AN8062 # Low Drop-out Positive Output Voltage Regulator with Reset Pin #### Overview The AN8062, which incorporates output ON/OFF switchable strobe, reduced voltage detection, and microcomputer reset functions, is a voltage regulator IC with small minimum input/output voltage difference and optimum for battery operation. #### **■** Features - 30mA output current and 4V fixed output voltage - Minimum input/output voltage difference: typ. 0.1V (I_{OUT}=10mA) - Capable of turning on the output by grounding the strobe pin - Provided with the reduced voltage detection pin which detects and outputs reduction of an input voltage, and the reset pin which resets the microcomputer, etc. ## Block Diagram ## ■ Absolute Maximum Ratings (Ta=25°C) | Parameter | Symbol | Rating | Unit | | |-------------------------------|----------------|---------------|------|--| | Input voltage | VI | 12 | V | | | Power dissipation | P _D | 500 | mW | | | Operating ambient temperature | Topr | -20 to +75 | ℃ | | | Storage temperature | $T_{ m stg}$ | -55 to +150 | ో | | #### ■ Electrical Characteristics (Ta=25°C) | Parameter | Symbol | Rating | min | typ | max | Unit | |--|---------------------|--|----------------|------|--------|-------| | Bias current at reset | I_{RB} | $V_R=6V, V_I=6V$ | | | 10 | μΑ | | Bias current at no load | I_{VB} | $V_R=0V, V_I=6V$ | | 1.7 | 4 | mA | | Output voltage | Vo | $V_I=6V, I_O=3mA$ | 3.84 | 4 | 4.16 | V | | Output voltage tolerance | V _T | V_1 =4.3 to 7V, I_0 =1 to 10mA | 3.82 | | 4.18 | V | | Line regulation | REG _{IN} | $V_{I} = 4.3 \text{ to 7V}, I_{O} = 3\text{mA}$ |) — | 3 | 30 | mV | | Load regulation | REGL | $V_{I} = 6V, I_{O} = 1 \text{ to } 10\text{mA}$ | | 1 | 30 | mV | | Input/output voltage difference | V _{IOS} | $V_{I} = 3.8V, I_{O} = 10mA$ | | 0.1 | 0.2 | V | | Strobe pin input current (H) | I _{RIC(H)} | $V_R=6V, V_I=6V$ | -1 | | 1 | μΑ | | Strobe pin input current (L) | I _{RIC(L)} | $V_R = 0V, V_I = 6V$ | -200 | | | μΑ | | Reduced voltage detection level | V _{RDL} | I _O =3mA | 3.95 | 4.20 | 4.45 | V | | Output voltage at reset | V _{RO} | $V_R=6V, V_I=6V$ | | | 0.1 | V | | CPU reset output suction current | I_{CR} | $V_{I}=2.5V, V_{R}=0.4V$ | 40 | | | μΑ | | Hysteresis width | V _H | I _O =3mA | | 60 | | mV | | Diode voltage drop | V_{D} | I _O =3mA | - 2 | 0.7 | | o v | | Overcurrent protection | I _{OCP} | $V_I=6V, V_R=0V$ | | 45 | coll l | mA | | Output voltage temperature coefficient | ΔV ₀ /ΔΤ | $V_{I}=6V, I_{O}=3mA$
$T_{A}=0 \text{ to } 50^{\circ}C$ | 9,77 | -20 | | ppm/℃ | ## Application Circuit ## Description of Functioning #### 1. Functioning of the strobe pin When the strobe pins grounded, 4V (typ.) is output to the output pin 1 (Pin⑦). If this pin is opened, the circuits other than reset output (Pin④) output 2 (Pin⑤) are turned off #### 2. Function of the reduced voltage detection pin When the input voltage of the input pin (Pin(\hat{e})) drops to 4.2V (typ.), the reduced voltage detection pin (Pin(\hat{e})) is switched from "L" to "H" (same voltage level as input). There is 60mV (typ.) hysteresis at the end of "H" to "L" switching. #### 3. Function of the output pin 2 When the voltage $(V_{DD}$ of the microcomputer) level of the output 2 drops below Vth, the transistor (Q_2) for reset output is turened on and reset output (Pin 4) is set to the "L" level. This causes the reset function to reset the microcomputer. # ■ Characteristics Curve # Request for your special attention and precautions in using the technical information and semiconductors described in this book - (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed. - (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book. - (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). - Consult our sales staff in advance for information on the following applications: - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. - · Any applications other than the standard applications intended. - (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. - (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. - Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products. - (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages. - (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company. 20080805