\/	_	800	_	kΩ
KTE	R _{TE} TE Pull-High Resistance		V _{TE} =0V	_	250	_	kΩ
		5V	R_{EXT} =10k Ω ,	_	18	_	kHz
fosc Oscillator Frequency	15V	C_{EXT} =2000PF R_{S} =20k Ω	_	22	_	kHz	

Functional Description

Operation

The HT6026 encoder begins a one-word transmission cycle upon receipt of a transmission enable ($\overline{\text{TE}}$, active low). This cycle will repeat itself as long as the transmission enable ($\overline{\text{TE}}$) is held low. Once the transmission enable returns high, the encoder output completes its final N×2 word cycle, and then stops as shown in Figure 1. The total number of transmission cycles allowed is always adjusted to an even number automatically.

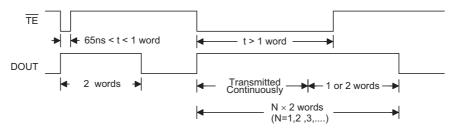


Figure 1. Transmission timing

Rev. 1.10 3 February 20, 2009

Information Word

An information word consists of 2 periods as shown:

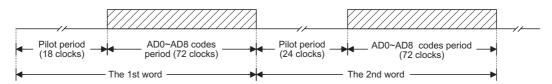
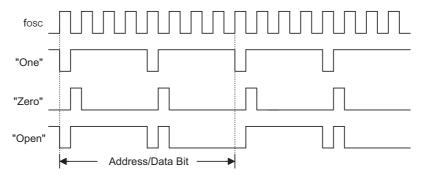
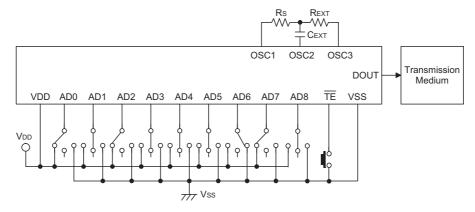


Figure 2. Composition of information

Address/data Waveform

Each programmable address/data pin can be externally set to one of the following three logic states:




Figure 3. Address/Data bit waveform

Address/Data Programming (Preset)

The status of each address/data pin can be individually pre-set to logic "high", "low" or "floating". If a transmission enable signal is applied, the encoder scans and transmits the status of 9-bit address/data serially in the order AD0 to AD8. But if the trigger signal is not applied, the chip only consumes a standby current which is less than $1\mu A$ (for $V_{DD}\text{=-}5V)$.

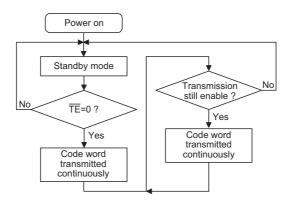
The address pins are usually pre-set to transmit data codes with their own particular security codes by the DIP switches or PCB wiring, while the data is selected by the push button or electronic switches.

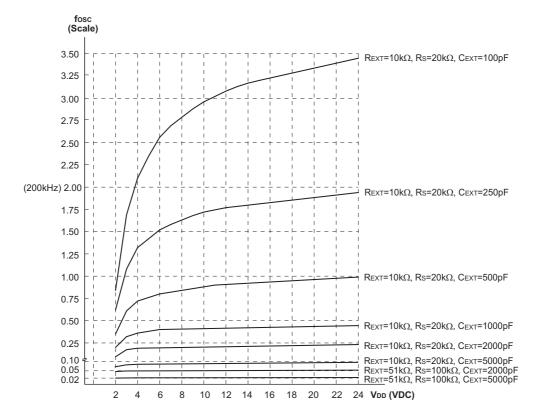
The following figure demonstrates an application using the HT6026:

The transmitted information is as listed:

Pilot	AD0	AD1	AD2	AD3	AD4	AD5	AD6	AD7	AD8
Sync.	1	Z	1	Z	Z	Z	0	1	Z

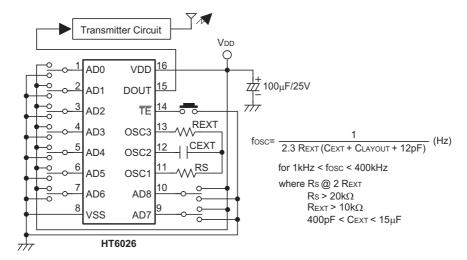
Z: floating


Rev. 1.10 4 February 20, 2009

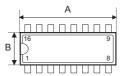

Transmission Enable

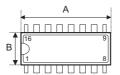
Transmission is enabled by applying a low signal to the $\overline{\text{TE}}$ pin. The HT6026 is enabled and outputs address/data codes from DOUT pin when the $\overline{\text{TE}}$ is set to "low" and more than 65ns.

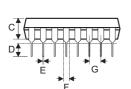
Flowchart


Oscillator Frequency vs Supply Voltage

Rev. 1.10 5 February 20, 2009


Application Circuit





Package Information

16-pin DIP (300mil) Outline Dimensions

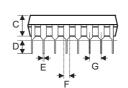


Fig1. Full Lead Packages

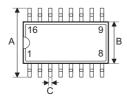
Fig2. 1/2 Lead Packages

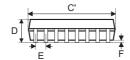
• MS-001d (see fig1)

Symbol	Dimensions in mil				
Symbol	Min.	Nom.	Max.		
A	780	_	880		
В	240	_	280		
С	115	_	195		
D	115	_	150		
Е	14	_	22		
F	45	_	70		
G	_	100	_		
Н	300	_	325		
I	_	_	430		

• MS-001d (see fig2)

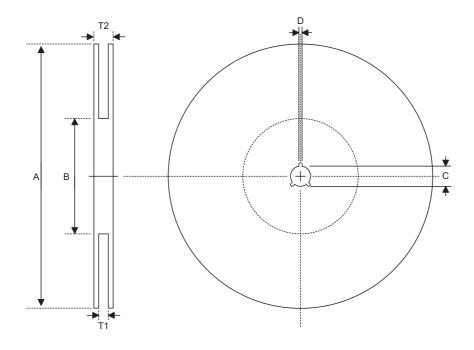
Cumbal	Dimensions in mil				
Symbol	Min.	Nom.	Max.		
Α	735	_	775		
В	240	_	280		
С	115	_	195		
D	115	_	150		
Е	14	_	22		
F	45	_	70		
G	_	100			
Н	300	_	325		
I	_	_	430		




• MO-095a (see fig2)

Symbol	Dimensions in mil				
Symbol	Min.	Nom.	Max.		
Α	745	_	785		
В	275	_	295		
С	120	_	150		
D	110	_	150		
E	14	_	22		
F	45	_	60		
G	_	100	_		
Н	300	_	325		
I	_	_	430		

16-pin NSOP (150mil) Outline Dimensions


• MS-012

Symbol	Dimensions in mil				
Symbol	Min.	Nom.	Max.		
Α	228	_	244		
В	150	_	157		
С	12	_	20		
C'	386	_	394		
D	_	_	69		
E	_	50	_		
F	4	_	10		
G	16	_	50		
Н	7	_	10		
α	0°	_	8°		

Product Tape and Reel Specifications

Reel Dimensions


SOP 16N (150mil)

Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	330.0±1.0
В	Reel Inner Diameter	100.0±1.5
С	Spindle Hole Diameter	13.0 +0.5/-0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	16.8 +0.3/-0.2
T2	Reel Thickness	22.2±0.2

Rev. 1.10 10 February 20, 2009

Carrier Tape Dimensions

SOP 16N (150mil)

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	16.0±0.3
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	7.5±0.1
D	Perforation Diameter	1.55 +0.1/-0.0
D1	Cavity Hole Diameter	1.50 +0.25/-0.0
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.5±0.1
В0	Cavity Width	10.3±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.30±0.05
С	Cover Tape Width	13.3±0.1

Rev. 1.10 11 February 20, 2009

Copyright © 2009 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.10 12 February 20, 2009