

MQME-270-R

Reverse Polarity Protection Filter

HIGH RELIABILITY EMI FILTER

-400V to +400V **Continuous Input**

2A

Output Current

1.6Ω @ 125°C

Max. DC Resistance

>80dB @ 500kHz

Differential Attenuation

FULL POWER OPERATION: -55°C to +125°C

The MilQor® series of high-reliability EMI filters brings SynQor's field proven technology and manufacturing expertise to the Military/Aerospace industry. SynQor's innovative QorSeal® packaging approach ensures survivability in the most hostile environments. Compatible with the industry standard format, these filters have high differential-mode and commonmode attenuation, low DC resistance, and a stabilizing bulk capacitor resistor. They follow conservative component derating guidelines and they are designed and manufactured to comply with a wide range of military standards.

270in 2A 360W SIN 0000000 DIC 3205-301 CAGE 1WX **Design Process**

DESIGNED & MANUFACTURED IN THE USA FEATURING OORSEAL® HI-REL ASSEMBLY

MQME series filters are:

- Designed for reliability per NAVSO-P3641-A guidelines
- Designed with components derated per:
 - MIL-HDBK-1547A
 - NAVSO P-3641A

Qualification Process

MQME series filters are qualified to:

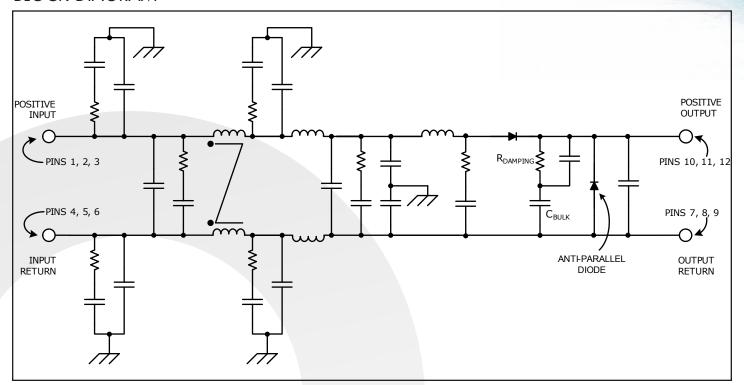
- MIL-STD-810F
 - consistent with RTCA/D0-160E/F/G
- SynQor's First Article Qualification
 - consistent with MIL-STD-883F
- SynQor's Long-Term Storage Survivability Qualification
- SynQor's on-going life test

In-Line Manufacturing Process

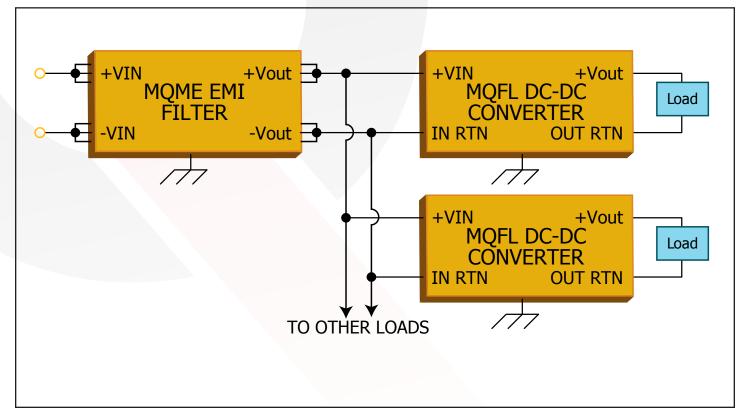
- AS9100 and ISO 9001 certified facility
- Full component traceability
- Temperature cycling
- Constant acceleration
- 24, 96, 160 hour burn-in
- Three level temperature screening

Features

- 2A output current
- Reverse polarity protection
- Very low DC resistance
- > 80 dB differential-mode attenuation at 500kHz
- > 60 dB common-mode attenuation at 500kHz
- Stabilizing bulk capacitor and damping resistor
- All capacitors are X7R multi-layer ceramic Designed to meet all MIL-STD 461 EMI and
- most RTCA/D0-160E/F/G Section 22 lightning requirements


Specification Compliance

MQME series filters (with MQFL converters) are designed to meet:


- MIL-HDBK-704-7 (A through F)
- RTCA/DO-160E/F/G Section 16
- MIL-STD-1275B/D
- DEF-STAN 61-5 (part 6)/5
- MIL-STD-461 (C, D, E, F)
- RTCA/DO-160E/F/G Section 22

BLOCK DIAGRAM

TYPICAL CONNECTION DIAGRAM

MQME-270-R Electrical Characteristics

Parameter	Min.	Тур.	Max.	Units	Notes & Conditions	Group A
Specifications subject to change without notice					Vin=270V DC ±5%, P= 320W unless otherwise specified	Subgroup ³
ABSOLUTE MAXIMUM RATINGS						
Input Voltage					See Note 1	
Continuous	-800		800	V		
Transient (≤1 s)	-1000		1000	V		
Isolation Voltage (I/O to case, I to O)						
Continuous	-500		500	V		
Transient (≤1 s)	-1000		1000	V		
Output Current			3	Α		
Operating Case Temperature	-55		125	°C	HB grade Products, See Note 6	
Storage Case Temperature	-65		135	°C		
Lead Temperature (20 s)			300	°C		
ELECTRICAL CHARACTERISTICS						
Input Voltage						
Continuous	-400		400	V	See Note 1 for negative limits	1, 2, 3
Transient (≤ 1 s, Rs* = 0 Ω)	-500		500	V	п	
Transient ($\leq 100 \text{ ms}$, Rs* = 0Ω)	-1000		1000	V	See Note 1	
Output Voltage (continuous)	Vout = \	/in - (Iin ›	(Rdc) - Vd	V		1, 2, 3
Output Current (continuous)			2	Α		1, 2, 3
Power (continuous)			320	W	See Note 5	, , -
DC Resistance (Rdc)						
TCASE = 25°C			1.3	Ω		1
TCASE = 125°C			1.6	Ω		3
Rectifier Drop (Vd)		0.8		V		
Power Dissipation (2A output current)						
TCASE = 25°C			6.5	W		1
TCASE = 125°C			7.5	W		3
Anti-Parallel Diode						
Forward Current						
Continuous		7	0.2	Α		1, 2, 3
Transient (≤ 8 ms)			2	Α		
Forward Voltage (@ 0.1 A)	0.4		1	V		1, 2, 3
Total Differential-Mode Capacitance		1		μF	Measured across input or output pins	, , -
Total Common-Mode Capacitance		0.44		μF	Measured between any pin to case	
Bulk Capacitor		0.6		μF	, , , , , , , , , , , , , , , , , , , ,	
Damping Resistor		10		Ω		
Noise Attenuation					See Figure 1	
INPUT VOLTAGE SPIKE SUPPRESSION						
Output Voltage Deviation due to a Spike					See Note 2	
Input Voltage Spike (Centered on Vin)						
±200V, 10μs, Rs \leq 0.5Ω, Q \leq 250μC	-50		150	ΔV	MIL-STD-461C (CS06). See Note 4	
± 400 V, 5μs, Rs $\leq 0.5\Omega$, Q ≤ 250 μC	-50		150	ΔV	MIL-STD-461C (CS06). See Note 4	
± 600 V, 10μs, Rs = 50 Ω	-50		150	ΔV	RTCA/DO-160E	

^{*} Rs = Source Impedance

MOME-270-R Electrical Characteristics (Continued)

Parameter		Тур.	Max.	Units	Notes & Conditions Vin=270V DC ±5%, P= 320W unless otherwise	Group A
Specifications subject to change without notice					specified	Subgroup ³
ISOLATION CHARACTERISTICS						
Isolation Voltage (any pin to case)						
Continuous	-500		500	V		1
Transient (≤ 100 µs)	-800		800	V		
Isolation Resistance (any pin to case)	100			MΩ		1
RELIABILITY CHARACTERISTICS						
Calculated MTBF (MIL-STD-217F2)						
GB @ Tcase = 70°C		17.5		10 ⁶ Hrs.		
AIF @ Tcase = 70°C		887		10 ³ Hrs.		
WEIGHT CHARACTERISTICS						
Device Weight		79		g		

Electrical Characteristics Notes

- 1. While the filter will survive these input voltage limits, the filter's output voltage will be outside the limits for an MQFL converter input voltage range.
- 2. Verified by qualification testing and analysis.
- 3. Only the ES and HB grade products are tested at three temperatures. The C grade products are tested at one temperature. Please refer to the Construction and Environmental Stress Screening Options table for details.
- 4. With an external 2uF capacitor in series with a 5ohm resistor connected across the output of the MQME filter module.
- 5. Product of input current and output voltage must be less than 320W
- 6. The specified operating case temperature for ES grade products is -45°C to 100°C. The specified operating case temperature for C grade products is 0°C to 70°C.

* Rs = Source Impedance

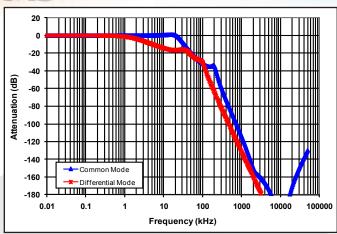


Figure 1: Typical Common Mode and Differential Mode Attenuation provided by the filter as a function of frequency. Both input lines are connected to chassis ground through 50Ω resistors. The filter case is also connected to chassis ground.

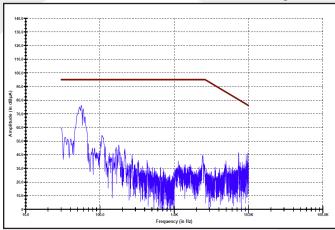


Figure 3: MIL-STD-461E Method CE101 Low Frequency Conducted Emissions. Limit line (in brown) is the 'Submarine Applications DC Curve'. Setup described on Page 6.

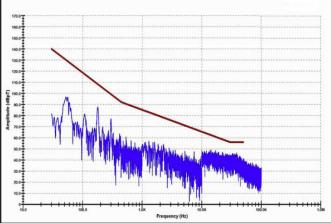


Figure 5: MIL-STD-461E Method RE101 Low Frequency Radiated Emissions. Limit line (in brown) is the 'Standard Curve' from MIL-STD-461C Method RE01, which is more strict than all RE101 limits. Setup described on Page 6.

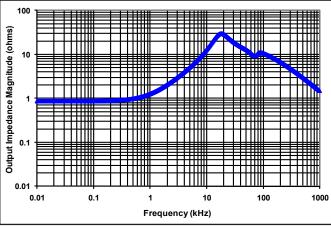


Figure 2: Typical Output Impedance (magnitude) of the filter looking back into its output pins with the input pins connected to a source with zero source impedance.

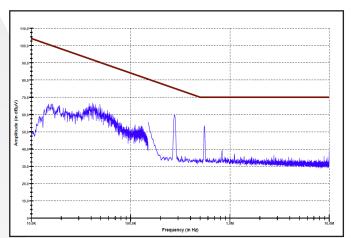


Figure 4: MIL-STD-461E Method CE102 High Frequency Conducted Emissions. Limit line (in brown) is the 'Basic Curve'. Setup described on Page 6.

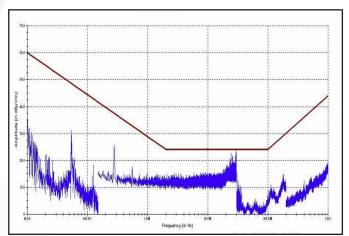


Figure 6: MIL-STD-461E Method RE102 High Frequency Radiated Emissions. Limit line (in brown) is the 'Submarine External to Pressure Hull Curve'. Setup described on Page 6.

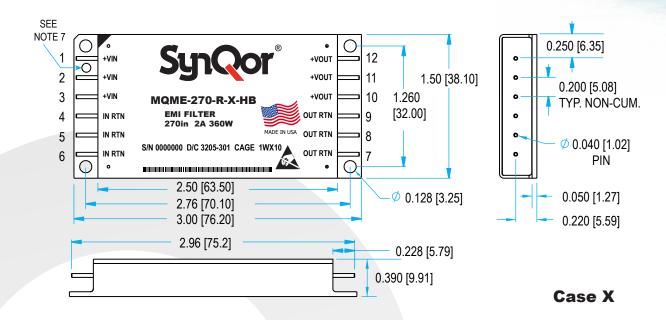
BASIC OPERATION AND FEATURES

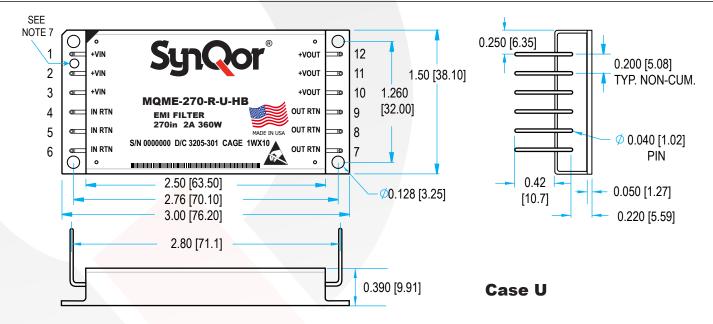
The MQME-270-R is a multi-stage differential-mode and common-mode passive EMI filter designed to interface a power source with one or more SynQor DC/DC converters (or other loads that create EMI). Each stage of this filter is well damped to avoid resonances and oscillations, and only X7R multi-layer ceramic capacitors are used. Figure 1 shows the typical differential and common-mode attenuation provided by this filter when the source impedance is 50W to chassis ground on each input line.

The MQME-270-R EMI filter includes a large bulk capacitor (also X7R) with a series damping resistor to correct for the unstabilizing effect of a converter's negative input resistance. A white paper discussing this negative input resistance and the need for corrective damping can be found on the SynQor website (see Input System Instability application note). Figure 2 shows the magnitude of the filter's output impedance when the filter input is connected to a stiff voltage source.

When used with SynQor's DC/DC converters, the MQME-270-R EMI filter is designed to pass all of the relevant MIL-STD-461C/D/E/F requirements to their most stringent limits. The MIL-STD-461 Compliance Matrix Table lists these requirements and describes the setup used to pass them. Figures 3 - 6 show results from selected conductive and radiated emissions tests.

The filter is also designed to pass the waveform types and applications specified in RTCA/DO-160E/F/G Section 22 (Lightning Induced Transient Susceptibility) to Level 4 (some waveforms / applications require external transient suppression circuitry). The Section 22 Compliance Matrix Table lists these waveforms and applications and describes the setup used to pass them.


A typical application would place the MQME filter close to the input of the DC/DC converter, with the cases of the filter and the converter connected together through a ground plane. Both cases are electrically conductive, so connection to the cases can be made with the fasteners used to secure the device.

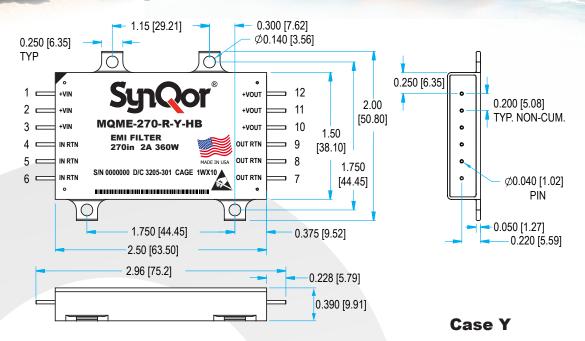

Do not connect the outputs of multiple MQME-270-R filters in parallel. Connecting filters in this manner may result in slightly unequal currents to flow in the positive and return paths of each filter. These unequal currents may cause the internal common-mode chokes to saturate and thus cause degraded common-mode rejection performance.

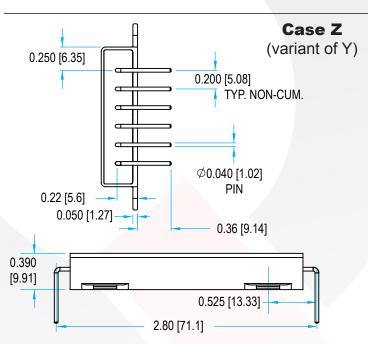
REVERSE POLARITY PROTECTION: The MQME-270-R EMI filter has a series-connected diode. This diode blocks reverse current flow if the filter's input voltage is mistakenly connected with the wrong polarity. The anti-parallel diode, working with the reverse polarity diode, ensures that the filter's output voltage goes only slightly negative during this time, and therefore satisfying the minimum input voltage specifications of SynQor's MQFL converters.

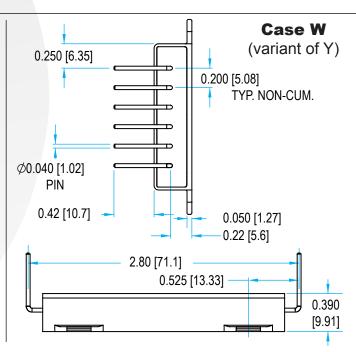
The reverse polarity diode also preforms a useful function during negative polarity spikes and surges, and during brief power interrupts. Since it stops current from flowing negatively through the EMI filter back toward the source, thediode allows the total bulk capacitor (located both within and external to the filter) to better hold up the output voltage during these transients.

NOTES

- 1) Pins 0.040" (1.02 mm) diameter
- Pins Material: Copper Alloy Finish: Gold over Nickel plating, followed by Sn/Pb solder dip
- 3) All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5 mm) x.xxx +/-0.010 in. (x.xx +/-0.25 mm)
- 4) Weight: 2.8 oz (78.5 g) typical
- 5) Workmanship: Meets or exceeds IPC-A-610C Class III
- 6) Print Labeling on Top Surface per Product Label Format Drawing
- 7) Pin 1 identification hole, not intended for mounting (case X and U)


PIN DESIGNATIONS


	Function	
	1	Positive input
	2	Positive input
	3	Positive input
	4	Input return
	5	Input return
	6	Input return


Pin #	Function
7	Output Return
8	Output Return
9	Output Return
10	Positive output
11	Positive output
12	Positive output

Technical Specification

NOTES

- 1) Pins 0.040" (1.02 mm) diameter
- Pins Material: Copper Alloy Finish: Gold over Nickel plating, followed by Sn/Pb solder dip
- 3) All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5 mm) x.xxx +/-0.010 in. (x.xx +/-0.25 mm)
- 4) Weight: 2.8 oz (78.5 g) typical
- 5) Workmanship: Meets or exceeds IPC-A-610C Class III
- 6) Print Labeling on Top Surface per Product Label Format Drawing
- 7) Pin 1 identification hole, not intended for mounting (case X and U)

PIN DESIGNATIONS

Pin #	Function
1	Positive input
2	Positive input
3	Positive input
4	Input return
5	Input return
6	Input return

Pin #	Function
7	Output Return
8	Output Return
9	Output Return
10	Positive output
11	Positive output
12	Positive output

Lightning Induced Transient Susceptibility

RTCA/DO-160E/F/G Section 22 Compliance Matrix

This table shows the RTCA/DO-160 Section 22 requirements/limits that will be met* by a stand-alone setup comprised of:

- MQME-270-P Filter
- MQFL-270-05S Converter
- 120W Resistive load
- · Metal Chassis Plane

	RTCA/DO-160E/F/G Section 22				
RTCA/DO-160E/F/G	Waveform	Maximum Level Passed	Test Conditions		
	3	4			
Pin Injection	4	4†	Signal applied to +Vin pin. Input Return pin connected to system ground		
	5a	4†	giodila		
Single- and Multiple-Stroke	2	4**	Cianal applied to unchicled newer cable bundle		
Cable Induction	3	4	Signal applied to unshielded power cable bundle		
Single- and Multiple-Stroke	4	4	Cianal applied between metal ground plane and evetem ground		
Ground Injection	5	4	Signal applied between metal ground plane and system ground		
Multiple-Burst Cable Induction	3	4	Signal applied to unshielded power cable bundle		

^{*} Requirement is deemed to have been met as long as transient deviations in the converter's output voltage remain within ±10% of its initial value.

Met by any MQME Filter

Met by a MQME Filter having external Transient Suppression

[†] For these waveforms at Level 3 and above, an external transient suppressor of sufficient energy rating must placed across the filter's input pins to keep the differential transient input voltage below +200V/-50V. Negative polarity waveforms may cause power flow to the converter to be interrupted long enough to cause a graceful shutdown and restart of the converter. Also, the reverse voltage protection feature of the -T filter is required to protect the converter (but not the filter) from negative polarity waveform.

^{**} For this waveform at a Level 4 and above, external transient suppressors of sufficient energy rating must be added between the filter's input power pins and its case to keep the common-mode transient input voltage below +800V.

EMI

Military Standard 461 Compliance Matrix

This table shows the MIL-STD-461 requirements/limits that will be met* by the stand-alone setups indicated below:

- MQME-270-P Filter
- MQFL-270-05S Converter
- 120W Resistive load
- · Metal Chassis Plane

Mil Ctd 4C4		MIL-STD-461C	Mil Ctd 4C4	MIL-STD-461D/E/F		
Mil-Std-461	Requirement	Most Stringent Limit Listed			Most Stringent Limit Listed	
Conducted Emissions	CE01 CE03 CE07	Class A5 (Submarine) Class A5 (Submarine)‡ Class A1 (Aircraft)	Conducted Emissions	CE101 CE102	Submarine Basic Curve	
	CS01	Class A5 (Submarine)		CS101	Curve #2	
	CS02	Class A5 (Submarine)		CS106	(461F Only)	
Conducted Susceptibility CS06 Class A1/A5 (Aircraft/Sub) CS10 Class A5 (Submarine)	Conducted Susceptibility	CS114	Curve #5			
	Cucopiionity	CS115	Basic Waveform			
	CS11	Class A5 (Submarine)		CS116	lmax = 10A	
				RE101	Navy	
Radiated	RE01	Class A5 (Submarine)	Radiated		Submarine	
Emissions	RE02†	Class A5 (Submarine)	Emissions	RE102†	Fixed Wing Internal, >25 meters Nose to Tail	
Radiated Susceptibility	RS01 RS02 RS03	Class A5 (Submarine) Class A1/A5 (Aircraft/Sub) Class A4 (Surface Ship)	Radiated Susceptibility	RS101 RS103	Army Aircraft External	

^{*} Susceptibility requirements/limits are considered to be met as long as transient deviations in the converter's output voltage remain within ±10% of its initial value.

‡ In almost every case the limit listed is the most stringent of the requirements. The one exception is CE03 - High Frequency Broadband Conducted Emissions, Converter with Passive Filter. In this case the filter and converter passed the A1 limit. The filter and converter pass the CE03 - Narrowband Conducted Emissions at the A5 limit level.

Met by any MQME Filter

Met by a MQME filter having an external $2\mu F$ capacitor in series with a 5Ω resistor connected across the output of a MQME filter module

[†] Met with metal screen shield covering the filter, converter, and resistive load.

CONSTRUCTION AND ENVIRONMENTAL STRESS SCREENING OPTIONS

Screening	Consistent with MIL-STD-883F	C-Grade (specified from 0 °C to +70 °C	ES-Grade (specified from -45 °C to +100 °C	HB-Grade (specified from -55 °C to +125 °C
Element Evaluation		No	Yes	Yes
Internal Visual	IPC-A-610 Class 3	Yes	Yes	Yes
Temperature Cycle	Method 1010	No	Condition B (-55 °C to +125 °C)	Condition C (-65 °C to +150 °C)
Constant Acceleration	Method 2001 (Y1 Direction)	No	500 g	Condition A (5000 g)
Burn-in	Method 1015	24 Hrs @ +125 °C	96 Hrs @ +125 °C	160 Hrs @ +125 °C
Final Electrical Test	Method 5005 (Group A)	+25 °C	-45, +25, +100 °C	-55, +25, +125 °C
Mechanical Seal, Thermal, and Coating Process			Full QorSeal	Full QorSeal
External Visual	Method 2009	Yes	Yes	Yes
Construction Process			QorSeal	QorSeal

MilQor® Hi-Rel converters and filters are offered in three variations of environmental stress screening options. All ES-Grade and HB-Grade MilQor Hi-Rel converters use SynQor's proprietary QorSeal® Hi-Rel assembly process that includes a Parylene-C coating of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. Each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. The ES- and HB-Grades are also constructed of components that have been procured through an element evaluation process that pre-qualifies each new batch of devices.

MIL-STD-810F Qualification Testing

MIL-STD-810F Test	Method	Description			
Fungus	508.5	Table 508.5-I			
Altitude	500.4 - Procedure I	Storage: 70,000 ft / 2 hr duration			
Aititude	500.4 - Procedure II	Operating: 70,000 ft / 2 hr duration; Ambient Temperature			
Rapid Decompression	500.4 - Procedure III	Storage: 8,000 ft to 40,000 ft			
Acceleration	513.5 - Procedure II	Operating: 15 g			
Salt Fog	509.4	Storage			
High Temperature	501.4 - Procedure I	Storage: 135 °C / 3 hrs			
nigii ieiliperature	501.4 - Procedure II	Operating: 100 °C / 3 hrs			
Low Tomporature	502.4 - Procedure I	Storage: -65 °C / 4 hrs			
Low Temperature	502.4 - Procedure II	Operating: -55 °C / 3 hrs			
Temperature Shock	503.4 - Procedure I - C	Storage: -65 °C to 135 °C; 12 cycles			
Rain	506.4 - Procedure I	Wind Blown Rain			
Immersion	512.4 - Procedure I	Non-Operating			
	507.4 Barrel at II	Aggravated cycle @ 95% RH (Figure 507.5-7 aggravated temp -			
Humidity	507.4 - Procedure II	humidity cycle, 15 cycles)			
Random Vibration	514.5 - Procedure I	10 - 2000 Hz, PSD level of 1.5 g^2/Hz (54.6 g_{rms}), duration = 1 hr/axis			
Shock	516.5 - Procedure I	20 g peak, 11 ms, Functional Shock (Operating no load) (saw tooth)			
SHOCK	516.5 - Procedure VI	Bench Handling Shock			
Cinus aidal vibratia:	F14 F Catagory 14	Rotary wing aircraft - helicopter, 4 hrs/axis, 20 g (sine sweep from			
Sinusoidal vibration	514.5 - Category 14	10 - 500 Hz)			
Sand and Dust	510.4 - Procedure I	Blowing Dust			
Janu anu Dust	510.4 - Procedure II	Blowing Sand			

First Article Testing consistent with MIL-STD-883F

MIL-STD-883F Test	Method	Description
		Description
Electrical Tests	5005	
Physical Dimensions test	2016	
Resistance to Solvents test	2015.13	
Solderability test	2003.8	
Lead Integrity test	2004.5	
Salt Atmosphere test	1009.8	Condition "A"
Adhesion of Lead Finish test	2025.4	
Altitude Operation test	1001	Condition "C"
ESD Sensitivity	3015.7	Class 2
Stabilization Bake test	1008.2	Condition "C"
Vibration Fatigue test	2005.2	Condition "A"
Random Vibration test	2026	Condition "II K"
Sequential Test Group #1		
Life Test – Steady State test	1005.8	
Life Test – Intermittent Duty test	1006	
Sequential Test Group #2		
Temperature Cycle test	1010.8	Condition "C"
Constant Acceleration test	2001.2	Condition "A"
Sequential Test Group #3		
Thermal Shock test	1011.9	Condition "B"
Temperature Cycle test	1010.8	Condition "C"
Moisture Resistance test	1004.7	With Sub cycle
Sequential Test Group #4		
Mechanical Shock test	2002.4	Condition "B"
Variable Frequency Vibration test	2007.3	Condition "A"

MilQor Filter Family Matrix
The tables below show the array of MilQor filters available. When ordering SynQor converters, please ensure that you use the complete part number according to the table in the last page. Contact the factory for other requirements.

Product	Continuous Input Voltage	Power (Amperage) Rating	Version (see table below)	Features Available (In Addition to Passive Filter Components)				
Family Designator				Enable Pass- Through Circuitry	Transient Suppression Circuitry	Soft-Start Circuitry	Reverse Polarity Protection Circuitry	
MQME-28	40V		Р					
MOME 20E	701/	320W (20A)	Т	•	•	•	•	
MQME-28E 70	70V		Т6	•	•	•	•	
MQHE-28	40V	100\\ (100\)	Р					
MQHE-28E	70V	160W (10A)	Ρ					
MQHE-270	400V	160W (1A)	Р					
MOME 270	400)/	330/// (34)	Р					
MQME-270 400V	320W (2A)	R				•		
MQME-270L	400V	200W (3A)	Р					
WQWE-270L	4007	2000V (3A)	R				•	

PART NUMBERING SYSTEM

The part numbering system for SynQor's MilQor DC-DC converters follows the format shown in the table below.

Model Name	Input Voltage Range	Version	Package Outline/Pin Configuration	Screening Grade
MQME MQHE	28 28E	P T T6	U X Y	C ES HB
	270 270L	P R	W Z	

Not all combinations make valid part numbers, please contact SynQor for availability. See the Product Summary web page for more options.

Example: MQME-270-R-Y-ES

APPLICATION NOTES

A variety of application notes and technical white papers can be downloaded in pdf format from the SynQor website.

PATENTS

SynQor holds numerous U.S. patents, one or more of which apply to most of its power conversion products. Any that apply to the product(s) listed in this document are identified by markings on the product(s) or on internal components of the product(s) in accordance with U.S. patent laws. SynQor's patents include the following:

5,999,417	6,222,742	6,545,890	6,594,159	6,894,468	6,896,526
6,927,987	7,050,309	7,072,190	7,085,146	7,119,524	7,269,034
7,272,021	7,272,023	7,558,083	7,564,702	7,765,687	7,787,261
8,023,290	8,149,597	8,493,751	8,644,027	9,143,042	

Contact SynQor for further information and to order:

 Phone:
 978-849-0600

 Toll Free:
 888-567-9596

 Fax:
 978-849-0602

E-mail: mqnbofae@synqor.com

Web: www.synqor.com
Address: 155 Swanson Road

Boxborough, MA 01719

USA

Warranty

SynQor offers a two (2) year limited warranty. Complete warranty information is listed on our website or is available upon request from SynQor.