

FEDL22Q394-02

Issue Date: Jun. 06, 2014

ML22Q394

ADPCM Speech Synthesis LSI

GENERAL DESCRIPTION

•Speech ROM capacity

ML22394 is voice synthesis LSI with built-in Flash memory that stores speech data.

This LSI includes edit ROM, ADPCM2 decoder, low pass filter and D-class speaker amplifier. Also, ML22394 support the I2C interface.

By integrating all the functions required for voice output into a single chip, this LSI can be more easily incorporated in compact portable devices.

• Built-in memory capacity and maximum playback time:

Product name	POM congoity	Maximum playback time (sec) (at f _s =8.0kHz)				
	ROM capacity	4bitADPCM2	16bitPCM			
ML22Q394-XXX	692 Kbits	22.1	5.5			

Notes: ROM capacity shows the numerical value of only a voice area.

• Voice synthesis method: 4-bit ADPCM2

8-bit Nonlinear PCM 8-bit PCM, 16-bit PCM

Can be specified for each phrase. ML22Q394: 692-Kbit Flash

• Sampling frequency(Fs): 6.4 / 8.0 / 10.7 / 12.8 / 16.0 / 21.3 / 25.6 / 32.0 kHz

 f_s can be specified for each phrase.

•Analog output: Built-in D-class amplifier

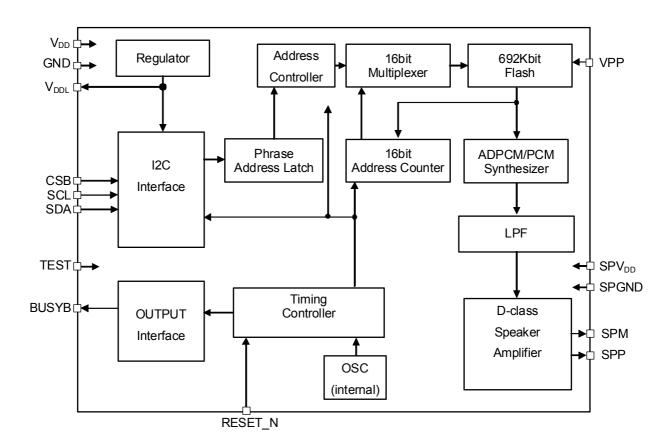
•CPU command interface: I2C interface
• Maximum number of phrases: 30 phrases

•Disconnection detection function /Speaker pin short detection function

• Source oscillation frequency: 4.096 MHz(internal)

Power supply voltage:
 Flash memory rewritable time:
 Operating temperature range:
 Package:
 2.0 to 5.5V
 80 times
 -40 to +85°C
 16-pin plastic SSOP

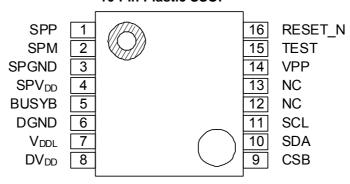
• Product name: ML22Q394-NNNMB, ML22Q394-xxxMB(xxx: ROM code No.)



The following table shows the differences among the other speech synthesis LSIs.

Parameter	ML22330/	ML22Q374	ML22Q384	ML22Q394
CPU interface	ML22Q330 Serial	←	Event input	I2C
Memory capacity	640Kbit	692Kbit		—————————————————————————————————————
Memory capacity	4-bit ADPCM2	092NJIL	←	
Playback method	8-bit nonlinear PCM 8-bit straight PCM 16-bit straight PCM	←	←	←
Maximum number of phrases	30	←	←	←
Sampling frequency (kHz)	6.4/8.0/10.6/ 12.0/12.8/16.0/ 21.3/25.6/32.0	←	←	←
Clock frequency	4.096MHz (with a built-in crystal oscillator circuit)	4.096MHz (internal oscillation)	←	←
Low-pass filter	FIR interpolation filter	←	←	←
Speaker driving amplifier	Built-in AB-Class 0.7W $(8\Omega, DV_{DD} = 5 V)$	Built-in D-Class 1.0W $(8\Omega, DV_{DD} = 5 V)$	←	←
Edit ROM function	Yes	←	←	←
Volume control	32 levels	←	←	←
Silence insertion	Yes 20 ms to 1024 ms (4 ms/step)	←	←	←
Repeat function	Yes	←	←	←
Power supply voltage	2.3 V to 5.5 V	2.0 V to 5.5 V	←	←
Operating temperature range	–40 to +85°C	←	←	←
Package	30-pin SSOP	16-pin SSOP	←	←

BLOCK DIAGRAMS (ML22Q394-NNN)



PIN CONFIGURATIONS (TOP VIEW)

(ML22Q394-NNNMB/ML22394-xxxMB)

16-Pin Plastic SSOP

NC: Unused pin

PIN DESCRIPTION

Pin	Symbol	I/O	Initial value (At the RESET_N Input)	Initial value (At standby)	Description
1	SPP	0	Hi-Z	Hi-Z	Positive(+) output pin of the speaker amplifier built-in
2	SPM	0	Hi-Z	Hi-Z	Negative(-) output pin of the speaker amplifier built-in.
3	SPGND	_	_	_	Ground pin for the speaker amplifier.
4	SPV _{DD}		_	_	Power supply pin for the speaker amplifier. Connect a bypass capacitor of 1µF or more between this pin and SPGND pin.
5	BUSYB	0	Hi-Z	1	BUSY output pin. When BUSYB use mode is set, the "L" level is outputted during playback. At the time of a disconnection detection function, when disconnection is detected, the "L" level is outputted. In addition, when BUSYB use mode is not set, the initial value is outputted.
6	DGND	_	_	_	Digital ground pin.
7	V_{DDL}	1	_	_	Regulator output pin for internal logic circuitry. Connect a capacitor of 10µF or more between this pin and DGND pin
8	DV _{DD}	-	_	_	Power supply pins for logic circuitry. Connect a capacitor of 1µF or more between this pin and DGND pin.
9	CSB	-	1	1	Chip select pin, when CSB use mode is set. At the "L" level, data input is available. When CSB use mode is not set, this pin should be fixed to "H" level od "L" level.
10	SDA	Ι	1	1	Input pin for I2C serial data. Use for setting the mode of write and writing address, writing data. This pin should be connected to pull-up resistor.
11	SCL	I	1	1	Clock input pin for I2C serial interface. This pin should be connected to pull-up resistor.
14	VPP				Power supply pin for rewriting Flash memory. Fix this pin to GND except when rewriting Flash memory.
15	TEST	I	0	0	Test pin. Fix this pin to a DGND level.
16	RESET_N	1	0	1	At the "L" level, the LSI enters initial state. After the power supply voltage is stable, drive this pin to "H" level.

ABSOLUTE MAXIMUM RATINGS

(DGND = SPGND = 0 V)

			(50115	0. 0.12 0.7
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	DV_DD		-0.3 to +7.0	V
Speaker power supply voltage	SPV _{DD}		-0.3 to +7.0	V
Internal logic power supply voltage	V_{DDL}	Ta=25°C	-0.3 to +3.6	V
Flash power supply voltage	VPP		-0.3 to +9.5	V
Input voltage	V _{IN}		-0.3 to DV _{DD} +0.3	V
Power dissipation	P _D		1	W
Output short-circuit	I _{SC1}	except SPP pin, SPM pin	-12 to +11	mA
current	I _{SC2}	SPP pin, SPM pin	300	mA
Storage temperature	T _{STG}	_	−55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

(DGND = SPGND = 0 V)

			(DOI10	- 01 011D - 0 V)
Parameter	Parameter Symbol		Range	Unit
Dower aupply voltage	DV_DD	_	2.0 to 5.5	V
Power supply voltage	DADD	Flash memory write	2.7 to 5.5	V
Speaker power supply voltage	SPV _{DD}	_	2.0 to 5.5	V
Flash power supply voltage	V _{PP}	Flash memory write	7.7 to 8.3	V
Flash memory rewrite cycles	N —		80	_
Operating temperature	T _{OP1}	_	-40 to +85	°C
	T _{OP2}	Flash memory write	0 to +40	

ELECTRICAL CHARACTERISTICS

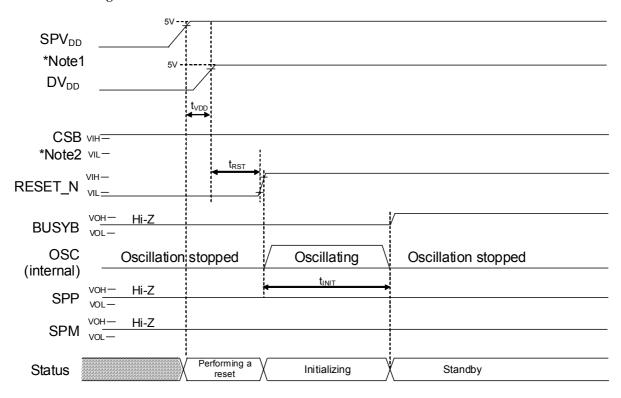
DC Characteristics		$DV_{DD} = SPV_{DD} = 2.0 \text{ to}$	5.5 V, DGND =	= AGND = 0	V, Ta = –40 t	o +85°C
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" input voltage	V _{IH}	_	$0.7 \times DV_{DD}$		DV_DD	V
"L" input voltage	V _{IL}	_	0	_	$0.3 \times DV_{DD}$	V
"H" output voltage 1	V _{OH1}	$I_{OH} = -0.5 \text{ mA}$	DV _{DD} -0.5	_	_	V
"L" output voltage 1	V _{OL1}	I _{OL} = 0.5 mA	_	_	0.5	V
"H" input current 1	I _{IH1}	$V_{IH} = DV_{DD}$	_	_	1	μA
"H" input current 2	I _{IH2}	$V_{IH} = DV_{DD}$ TEST pin	0.02	0.3	1.5	mA
"L" input current 1	I _{IL1}	V _{IL} = DGND	-1	_	_	μA
"L" input current 2	I _{IL2}	V _{IL} = DGND RESET_N pin	-1.5	-0.3	-0.02	mA
"L" input current 3	I _{IL3}	V _{IL} = DGND CSB Pull-up input	-1.5	-0.3	-0.02	mA
"H" output current 1	I _{ooH1}	$V_{OH} = DV_{DD} = SPV_{DD}$ (High impedance) BUSYB pin, SPP pin, SPM pin	_	_	1	μΑ
"H" output current 2	I _{ooH2}	V _{OH} = DV _{DD} (Nch Open drain) BUSYB pin	_	_	1	μΑ
"L" output current 1	I _{ooL1}	V _{OL} = DGND = SPGND (High impedance) BUSYB pin, SPP pin, SPM pin	V _{OL} = DGND = SPGND (High impedance) BUSYB pin, SPP pin,		_	μΑ
"L" output current 1	I _{ooL2}	V _{OL} = DGND (Pch Open drain) BUSYB pin	-1	_	_	μΑ
Supply current during	I _{DD1}	No output load, DV _{DD} = 3.0V	_	4.0	6.0	A
playback	I _{DD2}	No output load, DV _{DD} = 5.0V	_	6.0	10	mA
Awaiting command supply current	I _{DDC1}	$DV_{DD} = SPV_{DD} = 5.0V$		3.0	5.0	mA
Standby supply current	I _{DDS1}	Ta = -40 to +40°C	_	0.5	3.0	μA
	I _{DDS2}	Ta = -40 to +85°C		0.5	8.0	μΑ
Source oscillation	fosc	Ta = -10 to +50°C	4.034	4.096	4.158	MHz
frequency	1030	Ta = -40 to +85°C	3.973	4.096	4.219	1711 12

Characteristics of Analog Circuitry

 DV_{DD} = SPV_{DD} = 2.0 to 5.5 V, DGND = SPGND = 0 V, Ta = -40 to $+85^{\circ}C$

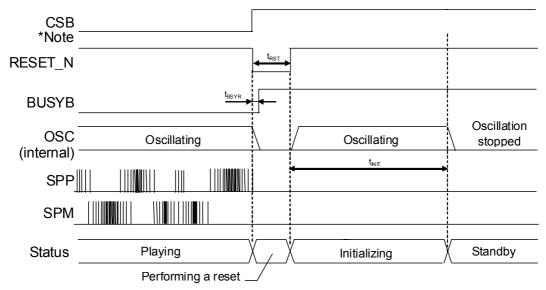
			7 0.0 V, DOIND	- 01 01 1 D - 0	v, 14 – +0 to	.00 0
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
SPM, SPP output load resistance	R _{LSP}	_	8	_	_	Ω
Speaker amplifier output power	P _{SPO}	SPV _{DD} = 5.0V, f = 1kHz R _{SPO} = 8Ω , THD \geq 10%	_	1.0	_	W

AC Characteristics

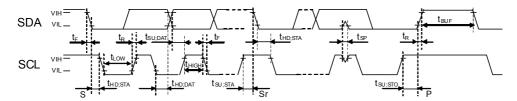

 DV_{DD} = SPV_{DD} = 2.0 to 5.5 V, DGND = SPGND = 0 V, Ta = -40 to +85°C Parameter Symbol Condition Min. Тур. Max. Unit RESET N input pulse width 100 t_{RST} _ μS Start time SPV_{DD} after starting DV_{DD} t_{VDD} 0 ns Initialization time after reset release 20 t_{INIT} ms BUSYB change time from "L" to "H",after 500 t_{BSYR} ns RESET_N fall edge I2C Fast mode 400 SCL clock frequence t_{SCL} 0 kHz Hold time (repeated) START condition I2C Fast mode 0.6 thd;sta μS After this period, the first clock pulse is generated. SCL "L" level pulse width t_{LOW} I2C Fast mode 1.3 นร SCL "H" level pulse width I2C Fast mode 0.6 t_{HIGH} μS Setup time for repeated START condition I2C Fast mode 0.6 t_{SU;STA} μS Data hold time: For I2C bus devices I2C Fast mode 0 0.9 t_{HD;DAT} μS I2C Fast mode 100 Data setup time t_{SU;DAT} ns SDA and SCL signal rise time I2C Fast mode 20 300 t_{r} ns SDA and SCL signal fall time $t_{\rm f}$ I2C Fast mode 20 300 ns STOP condition setup time I2C Fast mode 0.6 $t_{SU;STO}$ μS Bus free time between STOP condition and START I2C Fast mode 1.3 t_{BUF} μS condition Capacitive load for each bus line C_b I2C Fast mode 400 рF Noise margin at a "L" level in each device $0.1 \times$ V_{nl} I2C Fast mode ٧ connected (including hysteresis) $\mathsf{DV}_{\mathsf{DD}}$ Noise margin at a "H" level in each device 0.1× V $V_{nH} \\$ I2C Fast mode connected (including hysteresis) $\mathsf{DV}_{\mathsf{DD}}$ Pulse width of spikes which must be suppressed I2C Fast mode n 50 ns by the input filter SDA reception possible time, after an oscillation 2 t_{PUP1} ms Playback time 20 t_{VCYC} ms BUSYB change time from "H" to "L", after a 300 t_{CB} иS command is inputted CSB "H" level pulse width CSB use mode 50 ns tcsw Oscillation stop time, after playback t_{OSST} 500 μS Next command transmit time t_{NCM} ms In the case of the continuation playback Next command transmit time CSB use mode 50 ns tcms after shifting to a standby state Disconnection judging time 100 t_{DCD} ms by the DISCONNECT command BUSYB change time from "L" to "H",after 80 t_{SD} μS Over-current detection of a speaker amplifier Processing time before playback start 2.1 t_{PLBF} 0.3 ms Processing time after playback start 0.15 1.2 t_{PLAF} ms Fade-out time at Change Immediately mode or 22 ms t_{FDO} Change Immediately Once mode

Note: Output pin load capacitance = 45 pF

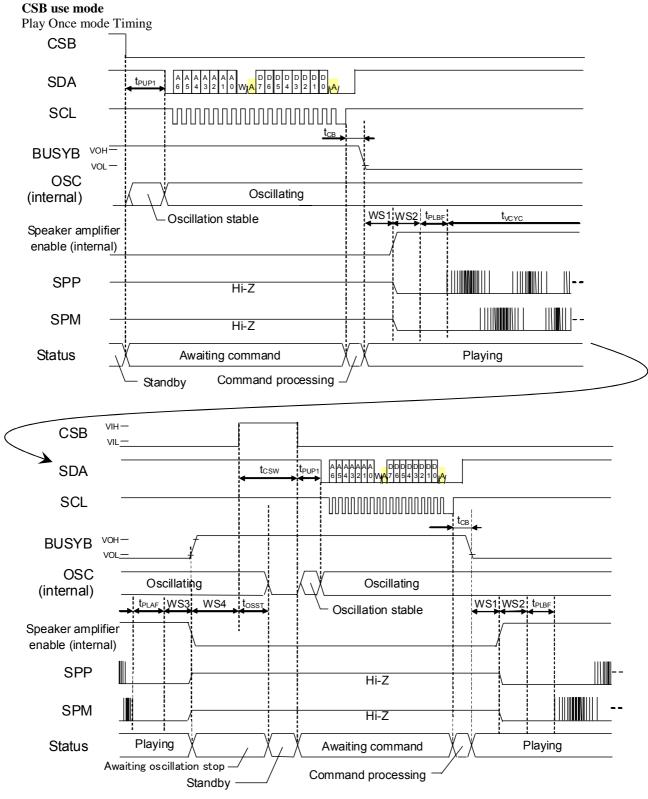
TIMING DIAGRAMS


Power-On Timing

Note 1: Turn on DV_{DD} and SPV_{DD} simultaneously, or turn on SPV_{DD} after turning on DV_{DD} . Note 2: When CSB use mode is not set, this pin should be fixed to "H" level or "L" level.

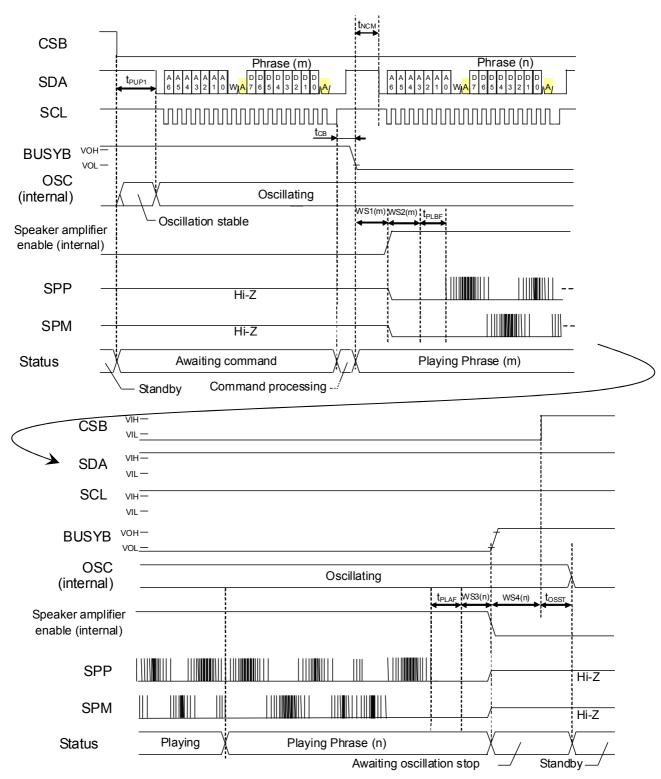


Power-Down Timing (At the RESET_N Input)

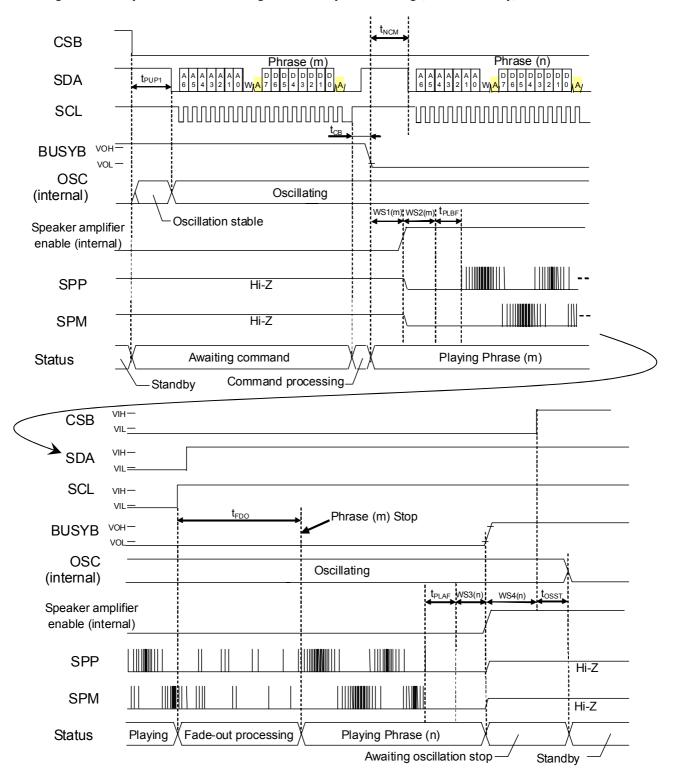


Note: When CSB use mode is not set, this pin should be fixed to "H" level or "L" level.

I2C Command Interface Timing

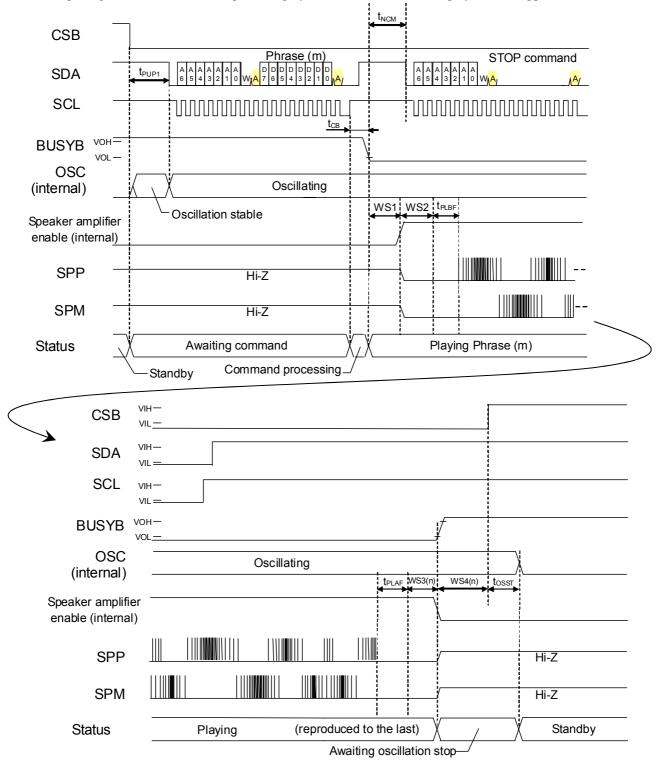


- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"


Scheduled Play Once mode and Scheduled Play mode Timing (Continuous Play)

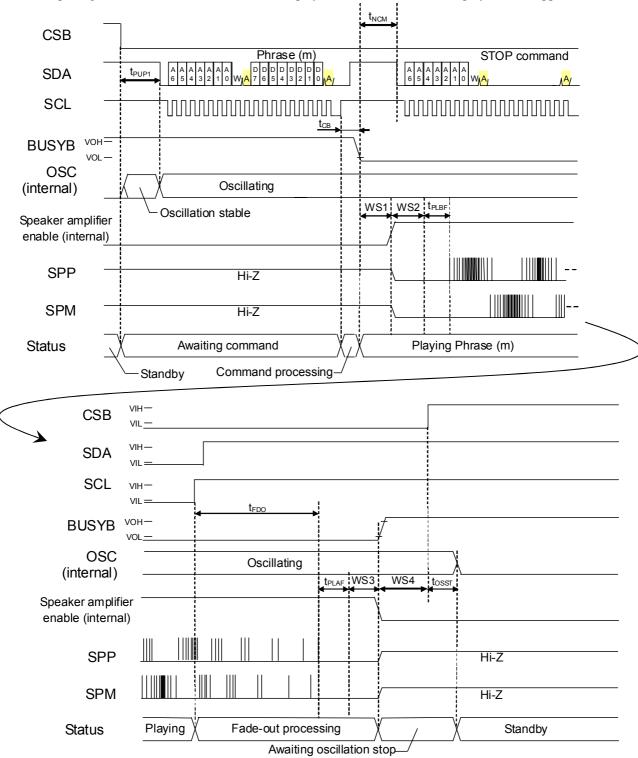
- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

Change Immediately Once mode and Change Immediately mode Timing (Continuous Play)



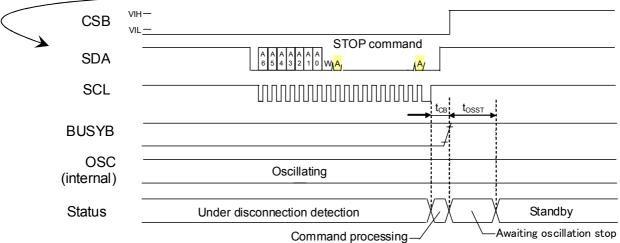
- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

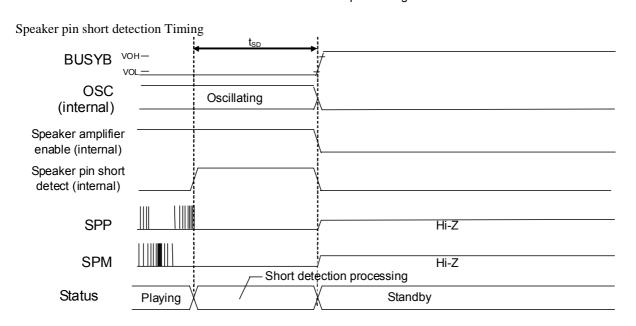
Timing which stops the playback in Scheduled Play mode


After inputting the STOP command, a phrase is played back to the last and the playback is stopped.

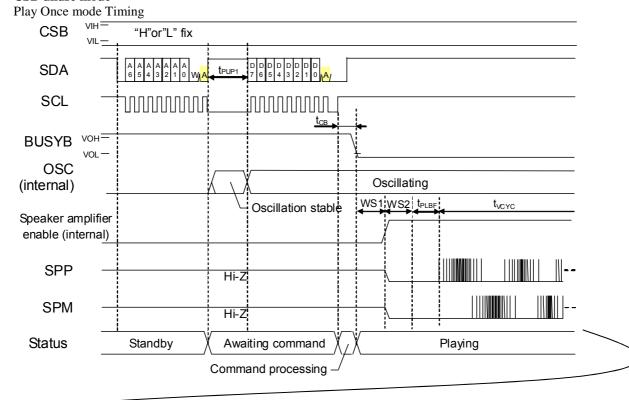
- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

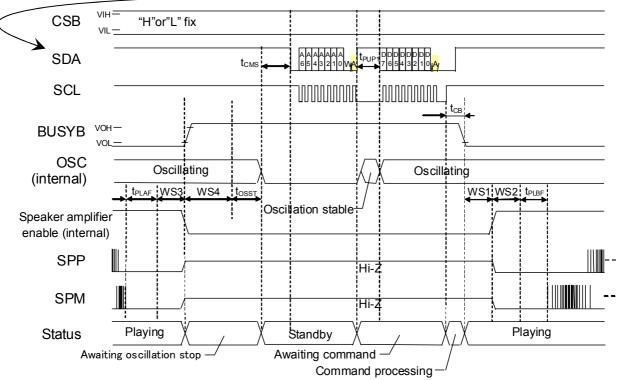
Timing which stops the playback in Change Immediately mode and Change Immediately Once mode After inputting the STOP command, fade-out of the playback is carried out and the playback is stopped.



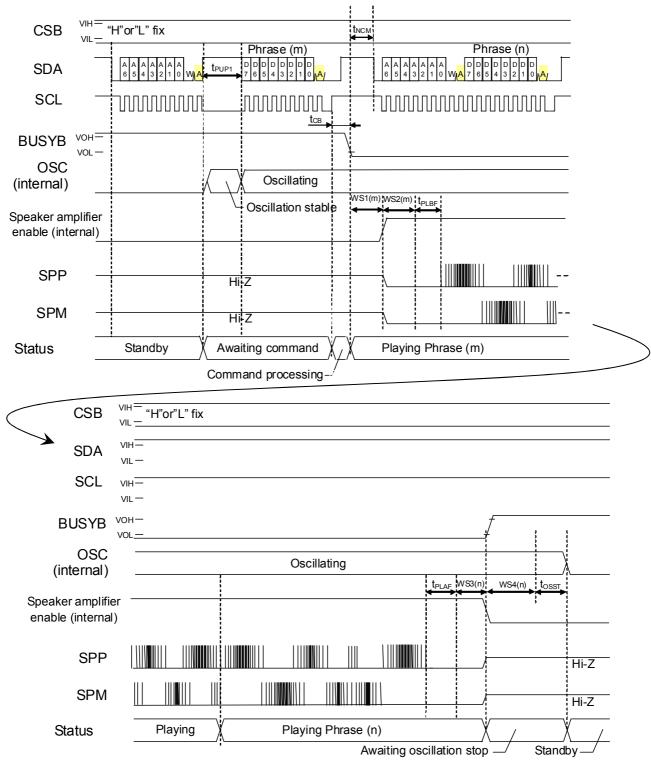

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

Disconnection detection Timing

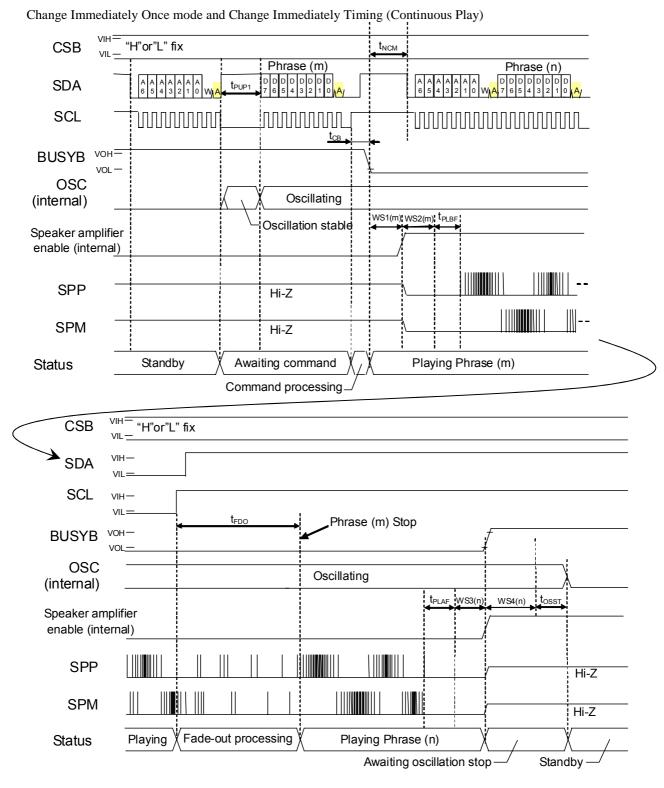




CSB unuse mode

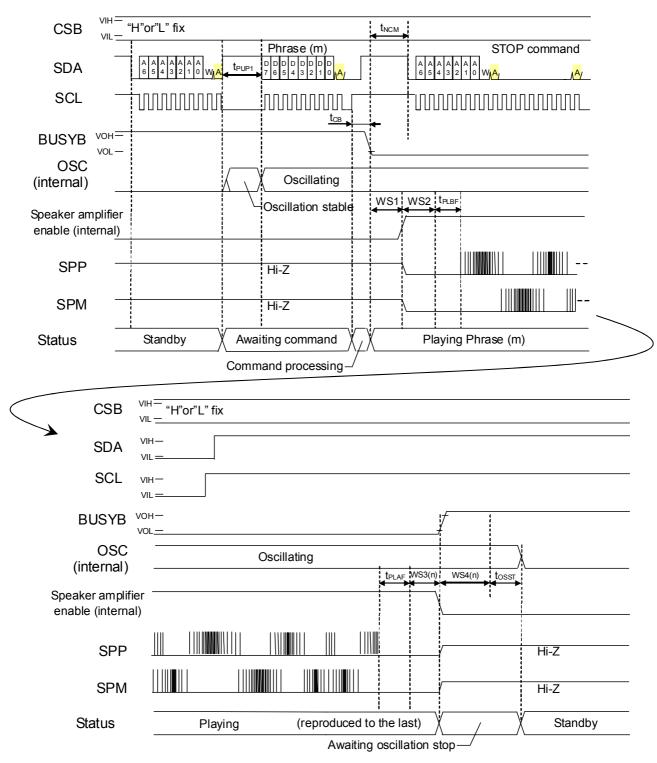


- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"



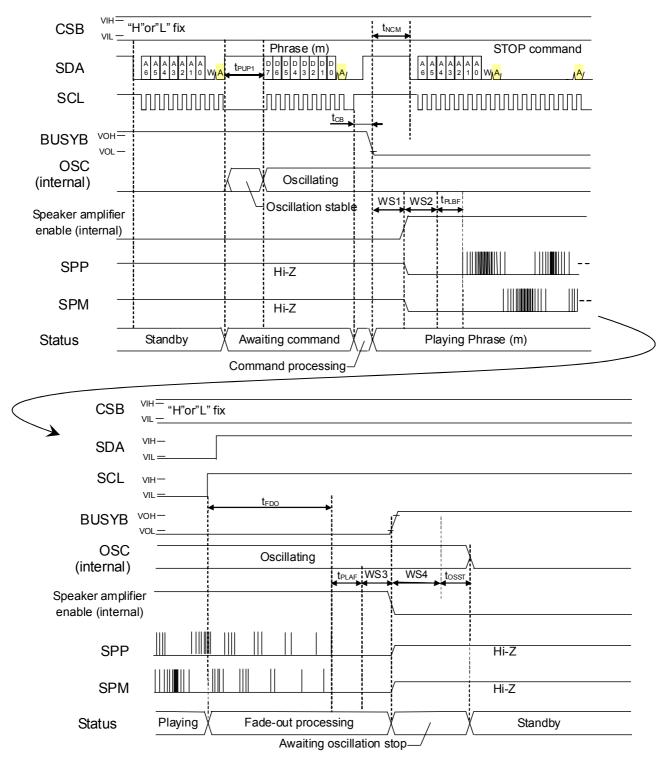
Scheduled play once mode and Scheduled play Timing (Continuous Play)

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

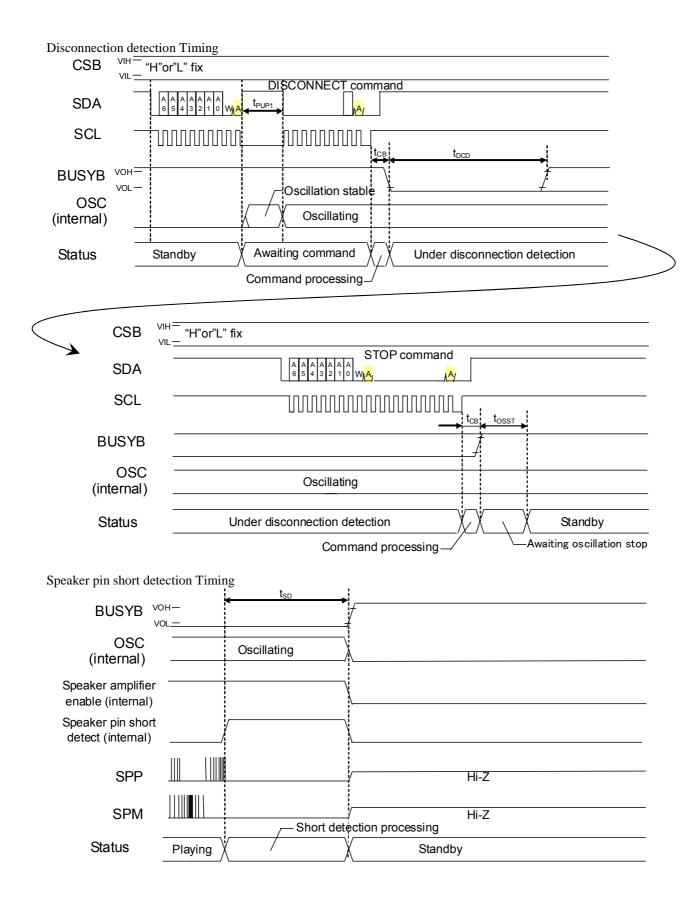


- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

Timing which stops the playback in Scheduled Play mode


After inputting the STOP command, a phrase is played back to the last and the playback is stopped.

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

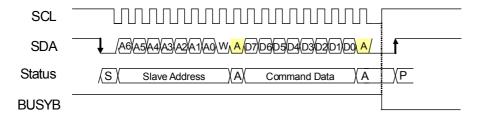


Timing which stops the playback in Change Immediately mode and Change Immediately Once mode After inputting the STOP command, fade-out of the playback is carried out and the playback is stopped.

- The wait time of WS1, WS2, WS3, and WS4 can be set up for every phrase, when creating sound data using Speech Utility.
- About this function, refer to "3. PHRASEn command" in "Description of Command Functions"

FUNCTIONAL DESCRIPTION

I2C Command Interface


The I2C Interface built-in is a serial interface (: slave side) that is compliant with I2C bus specification. It supports Fast mode and enables data reception at 400 kbps. The SCL and SDA pins are used to input the command data.

Pull-up resister should be connected to SCL pin and SDA pin.

For the master on the I2C bus to communicate with this device (: slave), input the slave address with the first seven bits after setting the start condition. The slave address can be set using the Speech Utility. The eighth bit of slave address is used to set the direction (: write or read) of communication. If the eighth bit is "0" level, it is write mode from master to slave. And, if the eighth bit is "1" level, it is read mode from master. The communication is made in the unit of byte. And acknowledge is needed for each byte.

The protocol of I2C communication is shown below.

- Command flow at data write START condition Slave address +W (0) Write address STOP condition
- Data write timing

The slave address can perform a 7-bit setup on the option screen of Speech Utility shown in figure.1.

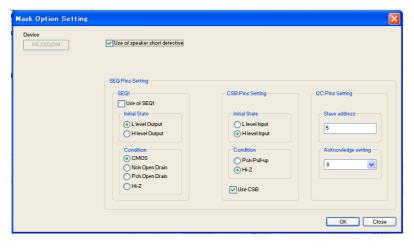


Figure .1 The option screen of Speech Utility

	Setup by Speech Utility									
A6	A5									
0	0	0	0	0	0	0				
0	0	0	0	0	0	1				
0	0	0	0	0	1	0				
0	0	0	0	0	1	1				
0	0	0	0	1	0	0				
			•							
			•							
			•							
1	1	1	1	1	1	0				
1	1	1	1	1	1	1				

For example, when it sets to "5" on the option screen of Fig. 1, a slave address is set to "0000101".

Command List

Each command is configured by the unit of byte (8-bit).

Command	D7	D6	D5	D4	D3	D2	D1	D0	Description
STOP	0	0	0	0	0	0	0	0	Stop command. The STOP command becomes effective except the phrase in Play Once mode and Scheduled Play Once mode.
DISCONNECT	0	0	0	0	0	0	0	1	Disconnection detection command. Please input the STOP command, after you use the DISCONNECT command.
PHRASE2	V2	V1	VO	0	0	0	1	0	
PHRASE3	V2	V1	VO	0	0	0	1	1	Phrase command
						Filiase Collillaliu			
PHRASE31	V2	V1	V0	1	1	1	1	1	

Voice Synthesis Algorithm

Four types of voice synthesis algorithm are supported. They are 4-bit ADPCM2, 8-bit non-linear PCM, 8-bit straight PCM and 16-bit straight PCM. Select the best one according to the characteristics of voice.

The following table shows key features of each algorithm.

Voice synthesis algorithm	Applied waveform	Feature
4-bit ADPCM2	Normal voice waveform	Up version of LAPIS Semiconductor's specific voice synthesis algorithm (: 4-bit ADPCM). Voice quality is improved.
8-bit Nonlinear PCM	Waveform including	Algorithm, which plays back mid-range of waveform as 10-bit equivalent voice quality.
8-bit straight PCM	high frequency signals	Normal 8-bit PCM algorithm
16-bit straight PCM	(sound effect, etc.)	Normal 16-bit PCM algorithm

Memory Allocation and Creating Voice Data

The ROM is partitioned into four data areas: voice (i.e., phrase) control area, test area, voice area, and edit ROM area

The voice control area manages the voice data in the ROM. It contains data for controlling the start/stop addresses of voice data for 1,024 phrases, use/non-use of the edit ROM function and so on.

The test area contains data for testing.

The voice area contains actual waveform data.

The edit ROM area contains data for effective use of voice data. For the details, refer to the section of "Edit ROM Function."

The edit ROM area is not available if the edit ROM is not used.

The ROM data is created using a dedicated tool.

Configuration of ROM data

0x00000	Prohibition of use area
0x01FFF	(Fixed 64 Kbits)
0x02000	
	Voice area 2
max.0x0FBFF	
	Edit ROM area
0x0FFFF	Depends on creation
max.0x0FBFF	of ROM data.
0x0FC00	Test area
0x0FFFF	i est alea
0x10000	Voice control area
	(Fixed 4 Kbits)
0x101FF	(Fixed 4 Rbits)
0x10200	
	Voice area 1
0x17FFF	

Playback Time and Memory Capacity

The playback time depends on the memory capacity, sampling frequency, and the playback method. The equation to know the playback time is shown below. But this is not applied if the edit ROM function is used.

Playback time [sec] =
$$\frac{1.024 \times (\text{Voice area 1 + Voice area 2) [Kbits]}}{\text{Sampling frequency [kHz]} \times \text{Bit length}}$$

(Bit length is 4 at the 4-bit ADPCM2 and 8/16 at the PCM.)

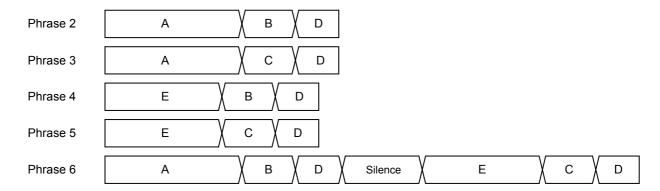
Example) In the case that the sampling frequency is 8 kHz, algorithm is 4-bit ADPCM2, the playback time is approx. 22.1 seconds, as shown below.

Playback time =
$$\frac{1.024 \times 692 \text{ [Kbits]}}{8 \text{ [kHz]} \times 4 \text{ [bits]}} \cong 22.1 \text{ [sec]}$$

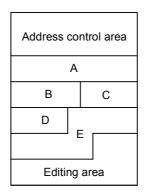
Edit ROM Function

The edit ROM function makes it possible to play back multiple phrases in succession. The following functions are set using the edit ROM function:

• Continuous playback: There is no limit to set the number of times of the continuous playback.


It depends on the memory capacity only.

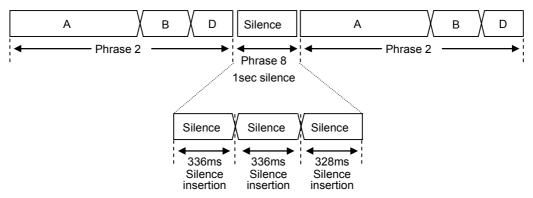
• Silence insertion function: 20ms to 1,024 ms


Note: Silent insertion time varies for ± 1 ms by the sampling frequency

It is possible to use voice ROM effectively to use the edit ROM function. Below is an example of the ROM structure, case of using the edit ROM function.

Example 1) Phrases using the Edit ROM Function

Example 2) Structure of the ROM that contents of Example 1 are stored

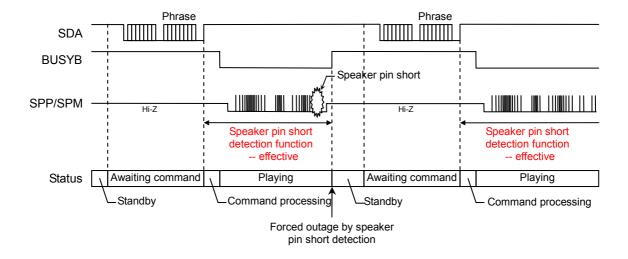


Notice of silence insertion function

If it is only silence phrase registered, please put in order three or more silence phrase. The phrase which is constituted from one or two of silence phrase does not playback.

Example 3) Phrase composition in the case of using silence insertion function

The phrase to playback (The phrase 2 is playbacked twice on both sides of 1 sec silence.)

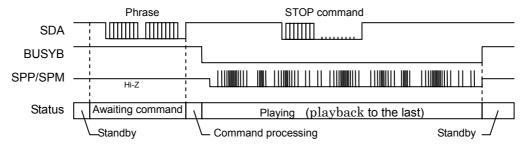

1 sec which is constituted by the three silences is registered as the phrase 8.

Speaker Pin Short Detection Function

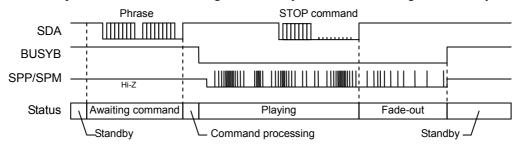
The speaker pin short detection function detect the short-circuit between SPP pin and SPM pin, or between SPP/SPM pin and GND during playback. When short-circuit of a speaker pin is detected, the playback will be stopped automatically, BUSYB pin will become "H" level, and LSI will become in a standby state. In addition, this function can be set up with the option screen of Speech Utilty.

Please refer to a "Mask Option Setting setting item" for the option screen of Speech Utilty.

Description of Command Functions


1. STOP command

· command	0	0	0	0	0	0	0	0
communa	0	0	0	0	0	U	0	U


The STOP command is used to stop the playback. BUSYB pin will become "H", if the playback is stopped. The STOP command becomes effective except the phrase in Play Once mode and Scheduled Play Once mode. When you use Play Once mode or Scheduled Play Once mode, the STOP command is ignored.

When you use Scheduled Play mode, a phrase is played back to the last and the playback is stopped, after the STOP command is inputted. Furthermore, when you use Change Immediately Once mode or Change Immediately mode, fade-out of the playback is carried out and the playback is stopped, after the STOP command is inputted.

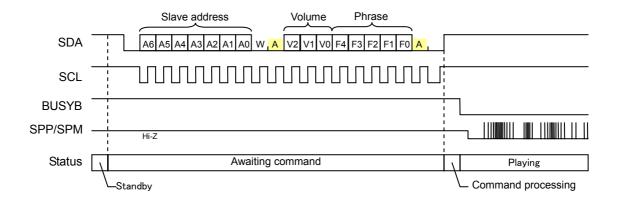
• STOP command operation in the case of Scheduled Play mode

• STOP command operation in the case of Change Immediately Once mode or Change Immediately mode

2. DISCONNECT command

 command 	0	0	0	0	0	0	0	1

The DISCONNECT command is used to diagnose whether the speaker is disconnected or not. When the speaker is disconnected, BUSYB pin outputs "L". Please input the STOP command, after you use the DISCONNECT command.



3. PHRASEn (n = 2 to 31) command

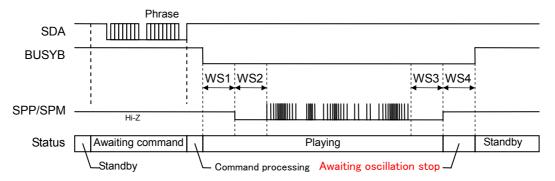
 command 	V2	V1	V0	F4	F3	F2	F1	F0

The PHRASEn (n = 2 to 31) command is used to start playback phrase. When you create the voice data, please set up the phrase address using Speech Utility.

The timing in the case of the playback a phrase address below is shown.

The PHRASEn(n=2 to 31) command can perform a volume setup. When V2-V0 is "000", the volume setup of voice cntrol area is used.

V2	V1	V0	Volume [dB]
0	0	0	The volume setup of voice control area is used.
0	0	1	+2.98
0	1	0	+1.78
0	1	1	0
1	0	0	-2.25
1	0	1	-5.28
1	1	0	-9.99
1	1	1	-21.04



Each phrase can set up the wait time before and after playback, a volume setup, and playback mode using Speech Utility.

Figure .2 The option screen for every phrase of Speech Utility

1) Wait time setting before and after playback (WS1, WS2, WS3, WS4) Each phrase can set up the wait time before and after playback. Since it is an option setup, change will be impossible once it sets up.

WS1: Time after inputting a phrase address, until SPP/SPM pins are enabled.

WS2: Time after SPP/SPM pins are enabled, until playback is started.

WS3: Time after playback is completed, until SPP/SPM pins are disabled.

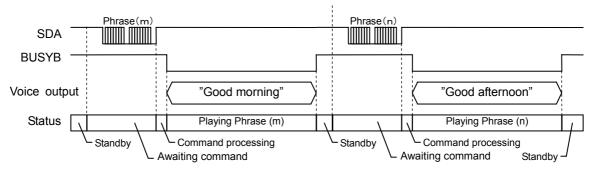
WS4: Time after SPP/SPM pins are disabled, until it will be in a standby state.

WS1-WS4 can be arbitrarily set up between 0 to 1020ms (4ms unit).

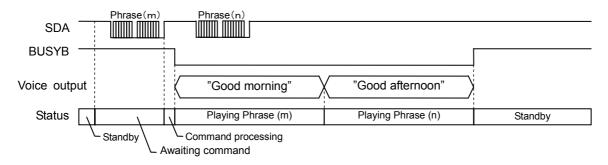
2) Volume setup (Volume)

Each phrase can set up the volume setup. Since it is an option setup, change will be impossible once it sets up.

Value [hex]	Volume [dB]	Value [hex]	Volume [dB]	Value [hex]	Volume [dB]
00h	+2.98	0Ah	-0.41	15h	-6.87
01h	+2.70	0Bh	-0.83	16h	-7.79
02h	+2.40	0Ch	-1.28	17h	-8.82
03h	+2.10	0Dh	-1.75	18h	-9.99
04h	+1.78	0Eh	-2.25	19h	-11.34
05h	+1.45	0Fh	-2.77	1Ah	-12.94
06h	+1.11	10h	-3.34	1Bh	-14.90
07h	+0.76	11h	-3.94	1Ch	-17.44
08h	+0.39	12h	-4.58	1Dh	-21.04
09h	+0.00	13h	-5.28	1Eh	-27.31
		14h	-6.04	1Fh	OFF

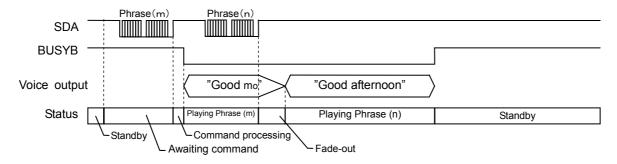


3) Playback mode setup

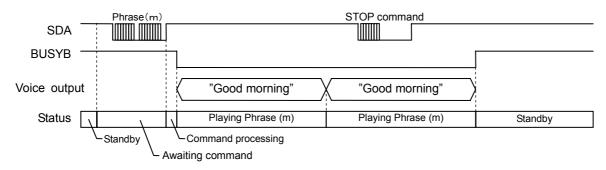

Playback mode can be set up for every phrase. Since it is an option setup, change will be impossible once it sets up.

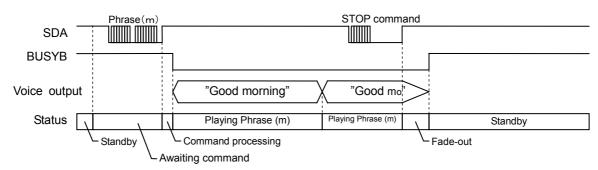
Playback mode	Operation
Play Once	This mode is playback once. All the commands become invalid during playback.
Scheduled Play Once	When the following phrase is inputted into playback, after playback of the present phrase is completed, playback of th following phrase starts. Even if STOP command is inputted during playback, it will be ignored.
Change Immediately Once	When the following phrase is inputted into playback, playback of the present phrase is ended on the way, and playback of the following phrase starts.
Scheduled Play	The playback continues until the following command will be inputted, if playback starts. When the following command is inputted into playback, after playback of the present phrase is completed, the following command is executed.
Change Immediately	The playback continues until the following command will be inputted, if playback starts. When the following phrase is inputted into playback, playback of the present phrase is ended on the way, and playback of the following phrase starts.

· Play Once mode



· Scheduled Play Once mode




• Change Immediately Once mode

· Scheduled Play mode

• Change Immediately mode

Mask Option Setting

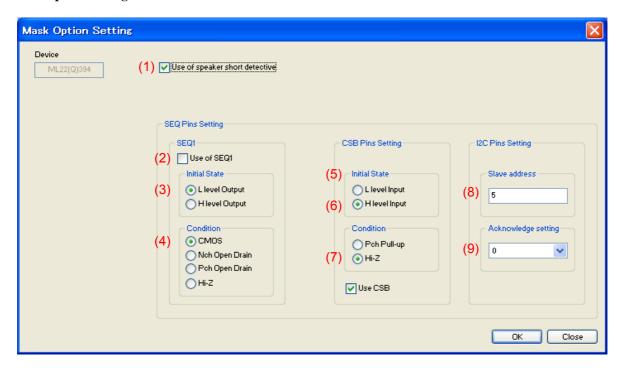


Figure .3 The Mask Option Setting screen of Speech Utility

Explanation of each option is shown in the following page.

	Parameter	Function	Explanation
(1) Use of speaker short detective		ON or OFF selection of a short	If a check box is turned on, a short
		detection function	detection circuit will become effective.
SEQ Pins Setting		Interface setup	
	SEQ1	BUSYB setup	
	(2) Use SEQ1	Use or unuse selection of	If a check box is turned on, a BUSYB
		BUSYB	pin can be used. If a check box is
			turned off, a BUSYB pin does not
			function but the fixed output of the
			initial value is carried out.
	(3) Initial State	Initial output level selection of	The initial value of a BUSYB pin at
		BUSYB	voice stop can be chosen.
	L Level Output	L Level Output	The "L" level is outputted at voice stop.
	H Level Output	H Level Output	The "H" level is outputted at voice stop.
	(4) Condition	BUSYB condition setup	BUSYB condition can be chosen.
	CMOS	CMOS output	a BUSYB pin become a CMOS output.
			Usually, please use this setup.
	Nch Open Drain	Nch Open Drain output	The "L" level is outputted at the "L"
			level. High impedance is outputted at
	Dob Open Drain	Dob Open Drain cutnut	the H" level.
	Pch Open Drain	Pch Open Drain output	The "H" level is outputted at the "H" level. High impedance is outputted at
			the L" level.
	Hi-Z	High impedance output	High impedance is always outputted.
	111-2	I light impedance output	When BUSYB use mode is set up,
			please do not use it.
	CSB Pins Setting	CSB setup	product act not act in
	(5) Initial State	CSB input level	The initial value of a CSB pin at
	()	·	standby can be chosen.
	L Level Input	L Level Input	The "L" level is inputted at standby.
	H Level Input	H Level Input	The "H" level is inputted at program
			operation.
	(6) Condition	CSB condition setup	CSB condition can be chosen.
	Pch Pull-up	Pch Pull-up input	Built-in Pull-up resistance can be used.
	Hi-Z	High impedance input	It is used at CMOS connection.
			Usually, please use this setup.
	(7) Use CSB	Use or unuse selection of CSB	If a check box is turned on, the
			interface using a CSB pin is attained.
			If a check box is turned off, two
			terminal interface of SCL and SDA is
	100 Pi 0 11	100 :	attained.
	I2C Pins Setting	I2C setup	The I2C condition can be set up.
	(8) Slave address	Slave address setting	7-bits slave address can be set up.
	(9) Acknowledge Setting	Acknowledge level setup	The level of the acknowledge signal
			outputted at the time of termination of
			reception can be set up.

THE PULL-UP RESISTOR VALUE OF SCL AND SDA PIN

The pull-up resistor value of SCL and SDA pin is computed as follows.

• Minimum Value (R_P.min):

 $\underline{R_{P}.min} = (\underline{V_{DD}}-\underline{V_{OL}.max})/\underline{I_{OL}}$

- V_{DD}: Power supply voltage
- V_{OL}.max: The maximum output "L" level of a driver
- I_{OL}: Sink current of a driver

For example, in this case of V_{DD} =5V, V_{OL} .max=0.4V, and I_{OL} =3mA, it is calculated as follows. R_P .min = $(5V - 0.4V)/3mA \cong 1.5k\Omega$

• Maximum Value (R_P.max):

 $\underline{R_P.max} = 300 \text{ns/[Maximum Capacitance of a Bus (F)]}$

For example, in this case of the maximum capacitance of a bus is 100pF, it is calculated as follows. R_P .max = 300ns/100pF $\cong 3.0$ k Ω

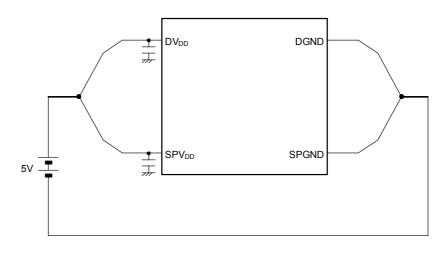
TERMINATION OF THE V_{DDL} PIN

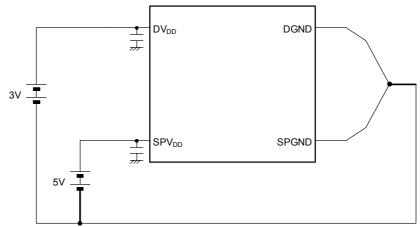
The V_{DDL} pin is the regulator output that is power supply pin for the internal logic circuits. Connect a capacitor between this pin and the ground in order to prevent noise generation and power fluctuation.

The recommended capacitance value is shown below. However, it is important to evaluate and decide using the own board.

Also, start the next operation after each output voltage is stabilized.

Pin	Recommended capacitance value	Remarks			
V_{DDL}	10 μF ±20%	The larger the connection capacitance, the longer the settling time.			

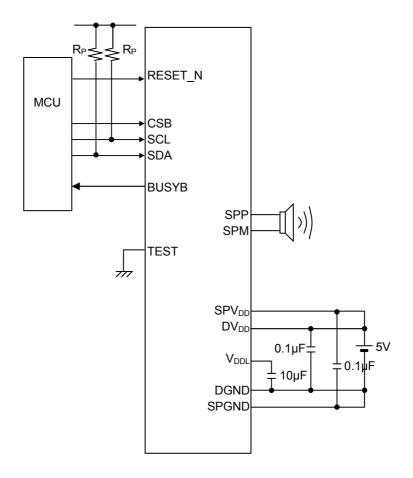



POWER SUPPLY WIRING

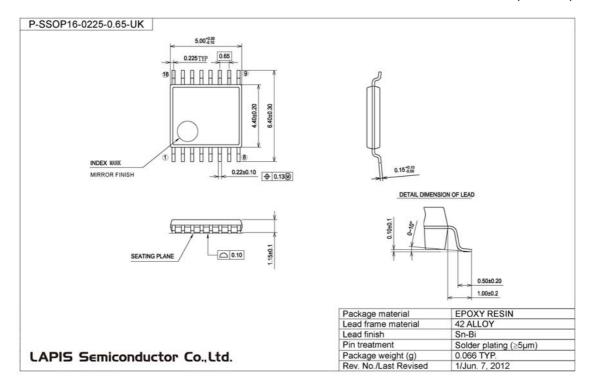
The power supplies of this LSI are divided into the following two:

- Power supply for logic circuitry (: DV_{DD})
- Power supply for speaker amplifier (: SPV_{DD})

The example of power connection is shown below.



- Turn on DV_{DD} and SPV_{DD} simultaneously, or turn on SPV_{DD} after turning on $\text{DV}_{\text{DD}}.$
- Turn off DV_{DD} and SPV_{DD} simultaneously, or turn off DV_{DD} after turning on SPV_{DD} .


APPLICATION CIRCUIT

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact ROHM's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

		Pa	ge		
Document No.	Date	Previous	Current	Description	
		Edition	Edition		
FEDL22Q394FULL-01	Oct. 23, 2012	ı	_	Final edition 1	
FEDL22Q394-02	Jun. 06, 2014	_	27	Add Notice of silence insertion function	

NOTES

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2012-2014 LAPIS Semiconductor Co., Ltd.