

datasheet

flow 3xNPC 1

650 V / 15 A

Maximum Ratings

T_j =25°C, unless otherwise specified					
Parameter	Symbol	Conditi	Value	Unit	
Buck IGBT					
Collector-emitter break down voltage	V _{CES}			650	V
DC collector current	I _C	T _j =T _j max	T _h =80°C T _c =80°C	20 27	А
Pulsed collector current	I _{CRM}	t_p limited by T_j max		45	А
Turn off safe operating area		T _j ≤175°C V _{CE} <=V _{CES}		45	А
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	43 66	W
Gate-emitter peak voltage	V _{GE}			±20	V
Maximum Junction Temperature	T _{jmax}			175	°C
Buck FWD					
Peak Repetitive Reverse Voltage	V _{RRM}	T _j =25°C		600	V
Forward average current	I _{FAV}	T _j =T _j max	T _h =80°C T _c =80°C	22 30	А
Surge forward current	I _{FSM}	t _p =10ms		150	А
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	42 64	W
Maximum Junction Temperature	T_{jmax}			150	°C

datasheet

Maximum Ratings

T_j =25°C, unless otherwise specified					
Parameter	Symbol	Conditi	on	Value	Unit
Boost IGBT					
Collector-emitter break down voltage	V _{CES}			650	V
DC collector current	I _C	T _j =T _j max	T _h =80°C T _c =80°C	25 33	А
Pulsed collector current	I _{CRM}	t_p limited by T_j max		60	А
Turn off safe operating area		T _j ≤150°C V _{CE} <=V _{CES}		60	А
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	59 90	W
Gate-emitter peak voltage	V _{GE}			±20	v
Short circuit ratings	t _{sc} V _{cc}	T _j ≤150°C V _{GE} =15V		6 360	μs V
Maximum Junction Temperature	T _{jmax}			150	°C
Boost Inverse Diode					
Peak Repetitive Reverse Voltage	V _{RRM}	T _c =25°C		650	v
Forward average current	I _{FAV}	T _j =T _j max	T _h =80°C T _c =80°C	19 25	A
Repetitive peak forward current	I _{FRM}	t_p limited by T_j max		20	А
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	39 59	W
Maximum Junction Temperature	T_{jmax}			175	°C
Boost FWD					
Peak Repetitive Reverse Voltage	V _{RRM}	T _j =25°C		650	V
Forward average current	I _{FAV}	T _j =T _j max	T _h =80°C T _c =80°C	19 25	А
Repetitive peak forward current	I _{FRM}	t _p limited by T _j max		20	A
Power dissipation	P _{tot}	T _j =T _j max	T _h =80°C T _c =80°C	39 59	W
Maximum Junction Temperature	T _{jmax}			175	°C

datasheet

Maximum Ratings

T_i =25°C, unless otherwise specified			-			
Parameter	Symbol Condition			Value	Unit	
Thermal Properties						
Storage temperature	$T_{\rm stg}$				-40+125	°C
Operation temperature under switching condition	T _{op}				-40+(Tjmax - 25)	°C
Insulation Properties						
Insulation voltage		t=2s	DC voltage		4000	V
Creepage distance					min 12,7	mm
Clearance					min 12,7	mm

Characteristic Values

		Cilara		values								
Parameter	Symbol		Co	onditions				Value		Unit		
			V _{GE} [V] or V _{GS} [V]	V _r [V] or V _{CE} [V] or V _{DS} [V]	I _C [A] or I _F [A] or I _D [A]	Tj	Min	Тур	Max			
Buck IGBT												
Gate emitter threshold voltage	V _{GE(th)}	V _{CE} =V _{GE}			0,0004	Tj=25°C Tj=125°C	3,3	4	4,7	V		
Collector-emitter saturation voltage	V _{CEsat}		15		15	Tj=25°C Tj=125°C		1,64 1,77	2,22	V		
Collector-emitter cut-off current incl. Diode	I _{CES}		0	650		Tj=25°C Tj=125°C			0,04	mA		
Gate-emitter leakage current	I _{GES}		20	0		Tj=25°C Tj=125°C			200	nA		
Integrated Gate resistor	R_{gint}							none		Ω		
Turn-on delay time	t _{d(on)}					Tj=25°C Tj=125°C		73 72				
Rise time	t _r	Rgoff=32 Ω Rgon=32 Ω	Rgoff=32 Ω Rgon=32 Ω				Tj=25°C Tj=125°C		8 9			
Turn-off delay time	$t_{\rm d(off)}$			Rgoff=32 Ω Rgon=32 Ω	1.15	250	15	Tj=25°C Tj=125°C		72 86		ns
Fall time	t _f				±15	350	15	Tj=25°C Ti=125°C		10 11		
Turn-on energy loss	E on					Tj=25°C Ti=125°C		0,199				
Turn-off energy loss	$E_{\rm off}$					Tj=25°C Tj=125°C		0,072		mWs		
Input capacitance	C _{ies}					.,		930				
Output capacitance	C _{oss}	f=1MHz	0	25		Tj=25°C		240		pF		
Reverse transfer capacitance	C _{rss}							4				
Gate charge	Q _G		15	520	15	Tj=25°C		38		nC		
Thermal resistance chip to heatsink	$R_{\rm th(j-s)}$	Phase-Change Material λ=3,4W/mK						2,20		K/W		

Buck FWD									
Diode forward voltage	V _F				15	Tj=25°C Tj=125°C	2,47 1,73	2,6	V
Reverse leakage current	I _r			600		Tj=25°C Tj=150°C		100	μΑ
Peak reverse recovery current	I _{RRM}					Tj=25°C Tj=125°C	17 23		А
Reverse recovery time	t m					Tj=25°C Tj=125°C	22 36		ns
Reverse recovered charge	Q _{rr}	Rgon=32 Ω	±15	350	15	Tj=25°C Tj=125°C	0,225 0,523		μC
Peak rate of fall of recovery current	$(di_{rf}/dt)_{max}$					Tj=25°C Tj=125°C	1736 1606		A/µs
Reverse recovered energy	$E_{\rm rec}$					Tj=25°C Tj=125°C	0,024 0,060		mWs
Thermal resistance chip to heatsink	R th(j-s)	Phase-Change Material λ=3,4W/mK					1,65		K/W

Characteristic Values

Parameter	Symbol		Co	onditions				Value		Unit
			V _{GE} [V] or V _{GS} [V]	V_{r} [V] or V_{CE} [V] or V_{DS} [V]	I _c [A] or I _F [A] or I _D [A]	T j	Min	Тур	Max	
Boost IGBT										
Gate emitter threshold voltage	V _{GE(th)}	V _{CE} =V _{GE}			0,00029	Tj=25°C	5,1	5,8	6,4	V
Collector-emitter saturation voltage	V _{CEsat}		15		20	Tj=25°C	1,03	1,54	1,87	V
Collector-emitter cut-off incl diode	I _{CES}		0	600		Tj=25°C		1,70	0,01	mA
Gate-emitter leakage current	I GES		20	0		Tj=25°C			200	nA
Integrated Gate resistor	R_{gint}					1]=125 C		none		Ω
Turn-on delay time	t d(on)					Tj=25°C Tj=125°C		65 66		
Rise time	t _r					Tj=25°C Tj=125°C		15 17		
Turn-off delay time	t _{d(off)}	Raoff=16.0				Tj=25°C		139		ns
Fall time	t _f	Rgon=16 Ω	±15	350	15	Tj=25°C		65 73		
Turn-on energy loss	E on					Tj=25°C		0,210		
Turn-off energy loss	$E_{\rm off}$					Tj=25°C		0,207		mWs
Input capacitance	C ies					TJ=125°C		1100		
Output capacitance	C _{oss}	f=1MHz	0	25		Tj=25°C		71		pF
Reverse transfer capacitance	C _{rss}					-		32		
Gate charge	Q _G		15	480	20	Tj=25°C		120		nC
Thermal resistance chip to heatsink	R th(j-s)	Phase-Change Material ん=3,4W/mK						1,60		K/W
Boost Inverse Diode										
Diode forward voltage	V _F				10	Tj=25°C		1,68	1,87	V
Thermal resistance chip to heatsink	R th(j-s)	Phase-Change Material &=3.4W/mK				1]=125°C		2,44		K/W
										<u> </u>
Boost FWD				Τ	10	Ti=25°C	1.23	1.67	1.87	
Diode forward voltage	V _F				10	$T_j=125$ °C	1,20	1,56	0.14	V
Reverse leakage current	I _r			650		Tj=125°C		12	0/2 !	μΑ
Peak reverse recovery current	I _{RRM}	-				$\frac{T_{j}=125^{\circ}C}{T_{i}=25^{\circ}C}$		14		A
Reverse recovery time	t _{rr}					$T_{j=125°C}$ $T_{i=25°C}$		278		ns
Reverse recovered charge	Q _{rr}	Rgon=16 Ω	±15	350	15	$T_j=125$ °C $T_j=25$ °C		1,22		μC
Peak rate of fall of recovery current	(di _{rf} /dt) _{max}	-				Tj=125°C		153 0.187		A/µs
Reverse recovery energy	E rec					Tj=125°C		0,348		mWs
Thermal resistance chip to heatsink	R th(j-s)	Phase-Change Material λ=3,4W/mK						2,44		K/W
Thermistor										
Rated resistance	R					Tj=25°C		21511		Ω
Deviation of R100	Δ _{R/R}	R100=1486 Ω				Tj=100°C	-4,5		+4,5	%
Power dissipation	Р			1		Tj=25°C		210		mW
Power dissipation constant				1		Tj=25°C		3,5		mW/K
B-value	B(25/50)					Tj=25°C		3884		к
B-value	B(25/100)			1		Tj=25°C		3964		к
Vincotech NTC Reference									F	

Buck

IGBT

Figure 3

Typical transfer characteristics $I_{C} = f(V_{GE})$

 $T_{\rm j} = 125$ °C V from 7 V to 17 V in stone of 1

 $V_{\rm GE}$ from 7 V to 17 V in steps of 1 V

Buck

With an inductive load at

$T_{j} =$	25/125	°C
$V_{CE} =$	350	V
$V_{GE} =$	±15	V
$R_{\text{gon}} =$	32	Ω
$R_{\text{goff}} =$	32	Ω

Figure 7

Typical reverse recovery energy loss as a function of collector current

$I_j =$	25/125	٥C
$V_{\rm CE} =$	350	V
$V_{GE} =$	±15	V
$R_{\text{gon}} =$	32	Ω

With an inductive load at $T_{\rm j}$ =25/125°C $V_{\rm CE}$ =350V $V_{\rm GE}$ = ± 15 V $I_{\rm C}$ =15A

With an inductive load at $T_{\rm j}$ =25/125°C $V_{\rm CE}$ =350V $V_{\rm GE}$ = ± 15 V $I_{\rm C}$ =15A

Figure 8

FWD

FWD

datasheet

IGBT

FWD

Buck

$T_j =$	125	°C
$V_{\rm CE} =$	350	V
$V_{GE} =$	±15	V
$R_{\text{gon}} =$	32	Ω
$R_{\text{goff}} =$	32	Ω

Figure 11

Typical reverse recovery time as a function of collector current

Figure 10

With an inductive load at

$T_j =$	125	°C
$V_{CE} =$	350	V
$V_{GE} =$	±15	V
<i>I</i> _C =	15	Α

Figure 12

FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

 $V_{GE} =$

FWD

FWD

Buck

Figure 13

Figure 15

Typical reverse recovery current as a function of collector current

 $I_{\rm RRM} = f(I_{\rm C})$

Figure 14

Typical reverse recovery charge as a function of IGBT turn on gate resistor

Figure 16

FWD

Typical reverse recovery current as a function of IGBT turn on gate resistor

copyright Vincotech

datasheet

FWD

Buck

Figure 19

IGBT transient thermal impedance as a function of pulse width

IGBT thermal model values

R (K/W)	Tau (s)
0,11	2,1E+00
0,17	4,5E-01
0,76	9,1E-02
0,59	2,4E-02
0,40	5,0E-03
0,17	9,0E-04

FWD transient thermal impedance

as a function of pulse width

FWD thermal model values

K/W

R (K/W)	Tau (s)
0,05	4,1E+00
0,10	5,7E-01
0,71	7,9E-02
0,40	2,0E-02
0,21	4,7E-03
0,17	9,2E-04

Buck

Figure 23

Power dissipation as a function of heatsink temperature

Figure 22 IGBT Collector current as a function of heatsink temperature $I_{\rm C} = f(T_{\rm h})$ 34 $I_C(A)$ 30 25 20 15 10 5 0 50 100 150 0 200 $T_h(^{o}C)$ At $T_j =$ 175 °C $V_{GE} =$ 15 V

Figure 24

Forward current as a

function of heatsink temperature

 $I_{\rm F} = f(T_{\rm h})$

FWD

FWD

IGBT

Buck

Figure 27 IGBT Reverse bias safe operating area

Boost

Figure 3

Typical transfer characteristics $I_{\rm C} = f(V_{\rm GE})$

IGBT Figure 2 Typical output characteristics $I_{\rm C} = f(V_{\rm CE})$ 60 $I_{C}(A)$ 50 40 30 20 10 0 0,0 0,5 1,0 1,5 2,0 2,5 $V_{CE}(V)^{-3,0}$ At $t_{\rm p} =$ 250 μs °C $T_j =$ 124

 $V_{\rm GE}$ from 7 V to 17 V in steps of 1 V

Boost

With an inductive load at $T_{\rm j} = 25/124$ °C

$V_{\rm CE} =$	350	V
$V_{GE} =$	±15	V
$R_{\text{gon}} =$	16	Ω
$R_{\text{goff}} =$	16	Ω

Figure 7

Typical reverse recovery energy loss as a function of collector current

 $E_{\rm rec} = f(I_{\rm c})$

With an inductive load at

$T_{j} =$	25/124	°C
$V_{\rm CE} =$	350	V
$V_{GE} =$	±15	V
$R_{\text{gon}} =$	16	Ω

With an inductive load at $T_j = 25/124$ °C $V_{CE} = 350$ V $V_{CE} = \pm 15$ V

$V_{GE} =$	±15	V
<i>I</i> _C =	15	Α

Figure 8

FWD

Typical reverse recovery energy loss as a function of gate resistor

 $E_{\rm rec} = f(R_{\rm G})$

With an inductive load at

$T_{\rm j} = 25/124$		°C
$V_{\rm CE} =$	350	V
$V_{GE} =$	±15	V
$I_{\rm C} =$	15	Α

FWD

datasheet

IGBT

FWD

Boost

Figure 11

Typical reverse recovery time as a function of collector current

 $t_{\rm rr} = f(I_{\rm c})$

0

With an	inductive	load at
$T_j =$	124	°C
$V_{\rm CE} =$	350	V
$V_{GE} =$	±15	V
I _C =	15	А

Figure 12

FWD

Typical reverse recovery time as a function of IGBT turn on gate resistor

 $t_{\rm rr} = f(R_{\rm gon})$

 $I_{\rm F} =$

 $V_{GE} =$

15

±15

А

V

FWD

FWD

Boost

Figure 13

At

$T_j =$	25/124	°C
$V_{\rm CE} =$	350	V
$V_{GE} =$	±15	V
$R_{\text{gon}} =$	16	Ω

Figure 15

Typical reverse recovery current as a function of collector current

Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor

 $Q_{\rm rr} = f(R_{\rm gon})$

Figure 16

FWD

Typical reverse recovery current as a function of IGBT turn on gate resistor

15

±15

А

V

 $I_{\rm F} =$

 $V_{GE} =$

datasheet

FWD

Boost

At	
D =	t _p / T
$R_{\text{th} \text{H}} =$	1,60

1,60

IGBT thermal model values

K/W

Tau (s)
3,986
0,314
0,055
0,007
0,0005

1] -	23/124	C
$V_{\rm R} =$	350	V
$I_{\rm F} =$	15	Α
$V_{GE} =$	±15	V

Figure 20

FWD transient thermal impedance as a function of pulse width

 $Z_{\text{thJH}} = f(t_{\text{p}})$

 $t_{\rm p}/T$ $R_{\rm thJH} =$ 2,44

FWD thermal model values

K/W

R (K/W)	Tau (s)
0,06	5,6E+00
0,17	6,5E-01
0,60	1,5E-01
0,58	3,9E-02
0,61	8,9E-03
0,42	2,0E-03

Boost

function of heatsink temperature

FWD

datasheet

Boost Inverse Diode

Boost Inverse Diode

 $R_{\rm thJH} =$ K/W 2,44

Figure 28

Forward current as a function of heatsink temperature

Thermistor

datasheet

Switching Definitions BOOST

General conditions		
Τ _j	=	125 °C
R gon	=	16 Ω
R goff	=	16 Ω

Figure 1

Boo<u>st IGBT</u> Turn-off Switching Waveforms & definition of t_{doff} , t_{Eoff} $(t_{E \text{ off}} = \text{integrating time} \text{ for } E_{\text{ off}})$

$V_{GE}(0\%) =$	-15	V
V_{GE} (100%) =	15	V
$V_{\rm C}$ (100%) =	350	V
$I_{\rm C}$ (100%) =	15	Α
$t_{\text{doff}} =$	0,16	μs
$t_{E \text{ off}} =$	0,41	μs

Figure 2 Turn-on Switching Waveforms & definition of t_{don} , t_{Eon} $(t_{E \text{ on}} = \text{ integrating time for } E_{\text{ on}})$

Boost IGBT Figure 4 Turn-on Switching Waveforms & definition of t_r

copyright Vincotech

Switching Definitions BOOST

Switching Definitions BOOST

Measurement circuit

datasheet

Switching Definitions BUCK

General conditions				
T _j	=	125 °C		
R gon	=	32 Ω		
R _{goff}	=	32 Ω		

BUCK IGBT

Figure 1

 $t_{E \text{ off}} =$

Turn-off Switching Waveforms & definition of t_{doff} , t_{Eoff} ($t_{E \text{ off}}$ = integrating time for E_{off})

μs

0,16

Figure 2BUCK ICTurn-on Switching Waveforms & definition of t_{don} , t_{Eon} $(t_{Eon} = integrating time for <math>E_{on}$)

Figure 5 Turn-off Switching Waveforms & definition of t_{Eoff} 125 % $I_{C\,1\%}$ $\mathsf{E}_{\mathsf{off}}$ 100 75 Poff 50 25 V_{GE 90%} 0 t_{Eoff} -25 time (us) 0,15 -0,05 0 0,05 0,1 $P_{\rm off}$ (100%) = 5,23 kW $E_{\rm off}$ (100%) = 0,13 mJ 0,16 $t_{E \text{ off}} =$ μs

Switching Definitions BUCK

Switching Definitions BUCK

Measurement circuit

datasheet

Ordering Code and Marking - Outline - Pinout

Ordering Code & Marking			
Version	Ordering Code	in DataMatrix as	in packaging barcode as
Standard in flow1 12mm housing	10-PY07N3A015SM-M892F08Y	M892F08Y	M892F08Y

DISCLAIMER

The information, specifications, procedures, methods and recommendations herein (together "information") are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader's sole responsibility to test and determine the suitability of the information and the product for reader's intended use.

LIFE SUPPORT POLICY

Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.