
June 2006 Rev 1 1/23

AN2038
Application note

I2C emulation with ST7MC in slave mode

1 Introduction

This application note describes how to emulate I2C communication using an ST7MC as
slave device. Since there is no dedicated I2C peripheral in the ST7MC microcontroller, the
protocol is emulated using the SPI peripheral. This peripheral is common to different ST7
products so the software presented can be easily adapted to run in other ST7
microcontrollers. In this document, the hardware and software description refers to the
ST7MC microcontroller for motor control applications. See Section 7: Reference and related
materials to get more information about standard motor control libraries. Section 4: Software
modifications describes the modification you need to make to implement I2C communication
in the current standard libraries for specific types of motor.

Section 3: Hardware modifications describes the required modifications to the ST7MC
Starter Kit board (Softec AK-ST7FMC) for implementing I2C communication.

The two modules presented in this application note are C modules (.h and .c file) developed
to be compiled with Cosmic compiler v.4.5b (see www.cosmic-software.com for information
and free download) and used in Softec STVD7 v.3.10 Integrated Development Environment
(see www.softecmicro.com for information and free download). The first module, called I2C
module implements the low level I2C protocol, the second module, called ProtoSup
module is an example of a customized protocol based on I2C emulation. This protocol
implements a Frame of Communication that allows the master to send a set of typical
commands for a motor control application.

You should have a basic knowledge of C programming, motor control drives and basics of
I2C protocol in order to use this module. In-depth know-how of ST7MC functions is only
required for customizing existing modules or when adding new modules to develop your own
application.

www.st.com

http://www.st.com

Contents AN2038

2/23

Contents

1 Introduction . 1

2 I2C emulation . 3

2.1 I2C basics . 3

2.2 I2C architecture . 5

2.3 I2C Emulation . 6

3 Hardware modifications . 8

4 Software modifications . 9

4.1 Standard motor control libraries for ST7MC Starter Kit 9

5 Command frames . 12

6 Function description . 14

6.1 I2C Module . 15

6.2 PROTOSUP module . 18

7 Reference and related materials . 21

8 Revision history . 22

AN2038 I2C emulation

 3/23

2 I2C emulation

2.1 I2C basics
The I2C-bus has two wires, serial data (SDA) and serial clock (SCL), used to carry
information between the devices. Each device is recognized by a unique address and can
operate as either a transmitter or receiver, depending on the function of the device.

In addition to transmitters and receivers, devices can also be considered "masters" or
"slaves" when performing data transfers. A master is the device which initiates a data
transfer on the bus and generates the clock signals. At that time, any device addressed is
considered a slave.

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a pull-
up resistor (see Figure 1). When the bus is free, both lines are HIGH. The output stages of
devices connected to the bus must have an open-drain or open-collector to perform the AND
function. Since data on the I2C-bus can be transferred at rates more than 100 kb/s in
Standard-mode, in this application we reach a speed of 4 kb/s. This is caused by need to
emulate the I2C with the SPI peripheral and the presence of a non-interruptible interrupt
sub-routine for the motor control application.

Figure 1. I2C bus

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or
LOW state of the data line can only change when the clock signal on the SCL line is LOW
(see Figure 2).

Figure 2. Data Valid

+VDD

SDA
SCL

S
D

A
S

C
L

S
D

A
S

C
L

RP RP

DEV1 DEV2

Data Stable Changing
allowed

Data Stable

SDA

SCL

I2C emulation AN2038

4/23

A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition.
A LOW to HIGH transition on the SDA line while SCL is HIGH indicates a STOP condition
(see Figure 3). START and STOP conditions are always generated by the master. The bus is
considered to be busy after the START condition. The bus is considered to be free again
after the STOP condition.

Figure 3. Start/Stop condition

Every byte put on the SDA line must be 8 bits long. The number of bytes that can be
transmitted per transfer is unrestricted. Each byte has to be followed by an acknowledge bit.
Data is transferred with the most significant bit (MSB) first (see Figure 4).

Figure 4. Data Transfer

The acknowledge clock pulse is generated by the master. The transmitter releases the SDA
line (HIGH) during the acknowledge clock pulse and the receiver must pull down the SDA
line during the acknowledge clock pulse so that it remains stable LOW during the HIGH
period of this clock pulse.

Data transfers follow the format shown in Figure 5: after the START condition (S), a slave
address is sent. This address is 7 bits long followed by an eighth bit which is a data direction
bit (R/W) - a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data
(READ). A data transfer is always terminated by a STOP condition (P) generated by the
master.

StopStart

SCL

SDA

1 2 7 8 1 2 7 8

MSB LSBMSB LSB

Start StopACKACK

SDA

SCL

First byte Second byte

AN2038 I2C emulation

 5/23

Figure 5. 7-bit addressing

Possible data transfer formats are:

● Master-transmitter transmits to slave-receiver. The transfer direction is not changed
(see Figure 5 "Master transmit bytes to slave").

● Master reads slave immediately after first byte (see Figure 5 "Master receive bytes from
slave"). At the moment of the first acknowledge, the master transmitter becomes a
master-receiver and the slave-receiver becomes a slave-transmitter. This first
acknowledge is still generated by the slave. The STOP condition is generated by the
master.

See Figure 6 for the format of first byte after the Start condition.

Figure 6. First byte after the Start condition

2.2 I2C architecture
In Figure 7 shows the hardware architecture used to implement I2C emulation using the SPI
peripheral.

The ST7MC is connected to the I2C bus through an optoisolator able to isolate the High
voltage section from the bus.

By means of one I/O pin the ST7MC is able to select if the SPI bus is used in I2C emulation
mode or in SPI mode for communication with the SPI Memory. In the first case the
optoisolator is enabled and the SPI memory is disabled, in the second case the optoisolator
is disabled so SPI and I2C are unconnected and SPI memory is enabled.

SLAVE ADDRESSS R/W A DATA A DATA A P

SLAVE ADDRESSS R/W A DATA A DATA A P

Master transmits bytes to slave

Master receives bytes from slave

From master to slave

From slave to master

‘0’

‘1’

S: Start

P: Stop

A: Acknowledge

Slave address

MSB LSB

R/W

I2C emulation AN2038

6/23

Figure 7. Hardware Architecture

The MOSI and MISO pins are unidirectional lines, the first from master to slave and the
second from slave to master. Both are connected together after the optoisolator to become
the SDA bidirectional line. The SCK line is driven by the master and is connected to SCL.

Two I/O interrupts are used to sense the edge of the SDA and SCL signal and to signal the
various I2C events (Start condition, Stop condition, Acknowledge) to the microcontroller.

2.3 I2C Emulation
When emulating the I2C bus using SPI it is important to manage the following conditions:

● Detection of Start Condition

● Validation of Start Condition

● End of Byte Receive (SPI)

● End of Byte Transmission (SPI)

● Validation of the transmission detecting a master acknowledge

● Time out

● Detection of the Stop Condition

The detection of the start condition is performed using an interrupt port sensitive to the
falling edge of the SDA signal. Each time a falling of SDA occurs together with SCL in high
state, a Start Condition occurs.

A state machine is implemented to manage the Start Condition. The state machine has the
following states:

MOSI

MISO

SCK

MOSI

MISO

SCK

SDA

SCL

Opto-Isolation

SPI Memory

ST7MC

I/O pin

Interrupts I/O

CS

CS

I2C

Table 1. Start Condition management

State Description

WAIT_START
In this state the micro is waiting for a Start Condition. After a falling edge
occurs on SDA when SCL is high, the state is changed to
START_VALIDATION

START_VALIDATION
In this state the micro is in waiting for a validation of Start Condition. The
Start Condition is validated when the first faling edge on SCL occurs, in
this case the state is changed to COMMUNICATION

COMMUNICATION In this state the micro is exchanging data using the SPI

AN2038 I2C emulation

 7/23

If a TIMEOUT occurs or a Stop condition is detected the state is forced to WAIT_START.

Each time a rising edge occurs on SDA occurs together with SCL in high state, a Stop
Condition occurs. In this case a flag is set indicating that new data has been received or
transmitted. This flag is used by the ProtoSup module.

When an SPI interrupt occurs a byte is received or transmitted.

If it is the first byte after the Start Condition, this byte will be analyzed to see if:

● The Slave is addressed, this is the case if the address of the slave is equal to the
microcontroller I2C address.

● If the transmission is a write from the master or a read from the slave. If it is the former,
the following bytes have to be read else the transmission buffer has to be transmitted
using SPI. The corresponding status flag is therefore set.

If the byte received is not the first byte, it is stored in a read buffer.

If an end of transmission interrupt occurs, the microcontroller has to validate the
transmission by detecting the master acknowledge.

The detection of master acknowledges will be performed in the SCL interrupt service routine
on falling edge.

After the detection of the master acknowledge a new byte in the transmission buffer will be
sent. If the buffer is empty, the condition is indicated setting a flag.

Hardware modifications AN2038

8/23

3 Hardware modifications

The following modifications should be performed on the Softec Starter Kit to allow the I2C
emulation.

Figure 8 shows the I2C module board with the required optical isolation.

J1 is the connector interface to the I2C bus and J2 is the connector interface to the ST7MC
Starter Kit.

To use the module you must connect J2 to the Starter Kit pins. Since there is no free
available pin on the board, you have to to solder the wires directly to the pins listed in
Table 2.

Note: U10 is the ST7MC2 chip.

Figure 8. I2C module schematic

Table 2. Hardware J2 connection to be soldered in ST7MC Starter Kit

J2 Pin Starter Kit J2 Pin Starter Kit J2 Pin Starter Kit

1 U10 Pin 41 3 U10 Pin 20

4 U10 Pin 30 5 U10 Pin 27 6 U10 Pin 25

7 U10 Pin 26 8 U10 Pin 47

10 U10 Pin 40

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

SDA
GND GND (Micro)

MOSI
INT SDA (PD1)

+5V (Micro)

INT SCK (PC1)
I2C Enable (PA6)

MISO
SCK

SCK

1.0

I2CBD

1 1Wednesday, April 05, 2006

Title

Size Document Number Rev

Date: Sheet of

+5 +5

NS

NS

+5

MISO

+5

+5

+5

+5

NS

NS

+5

MISO

+5

CK

+5

+5

+5

MOSI

+5

R1
390

SFH615A

3

1

2

4

Q4
BC557

SFH615A

3

1

2

4

R3
1.8k

R4
3.9k

R14
6.8k

U4

NME0505S

1

2 4

3GND

Vin Vo

0V

C3
100nF
25V

C2
1uF
16V

SFH615A

3

1

2

4

R6
100

R15
10k

R2
680

Q1
BC547

Q3
BC547

Q2
BC547

R9

6.8k

R8
6.8k

R7
6.8k

R10
10k

R11
10k

R12
10k

R13
5.6k

J1

CON3

1
2
3

J2

CON10

1
2
3
4
5
6
7
8
9
10

AN2038 Software modifications

 9/23

4 Software modifications

To implement the I2C emulation you have to perform the following modifications to the
standard motor control software library.

4.1 Standard motor control libraries for ST7MC Starter Kit
At the moment the following standard libraries are released for the ST7MC Starter Kit (Motor
Control application), each dedicated to specific kinds of motor. The libraries are listed in
Table 3. See Section 7: Reference and related materials for details on the motor control
libraries.

Table 3. Motor Control Standard Libraries

Library Name Description

AC_1PH_SR_2.0 Induction mono phase motors sensored

AC_2PH_SR_2.0 Induction bi phases motors sensored

AC_3PH_SR_2.0 Induction three phases motor sensored

BLDC_3PH_SL_2.0
Brushless or permanent magnet motors drive in
trapezoidal mode (6 Step) sensorless

BLDC_3PH_SR_2.0
Brushless or Permanent Magnet motors drive in
trapezoidal mode (6 Step) sensored

PMAC_3PH_SR_2.0
Brushless or Permanent Magnet motors drive in
sinusoidal mode sensored

Software modifications AN2038

10/23

The following steps are required to modify the standard libraries to emulate the I2C using
SPI:

● First, configure the libraries using the configuration tools AK-ST7FMC Control Panel.
Refer to the related manual.

● Copy the two provided modules (I2C.c, I2C.h, ProtoSup.c, ProtoSup.h) in the project
folder.

● Copy the vector.c file provided into the project folder overwriting old vector.c file.

● Copy the main.c file provided into the project folder overwriting old main.c file.

● Open the workspace using Softec STVD7 v.3.10 Integrated Development Environment.

● Add the two files I2C.c and ProtoSup.c in the "Source Files" folder of the workspace
and the two files I2C.h and ProtoSup.c in the "Include Files" folder of the workspace.

● Inside the I2C.h file select the kind of motor defining the correspondent MOTOR_TYPE
constant PMAC, BLDC or AC:

#define MOTOR_TYPE PMAC

or

#define MOTOR_TYPE BLDC

or

#define MOTOR_TYPE AC

● Interrupt priority setup:

If the AC (or PMAC) motor has been selected, then modify the
ST7_IntPrioritySetUp function defined in the st7_misc.c file:

ISPR0 = MCES_LVL_3 + MCC_SI_LVL_1 + EXT_IT0_LVL_2 + EXT_IT1_LVL_1;

ISPR1 = EXT_IT2_LVL_2 + MTC_U_CL_SO_LVL_3 + MTC_R_Z_LVL_2 +
MTC_C_D_LVL_2;

ISPR2 = SPI_LVL_2 + TIMER_A_LVL_2 + TIMER_B_LVL_1 + SCI_LVL_1;

If the BLDC motor has been selected, then modify the ST7_IntPrioritySetUp
function defined in the misc.c file:

ITSPR0 = MCES_LVL_3 + MCC_SI_LVL_1 + EXT_IT0_LVL_2 + EXT_IT1_LVL_1;

ITSPR1 = EXT_IT2_LVL_2 + MTC_U_CL_SO_LVL_3 + MTC_R_Z_LVL_3 +
MTC_C_D_LVL_3;

ITSPR2 = SPI_LVL_2 + TIMER_A_LVL_2 + TIMER_B_LVL_3 + SCI_LVL_1;

ITSPR3 = (AVD_LVL_1 + PWMART_LVL_2) | (u8)(0xf0);

Modification related to PMAC Motor

● Modify the PMACparam.h:

● Modify the define of target frequency

#define TARGET_FREQ_CL 1500

in

extern u16 TARGET_FREQ_CL;

AN2038 Software modifications

 11/23

Modification related to BLDC Motor

● Modify the mtc.h:

#define MotorStalled 4

● Inside the mtc.c for BLDC motor

– Add the following include at the beginning

#include "I2C.h"

#include "Protosup.h"

– Then is necessary to modify the Chk_Motor_Stalled() and MTC_C_D_IT()
functions to manage the fault condition.

Inside Chk_Motor_Stalled() function add the following

// Frequency Synchronization

if ((MPRSR & 0x0F) == RATIO_MAX)

 {

COMMAND = CMD_BRAKE;

MotorStatus = MOTOR_STALLED;

….

 }

Only for BLDC sensorless, inside MTC_C_D_IT() function find the following block and
modify as written.

if (RampIndex >= (RAMP_SIZE-1))// If Ramp is finished without success

{

……..

MotorStatus |= START_UP_FAILED;

COMMAND = CMD_BRAKE;

 ……….

 }

Command frames AN2038

12/23

5 Command frames

The commands are sent from the master to the slave and are organized as shown in
Figure 9.

After the Start condition, the first byte addresses the slave and forces a w to send the
command to the slave.

STX is a byte that indicates a Start of Transmission and is coded in Table 4.

Then is dispatched a byte with the length (n) of the sequence of bytes that will be sent.

D1 is the "Command" byte see Table 4. D2 - Dn is an optional sequence of bytes; this is a
additional parameter sent together with the command.

The next two bytes CRC1 and CRC2 is the checksum calculated with the following rule:

CRC calculation

CRC value is a 16-bit value that contains the sum of D1, D2, … , Dn.

CRC1 is the MSB of CRC value.

CRC2 is the LSB of CRC value.

The last byte is ETX that indicates the End of Transmission.

Figure 9. Communication frame (Command from Master)

As command the master can ask a request from the slave. The next frame is organized as
show in Figure 10.

After the ask command of the previous frame the master start a new communication and in
the first byte after the Start Condition it address the slave from which it wait the answer and
force a r.

The slave sent the following byte:

STX is a byte that indicates a Start of Transmission and is coded in the Table 4.

After that it is transmitted a byte with the length (n) of the sequence of bytes that will be sent.

D1 - Dn is the answer from the slave.

The next two byte CRC1 and CRC2 is the checksum calculated with the above described
rule.

The last byte is ETX that indicate the End of Transmission.

 STX Length = n D1 D2 Dn … CRC1 CRC2 ETX

COMMAND PARAMETERS

From Master

AN2038 Command frames

 13/23

Figure 10. Communication frame (Response from Slave)

Motor Status Byte

MS: Motor Stalled

SF: Startup Fails

OT: Over Temperature

OV: Over Voltage

OC: Over Current

Table 4. I2C Code table

COMMUNICATION CODE

STX 0x02 Start Transmission

ETX 0x03 End Transmission

ACK 0x1c Acknowledge

NOT_ACK 0xee Not Acknowledge

NOT_READY 0xcc Not Ready

WAIT 0xfc Wait

MASTER COMMANDS

CMD_SETSPEED 0x77
Command set speed. D2 and D3 will be respectively
MSB and LSB of a word contains speed in rpm.

CMD_BRAKE 0x88 Command brake

CMD_START 0x66 Command start motor

MASTER QUERY

ASK_STATUS 0x08

Master asks for motor status. D1 and D2 of subsequent
answer of the slave is a byte formatted as below. D2 is
a checksum byte equal to complemented bit respect
D1

ASK_SPEED 0x07

Master asks for motor speed. D1, D2, D3, D4 of
subsequent answer of the slave is respectively MSB
and LSB of a word contains speed in rpm. D3 and D4
is two checksum byte equal to complemented bit
respect D1 and D2

0 0 0 MS SF OV OC OT

Slave addr. + r STX Length = n D1 D2 Dn … CRC1 CRC2 ETX

ANSWER FROM SLAVE

From Slave

From Master

Function description AN2038

14/23

6 Function description

The two I2C modules are organized as shown in Figure 11.

I2C Module function is to get or put the raw data from/to the I2C bus into two data buffer
I2C_DATA_R and I2C_DATA_W.

ProtoSup Module function is to extract the valid data from the stream coming from
I2C_DATA_R buffer into the VALID_DATA_IN and from VALID_DATA_OUT buffer into
I2C_DATA_W buffer.

Figure 11. Firmware architecture

Protosup
module

Link
protocol

I2C_DATA_R

I2C_DATA_W

VALID_DATA_IN

VALID_DATA_OUT

I2C Module

I2C Bus

AN2038 Function description

 15/23

6.1 I2C Module
This module contains the low level routine to emulate the I2C communication protocol.

Initialization Routine

Function Name Input Parameter Return Value

Init_I2C_Protocol void void

Description

I2C module initialization.

This function should be called inside the main, before the main loop, to initialize the I2C emulation.
This function calls the following initialization function:

– Init_SPI_4_I2C

– Init_TIMER_4_I2C
– Init_INT_SCK_4_I2C

– Init_INT_SDA_4_I2C

This function also set the status of the I2C state machine to WAIT_START, it means that the micro is
in waiting of a Start Condition.

The I2C Slave Acknowledge flag is set false (No ACK from slave in progress).

This function also set the PA6 as output push pull and with an high value to select SPI bus for I2C
communication.

Function Name Input Parameter Return Value

Init_SPI_4_I2C void void

Description

SPI peripheral initialization. (This function is called by Init_I2C_Protocol)

This function performs first the initialization of the I/O of SPI pins calling "Init_SPI_Ports" routine.

Then it clears the contingent pending SPI interrupt.
Then enable SPI interrupt, disable alternate function that will be enabled further, sets SPI clock edge
as rising edge and sets the slave mode.

Function Name Input Parameter Return Value

Init_TIMER_4_I2C void void

Description

Timer (A) initialization. (This function is called by Init_I2C_Protocol)

Initialization of Timer A used for Time Out purpose.
TIMEOUT defines the number of microseconds it is defined in I2C.h.

The timer is freeze and will be started using Start Timer when the Start Condition occurs.

 After the time out the ISR "TIMER_A_Interrupt_Routine" will be served.

Function description AN2038

16/23

Low level routine

Function Name Input Parameter Return Value

Init_INT_SCK_4_I2C void void

Description

Initialize the external interrupt SCK (ei2 PC1). (This function is called by Init_I2C_Protocol)
This function sets PC1 as floating interrupt sensitive to falling edge.

Function Name Input Parameter Return Value

Init_INT_SDA_4_I2C void void

Description

Initialize the external interrupt SDA (ei0 PD1). (This function is called by Init_I2C_Protocol)
This function sets PD1 as floating interrupt sensitive to rising and falling edge.

Function Name Input Parameter Return Value

I2C_enable_SPI void void

Description

This function enables the SPI communication. It is enabled after a Start condition and falling of SCK.
It clear also the pending bit.

Function Name Input Parameter Return Value

I2C_disable_SPI void void

Description

This function disables the SPI communication. The ports is dedicated to sensing the edge transition
using port interrupts.

Function Name Input Parameter Return Value

I2C_Stop_detected void void

Description

This function is called when a Stop condition is detected. It disables the SPI peripheral and
reinitialize SDA and SCK interrupts.
If the communication is from master to slave (I2C_SLAVE_READ_flag set true) the flag
New_Data_Receved is set to true for high level protocol purposes (ProtoSup),
Otherwise if the communication is from slave to master (I2C_SLAVE_WRITE_flag set true) the flag
New_Data_Sent is set to true.

AN2038 Function description

 17/23

Interrupt Service Routine

Function Name Input Parameter Return Value

Reset_TIMER void void

Description

Reset and Freeze the timer. It is called after a validation of Start Condition.

Function Name Input Parameter Return Value

Start_TIMER void void

Description

UnFreeze the Timer. It is called when a falling of SDA occurs when SCL is high (Start Condition)

Function Name Input Parameter Return Value

TIMER_A_Interrupt_Routine void void

Description

Timeout interrupt service routine.

It is used to reset the state if a Start Condition is not validated.
The ISR will be executed TIMEOUT microseconds (defined in I2C.h) after the "Start_TIMER"
command; usually the timer start after a falling of SDA while SCL is high (Start Condition event).
If TIMEOUT occurs without a valid clock impulse the status came back to WAIT_START and the
timer will be reinitialized (freeze) in this case the Start Condition is not validated.

Function Name Input Parameter Return Value

SPI_Interrupt_Routine void void

Description

ISR executed each SPI end of transmission.

If the received byte is the first byte after the Start Condition, the slave check if it is addressed (the
SLAVE_ADDRESS is defined in the I2C.h). If it is addressed, acknowledge will be sent, in the same
time the flags SLAVE_READ or SLAVE_WRITE will be set according the 8th bit (R/W bit).

Otherwise,

if SLAVE is reading (SLAVE_READ is true) the data is stored in I2C_Datas_R and acknowledge will
be sent;

if SLAVE is writing (SLAVE_WRITE is true) set SLAVE_WAIT_MSACK flag. SPI is disabled and the
micro is waiting for the next clock to validate the master acknowledge.

Function description AN2038

18/23

6.2 PROTOSUP module
This module contains the high level routine to dispatch the commands frame.

Function Name Input Parameter Return Value

INT_SDA_I2C void void

Description

ISR generated on each edge of SDA. It is used to detect Start or Stop condition.
If a falling edge of SDA occurs when SCL is high a Start Condition (to be validated) occurs. In this
case the I2C_First_Byte will be set to indicate that the next byte sent is the first byte after Start
Condition, the state is changed in START_VALIDATION and the timer is started calling
"Start_TIMER" function.

If a rising edge of SDA occurs when SCL is high a Stop Condition occurs. In this case the state is
changed in WAIT_START and the "I2C_Stop_detected" function is called.

Function Name Input Parameter Return Value

INT_SCK_I2C void void

Description

ISR generated on each falling edge of the clock. It is used for three purpose:

– If status is STARTING_VALIDATION it will be validated and the status is set to
COMMUNICATION.

– If the slave is acknowledging (I2C_Slave_Ack true) it stop the Slave acknowledge.
– If the slave is in waiting of master acknowledge here it is checked and the next byte in

I2C_Datas_W will be sent.

Function Name Input Parameter Return Value

Test_Check_sum void True or False

Description

This function returns true is the checksum received in the read buffer is coherent with the data
received, otherwise return false.

Function Name Input Parameter Return Value

Return_CRC Pointer to data buffer CRC calculated

Description

This function returns the CRC of the data present in the buffer. The CRC is the sum of the byte in the
buffer.

AN2038 Function description

 19/23

Function Name Input Parameter Return Value

New_Cde_Detected void void

Description

This function writes in the COMMAND global variable the value of the command sent by the master
(D1)

Function Name Input Parameter Return Value

Not_Ready_Function void void

Description

This function writes the output buffer with a frame:
STX, 1, NOT_READY, ETX, CRC1, CRC2

Function Name Input Parameter Return Value

Not_ACK_Function void void

Description

This function writes the output buffer with a frame:

STX, 1, NOT_ACK, ETX, CRC1, CRC2

Function Name Input Parameter Return Value

ACK_Function void void

Description

This function writes the output buffer with a frame:

STX, 1, ACK, ETX, CRC1, CRC2

Function Name Input Parameter Return Value

Master_Querry void True or False

Description

This function returns true if the received command frame is a query of the master (Request of
information to the slave, for example the current speed) otherwise it returns false.

Function Name Input Parameter Return Value

Querries_of_Master void void

Description

This function fills the Data_Out buffer according to the master's request.

Function description AN2038

20/23

Function Name Input Parameter Return Value

Test_STX_Presence void True or False

Description

This function returns true if STX byte is present in the read buffer, otherwise it returns false.

Function Name Input Parameter Return Value

Fill_Data_In void void

Description

This function fills the Data_In buffer with the byte present in the read buffer I2C_Datas_R and test
the ETX presence.

Function Name Input Parameter Return Value

Fill_Data_valid void void

Description

This function extracts the D1, D2, Dn byte from Data_In buffer and put them into Valid_Data_In
buffer.

Function Name Input Parameter Return Value

LINK_protocol void void

Description

This function performs the dispatching of the commands.
This function should be called inside the main loop of the application.

If new data is received it tests the presence of STX calling "Test_ETX_Presence", if STX is present
the Checksum is tested calling "Test_Check_sum()", if the Checksum is correct the following calling
will be performed:
"ACK_Function" is called

"Fill_Data_valid" is called

"New_Cde_Detected" is called
and if "Master_Querry" calls return true:

"Querries_of_Master" is called.

AN2038 Reference and related materials

 21/23

7 Reference and related materials

In the following AN it is possible to find information about standard motor control libraries:

● AN1904: STMC AC three-phase induction motor control library

● AN1905: STMC brushless permanent magnet DC motor control library

● AN1947: STMC brushless permanent magnet AC sinus motor control library

It is possible to find additional information in the following website:

● Microcontroller at st: mcu.st.com/mcu/

● ST7MC product information: mcu.st.com/mcu/ > downloads

● Forum: mcu.st.com/mcu/ > forum

Datasheet:

● See ST7MC datasheet

Information about Softec ST7MC Starter Kit board:

● See www.softecmicro.com web site

Revision history AN2038

22/23

8 Revision history

Table 5. Document revision history

Date Revision Changes

13-June-2006 1 Initial release.

AN2038

 23/23

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

