

AMS65R180

650

180

21

D

Ś

Schematic diagram

V

mΩ

А

Vds

 \mathbf{I}_{D}

RDS(ON) MAX

GO

N-Channel Super Junction Power MOSFET

General Description

The series of devices use advanced super junction technology and design to provide excellent RDS(ON) with low gate charge. This super junction MOSFET fits the industry's AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.

Features

- •New technology for high voltage device
- •Low on-resistance and low conduction losses
- Small package
- •Ultra Low Gate Charge cause lower driving requirements
- 100% Avalanche Tested
- •ROHS compliant

Application

- •Power factor correction (PFC)
- •Switched mode power supplies(SMPS)
- Uninterruptible Power Supply (UPS)

Package Marking And Ordering Information

Device	Device Package	Marking
AMS65R180	Marking	65R180

Table 1.Absolute Maximum Ratings

Table 1. Absolute Maximum Katings	TO-220				
(T _c =25°C)	Symbol	AMS65R180	Unit		
Parameter	V _{DS}	650	V		
Drain-Source Voltage (V _{GS=0} V)	V _{GS}	±30	V		
Gate-Source Voltage (V _{DS=} 0V)					
Continuous Drain Current at Tc=25°C	ID (DC)	21	А		
Continuous Drain Current at Tc=100°C	ID (DC)	13.2	А		
Pulsed drain current (Note 1)	IDM (pluse)	63	А		
Maximum Power Dissipation(Tc=25°C)	PD	200	W		
Derate above 25°C		1.6	W/°C		
Single pulse avalanche energy (Note 2)	Eas	690	mJ		
Avalanche current (Note 1)	$\mathbf{I}_{\scriptscriptstyle AR}$	7	А		
Repetitive Avalanche energy, t_* limited by T_{jmax}					
(Note 1)	E	1	mJ		

Tel. 1-973-377-9566 Fax. 1-973-377-3078

133 Kings Road Madison, New Jersey 07940 United States of America

www.americanmicrosemi.com

2016 American Microsemiconductor, Inc.®

Specifications are subject to change without notice

American Microsemiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. American Microsemiconductor, Inc. disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document. Unless otherwise expressly indicated, American Microsemiconductor, Inc. products are not designed, tested or authorized for use in life -saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Document Page 1 of 2 Revised 05/2016

DEKRA Certification Inc. AS9100C and ISO 9001:2008 Certificate No. 131519.01

AMS65R180

Parameter	Symbol	AMS65R180	Unit
Drain Source voltage slope, VDS ≤480 V,	dv/dt	50	V/ns
Reverse diode dv/dt, VDS < 480 V, ISD < ID	dv/dt	15	V/ns
Operating Junction and Storage Temperature Range	$T_{J'}$ stg	-55+150	°C

* limited by maximum junction temperature Table 2 Thermal Characteristic

Table 2. Thermal Characteristic				
Parameter	Symbol	KW65R180	Unit	
Thermal Resistance, Junction-to-Case (Maximum)	RthJC	0.62	°C /W	
Thermal Resistance, Junction-to-Ambient (Maximum)	RthJA	62.5	°C /W	

Table 3. Electrical Characteristics (TA=25°Cunless otherwise noted)

Parameter	Symbol	ymbol Condition		Тур	Max	Unit	
On/off states							
Drain-Source Breakdown Voltage	BV	V ₀₅ =0V I ₅ =250µA	650			V	
Zero Gate Voltage Drain Current(Tc=25°C)	IDSS	V ₁₀₅ =650V,V ₁₀₅ =0V		0.05	1	μΑ	
Zero Gate Voltage Drain	IDSS	V15=650V,V15=0V			100	μΑ	
Current(Tc=125°C)							
Gate-Body Leakage Current	Iass	V _{cs} =±30V,V _{bs} =0V			±100	nA	
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250µA	2.5	3	3.5	V	
Drain-Source On-State Resistance	RDS(ON)	Vgs=10V, Id=10.5A		150	180	mΩ	
Dynamic Characteristics							
Forward Transconductance	$g_{\scriptscriptstyle \mathrm{FS}}$	$V_{DS} = 20V, I_{D} = 10.5A$		17.5		S	
Input Capacitance	C _{iss}	$V_{10} = 50V.V_{10} = 0V.$		1950		PF	
Output Capacitance	C	F=1 0MHz		150		PF	
Reverse Transfer Capacitance	Crss	1-1.000112		5		PF	
Total Gate Charge	Qg	$V_{DS}=480V.I_{D}=21A.V_{\odot}=10V$		45	70	nC	
Gate-Source Charge	Qgs	· · · · · · · · · · · · · · · · · · ·		9		nC	
Gate-Drain Charge	Q_{μ}			18		nC	
Intrinsic gate resistance	Ra	f = 1 MHz open drain		1		Ω	
Switching times							
Turn-on Delay Time	td(on)			11		nS	
Turn-on Rise Time	tr	$V_{DD}=380V, I_{D}=11A,$		6		nS	
Turn-Off Delay Time	td(off)	$R_{a}=4\Omega, V_{a}=10V$		61	100	nS	
Turn-Off Fall Time	t,			4.5	12	nS	
Source- Drain Diode Characteristics							
Source-drain current(Body Diode)	I.so	T –25°C			21	А	
Pulsed Source-drain current(Body Diode)	I _{SDM}	1c-25 C			63	А	
Forward on voltage	VsD	$Tj=25^{\circ}C, I_{sb}=21A, V_{cs}=0V$		0.9	1.3	V	
Reverse Recovery Time	trr			310		nS	
Reverse Recovery Charge	Qrr	Tj=25°C,I=21A,di/dt=100A/µs		5		uC	
Peak Reverse Recovery Current	I			28		A	

Notes 1.Repetitive Rating: Pulse width limited by maximum junction temperature

2.Tj=25°C,VDD=50V,VG=10V, RG=25Ω

Tel. 1-973-377-9566 Fax. 1-973-377-3078

133 Kings Road Madison, New Jersey 07940 United States of America

www.americanmicrosemi.com

2016 American Microsemiconductor, Inc.®

Specifications are subject to change without notice

American Microsemiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. American Microsemiconductor, Inc. disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document. Unless otherwise expressly indicated, American Microsemiconductor, Inc. products are not designed, tested or authorized for use in life -saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage. Document Page 2 of 2 Revised 05/2016

DEKRA Certification Inc. AS9100C and ISO 9001:2008 Certificate No. 131519.01

