NAND Flash Drive

--- THNIDxxxxBx Series ---

<u>Outline</u>

The THNIDxxxxBx NAND Flash Drive series from Toshiba features an IDE interface, a flash disk controller chip, and NAND-type flash memory devices. There are two form factors, 2.5 inch-type and 3.5 inch-type, available in the series. The THNIDxxxxBx is available in 16 MB, 32 MB, 64 MB, 128 MB, 192 MB, 256 MB, 320 MB, 384 MB, 512 MB, 640 MB, 1024 MB, 1536 MB and 2048 MB capacities in each type. The drives operate with a 5-volts power supply and support Mode 4 PIO data transfer.

The NAND Flash Drive is geared specifically to the industrial market for use in ATM, factory automation machine, POS terminal, measuring product, ticket-vending machine, parking system and other industrial products that require high tolerance to environmental condition.

Features

- Capacity
 - $16\mathrm{MB}$ up to $2\mathrm{GB}$
- Form factor
- 2.5 inch-type, 3.5 inch-type, (HDD compatible)
- IDE interface Mode4 PIO
 - ATA command set compatible
- Power supply
 - $V_{CC} = 5.0 \text{ V} \pm 10\%$
- Operating temperature
 - -40°C~85°C (Industrial grade : THNIDxxxxBxI)
 - 0°C~70°C (Commercial grade : THNIDxxxxBx)
- Performance
 - Burst data transfer rate (Drive-Host) Sustained write speed Sustained read speed

16.6 MB/sec. (max) 3.2 MB/sec. (max) 6.5 MB/sec. (max)

Shock Vibration 9800 m/s² (max) [Non-operating] 147 m/s² peak (25~2000 Hz) [Operating]

000707EBA1

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

• The products described in this document are subject to the foreign exchange and foreign trade laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

Product Models

2.5 inch-type

Unformatted	Cylinder	Head	Sector	Model No.
16 MB	248	4	32	THNID016MBA/BAI
32 MB	496	4	32	THNID032MBA/BAI
64 MB	978	4	32	THNID064MBA/BAI
128 MB	978	8	32	THNID128MBA/BAI
192 MB	733	16	32	THNID192MBA/BAI
256 MB	978	16	32	THNID256MBA/BAI
320 MB	814	16	48	THNID320MBA/BAI
384 MB	977	16	48	THNID384MBA/BAI
512 MB	993	16	63	THNID512MBA/BAI
640 MB	1241	16	63	THNID640MBA/BAI
1024 MB	1985	16	63	THNID1G02BA/BAI
1536 MB	2966	16	63	THNID1G53BA/BAI
2048 MB	3954	16	63	THNID2G04BA/BAI

3.5 inch-type

Unformatted	Cylinder	Head	Sector	Model No.
16 MB	248	4	32	THNID016MBB/BBI
32 MB	496	4	32	THNID032MBB/BBI
64 MB	978	4	32	THNID064MBB/BBI
128 MB	978	8	32	THNID128MBB/BBI
192 MB	733	16	32	THNID192MBB/BBI
256 MB	978	16	32	THNID256MBB/BBI
320 MB	814	16	48	THNID320MBB/BBI
384 MB	977	16	48	THNID384MBB/BBI
512 MB	993	16	63	THNID512MBB/BBI
640 MB	1241	16	63	THNID640MBB/BBI
1024 MB	1985	16	63	THNID1G02BB/BBI
1536 MB	2966	16	63	THNID1G53BB/BBI
2048 MB	3954	16	63	THNID2G04BB/BBI

Product Specification

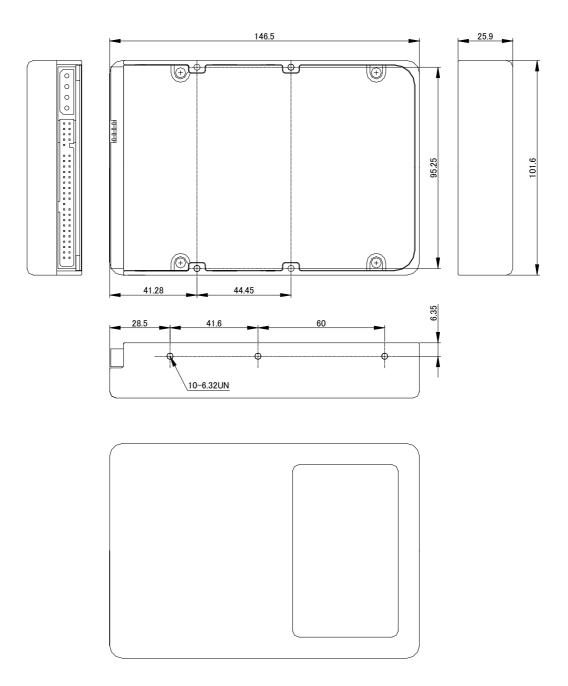
•	Storage Capacities:	
		2, 640, 1024, 1536, 2048 Mbytes (unformatted)
•	Performance:	
	To/from host	16.6 Mbytes/sec. (max theoretical)
	Sustained write	3.2 Mbyte/sec. (max) [ATA PIO mode 4] (≥64 MB)
		1.5 Mbyte/sec. (max) [ATA PIO mode 4] (16 MB~32 MB)
	Sustained read	6.5 Mbyte/sec. (max) [ATA PIO mode 4]
•	Operating Voltage:	
	5V +/- 10%	
٠	Power Consumption:	
	Read mode	51 mA (typ)
	Write mode	43 mA (typ)
	Idle mode	16 mA (typ)
	Sleep mode	1 mA (typ) (≤64 MB)
		3 mA (typ) (2 GB)
٠	Environmental Specification:	
	Operating temperature	–40°C to 85°C (Industrial grade : THNIDxxxxBxI)
		0°C to 70°C (Commercial grade : THNIDxxxxBx)
	Storage temperature	–40°C to 85°C (Industrial grade : THNIDxxxxBxI)
		–20°C to 85°C (Commercial grade : THNIDxxxxBx)
	Humidity	95% (max) [No condensation]
	Shock	9800 m/s ² (max) (3 axis) [No-operating]
	Vibration	147 m/s ² peak (25Hz~2000Hz) [Operating]
•	Reliability:	
	Error rate	<1 bit/ 10^{15} bit read
	ECC	1 bit error connection

Mechanical Specification

Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Power Supply Voltage	-0.6 to 6.0	V
V _{IN}	Input Voltage	–0.3 to V _{CC} + 0.3	V
т	Storogo Tomporaturo	-40 to 85 (Industrial grade)	°C
T _{STG}	Storage Temperature	0 to 70 (Commercial grade)	
Τ	Operating Temperature	-40 to 85 (Industrial grade)	°C
T _{OPR}	Operating Temperature	-20 to 85 (Commercial grade)	

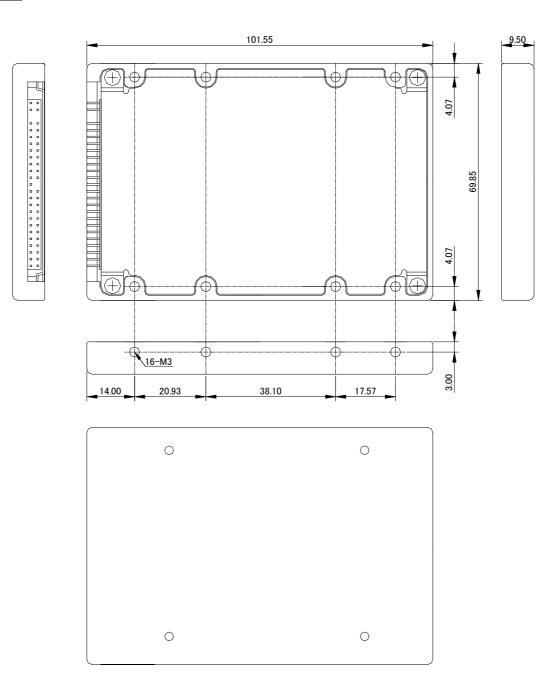
Recommended DC Operating Conditions


Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	High Level Input Voltage	2.0	_		V
V _{IL}	Low Level Input Voltage			0.8	V

<u>DC Characteristics</u> (Ta = -40° C to 85°C, V_{CC} = 5.0 V ± 10%)

Symbol	Parameter	Min	Тур	Max	Unit
I _{CCR}	Operating Current (Read)		51		mA
ICCW	Operating Current (Write)		43		mA
1	Sleep Mode Current (\leq 64 MB)		1		mA
Iccs	Sleep Mode Current (2 GB)		3		mA
V _{OH}	High Level Output Voltage	V _{CC} –0.8	—	—	V
V _{OL}	Low Level Output Voltage			0.4	V

Package Dimensions


<u>3.5 inch</u>

3.5 inch Flash Drive Dimensions

<u>2.5 inch</u>

2.5 Flash Drive Dimensions

Jumper Settings

<u>3.5 inch</u>

0000	00
0000	00
	1
	00
	0 0 0 0
·	1
0 000	0 0
	00
	1

2.5 inch

			1	
0	0	0	0	
0	0	0	0	이이
			1	
0	0	0	0	
0	0	0	0	00
			1	
0	0	0	0	0 0
0	0	0	0	00

Master

Master

Slave

Cable Select

Slave

Cable Select

Pin Assignments and Pin Type

Pin Number	Signal Name	Pin Type	Pin Number	Signal Name	Pin Type
1	RESET	I	2	GND	_
3	DD7	I/O	4	DD8	I/O
5	DD6	I/O	6	DD9	I/O
7	DD5	I/O	8	DD10	I/O
9	DD4	I/O	10	DD11	I/O
11	DD3	I/O	12	DD12	I/O
13	DD2	I/O	14	DD13	I/O
15	DD1	I/O	16	DD14	I/O
17	DD0	I/O	18	DD15	I/O
19	GND	—	20	KEY(NC)	—
21	DMARQ(NC)	—	22	GND	—
23	DIOW	I	24	GND	—
25	DIOR	I	26	GND	—
27	Reserved	0	28	CSEL	I
29	DMACK (NC)	—	30	GND	—
31	INTRQ	0	32	Reserved	—
33	DA1	I	34	PDIAG	I/O
35	DA0	I	36	DA2	I
37	CS0	I	38	CS1	I
39	DASP	I/O	40	GND	_
41	VCC	—	42	VCC	_
43	GND	_	44	—	_

Note 1: Pins #41 to 44 are for the IDE 44-pin standard (2.5 inch-type).

Note 2: To avoid damage to the drive or its pins, be sure to connect the drive to the IDE connecter properly

Note 3: "I" is defined as a direction from the host to the drive.

"O" is defined as a direction from the drive to the host.

Power supply		Jum	per F	Pin		2	4	6	8	10 ⁻	12 14	4 16	6 18	3 20	22	24	26	28 3	30	32	34	36	38 4
0000	, Ĺ	0 0	0	0	1	0	0	0	0	0	0 0	0	0		0	0	0	0	0	0	0	0	0
		0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
						1	3	5	7	9 ′	11 1	3 15	5 17	' 19	21	23	25 :	27 :	29	31	33	35	37 :
5 inch (44 pins) 43 41 39 37 35 3	33 31 2	29 2	7 25	23	21 ⁻		-	-		-				-		-	25 : er P		29	31	33	35	37 :
5 inch (44 pins) 43 41 39 37 35 3	33 31 2	29 2					-	15 1		1 9	7		3	-	Ju	-	er P		29	31	33	35	37 :

Signal Description

Signal Name	Dir.	Pin	Description
RESET	I	1	This pin is shall be used by host to reset the device. Reset signal is from the host and it is active low.
DD[0:15]	I/O	3 to 18	These lines carry Data, Commands and Status information between the host and controller. DD[0] is the LSB and DD[15] is the MSB.
DIOW	I	23	DIOW is the strobe signal asserted by the host to write the device register.
DIOR	I	25	DIOR is the strobe signal asserted by the host to read the device register
INTRQ	0	31	This signal is used by the selected device to interrupt the host system when interrupt pending is set. When the nIEN bit is cleared to zero and the device is selected, INTRQ shall be enabled through a tri-state buffer. When the nIEN bit is set to one or the device is not selected, the INTRQ signal shall be released.
DA[0: 2]	I	33, 35, 36	DA[2:0] are used to select one of eight registers
$\overline{CS}0$, $\overline{CS}1$	I	37, 38	$\overline{CS0}$ is used to select the Command Block registers while $\overline{CS1}$ is used to select the Control Block Register.
CSEL	I	28	CSEL is used to select Master/Slave mode, Low for Master, High for Slave mode.
PDIAG	I/O	34	This bi-directional open drain signal is asserted by the slave after an Execute Diagnostic command to indicate to the master it has passed its diagnostics.
DASP	I/O	39	This open drain output is asserted low any time the drive is active. In a Master/Slave configuration, this signal is used for the slave to inform the master that a slave drive is present.
GND		2, 19, 22, 24, 26, 30, 40, 43	Ground
VCC		41, 42	Power

I/O Register Specifications

The data is transferred between the host system and the device via I/O registers in the device. Reads and writes to the registers are performed using the following logics.

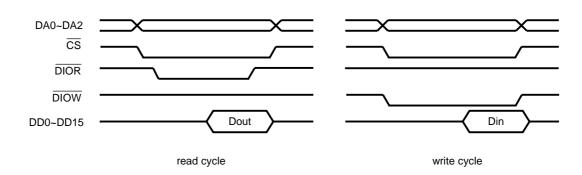
Read I/O Register Function

Mode	CS1	$\overline{CS}0$	DA0~DA2	DIOR	DIOW	DD8~DD15	DD0~DD7
Invalid mode	L	L	×	×	×	High-Z	High-Z
Standby mode	Н	Н	×	×	×	High-Z	High-Z
Data register access	Н	L	0	L	Н	odd byte	even byte
Alternate status access	L	Н	6H	L	Н	High-Z	status out
Other command block register access	Н	L	1~7H	L	Н	High-Z	data

Note: $\times:$ L or H

Write I/O Register Function

Mode	CS1	$\overline{CS}0$	DA0~DA2	DIOR	DIOW	DD8~DD15	DD0~DD7
Invalid mode	L	L	×	×	×	don't care	don't care
Standby mode	Н	Н	×	×	×	don't care	don't care
Data register access	Н	L	0	Н	L	odd byte	even byte
Control register access	L	Н	6H	Н	L	don't care	control in
Other command block register access	Н	L	1~7H	Н	L	don't care	data


Note: x: L or H

I/O Register Address

This table summarizes the register selected by DA0~DA2.

CS1	$\overline{CS}0$	DA2	DA1	DA0	$\overline{DIOR} = L$	$\overline{DIOW} = L$
1	0	0	0	0	Data register	Data register
1	0	0	0	1	Error register	Feature register
1	0	0	1	0	Sector count register	Sector count register
1	0	0	1	1	Sector number register	Sector number register
1	0	1	0	0	Cylinder low register	Cylinder low register
1	0	1	0	1	Cylinder high register	Cylinder high register
1	0	1	1	0	Device/Head register	Drive head register
1	0	1	1	1	Status register	Command register
0	1	1	1	0	Alt. status register	Device control register
0	1	1	1	1	Drive address register	Reserved

Register Access Timing Example

Rit 1	5 Rit 14	Rit 13 F	Bit 12 Bit 11	Bit 10	Rit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DR				Bit To	Bit 0		-DD15	Bit 0	Bito	DR 4	Bit 0	DRZ	Dit 1	BRO
							DD15							
acc		acces	-	is regi	ster is	valid v							the drive is nd Alternat	
Bit 7		Bit 6	Bit 5		Bit 4		Bit 3		Bit 2		Bit 1		Bit 0	
BBK		UNC	"0"		IDNF		"0"		ABRT		"0"		AMNF	:
Bit Name									Fund	ction				
7 BBK (Bad Block detected)					This bit is set when a Bad Block is detected.									
6 UNC (Data ECC error)					This b readin		et whei drive.	n an u	ncorre	ctable	error	has oc	curred	when
4 IDNF (ID Not Found)					it is se	et whei	n the 1	request	ed see	ctor is i	in erro	or or ca	innot	
2	ABRT (A	ABoRTed	command)		This bit is set if the command has been aborted because of the drive status condition. (Not ready, Write fault, Invalid command)							of the		
0	AMNF (Address I	/lark Not Fou	und)	This bit is set in case of a general error.									
Featu	are regis	ster:		register he host				ovides	s inforr	natior	ı regar	ding fo	eature	s of the driv
Bit 7		Bit 6	Bit 5		Bit 4		Bit 3		Bit 2		Bit 1		Bit 0	
						Featu	re byte							
Secto	r count	register	read	-	e opera	tion b	etweer	n the h	ost an		-			cransferred of this regis
		Bit 6	Bit 5		Bit 4		Bit 3		Bit 2		Bit 1		Bit 0	

Sect	or num	ber register:	This regist transfer co		s the starting s	sector number	r, which is sta	arted by following			
Bit	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
				Sec	tor number byte						
Cylin	nder lo	w register:	-		s the low 8-bits ansfer comma		ng cylinder a	ddress, which is s			
Bit	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
				Су	linder low byte						
Cylinder high register:					s the high 8-bi sector transfer		ing cylinder	address, which is			
Bit	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
				Cyl	inder high byte						
Devi	ice/head	l register:	This regist following o		for selecting th	ne drive numb	er and Head	number for the			
Bit	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Obs	solete	LBA	Obsolete	DRV	Head numb	er					
Bit	i	Name				Function					
7	Obsol	ete		This bit is	set to "1".						
6	LBA			LBA is a flag to select either Cylinder/Head/Sector (CHS) or Logical Block Address (LBA) mode. When LBA = 0, CHS mode is selected. When LBA = 1, LBA mode is selected. In LBA mode, the Logical Block Address is interpreted as follows:							
				LBA07-	LBA00: Sector N	umber Register	D7-D0.				
				LBA15-LBA08: Cylinder Low Register D7-D0.							
				LBA23-LBA16: Cylinder High Register D7-D0.							
_	Obsol	oto		LBA27-LBA24: Drive/Head Register bits HS3-HS0.							
5	00500			This bit is set to "1". This bit is used for selecting the Master (Drive 0) and Slave (Drive 1) in							
5 4	DEV (Device select)			ave organization.	Cloared to zero	colocte the M	actor (Drive 0)			

9. Status register:

TOSHIBA

This register is read-only. It indicates the status of the command execution. The contents of this register are updated to reflect the current state of the device and the progress of any command being executed by the device. Reading this register when an interrupt is pending causes the pending interrupt to be cleared. The host should not read the Status register when an interrupt is expected as this may clear the pending interrupt before the INTRQ can be recognized by the host.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
BSY	Ø DRDY	DWF	DSC	DSC DRQ		Obsolete	ERR				
Bit	Nam	е			Function						
7	BSY (BuSY)			This bit is set to "1" when an internal operation is executing. When this bit is set to "1", other bits in this register are invalid.							
6	DRDY (Drive ReaD	Y)	This bit is set to "1" when an internal operation has been ended an drive is capable of being accessed from the host.								
5	DWF (Drive Write F	ault)	This bit is	This bit is set to "1" if this drive indicates a write fault status.							
4	DSC (Drive Seek Co	omplete)	This bit is	This bit is set to "1" when the drive seek is complete.							
3	DRQ (Data ReQues	t)		This bit is set to "1" when the device is ready to transfer a word of data between the host and Data register.							
2	CORR (CORRected	l data)		This bit is set to "1" when a correctable data error has occurred and the data has been corrected.							
1	Obsolete		This bit is	This bit is always set to "0".							
0	ERR (ERRor)	type of err	This bit is set to "1" when the previous command has ended in some type of error. The error information is set in the Error register. This bit is cleared by the next command.								

10. Alternate status register: This register is the same as the Status register in the command block. The bit assignment is same as the prior description of the Status register. But this register is different from the Status register in that -IREQ is not negated when data is read.

11. Device control register:

This register is write-only. This register allows a host to software reset attached devices and to enable or disable the assertion of the INTRQ signal by a selected device.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		Reserved			SRST	nIEN	0			
Bit	Name Function									
7~3	Х		Reserve	Reserved bits						
2	SRST (Software	ReSeT)	This bit is set to "1" in order to have the drive perform Software Re operation. The drive remains in Reset until this bit is set to "0".							
1	nIEN (Interrupt E		This bit is used to enable INTRQ. When this bit is set to"0", INTRQ is active. When this bit is set to "1", INTRQ is high impedance.							
0	0		This bit is set to "0".							

12. Drive Address register: This register is read-only. It is used for confirming the drive status.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
×	nWTG	nHS3	nHS2	nHS1	nHS0	nDS1	nDS0			
Bit	Na	ame	Function							
7	Х		This bit is unknown. It remains in tri-state, when host read.							
6	nWTG (WriTing C	Sate)	"0"	"O"						
5~2	nHS3-0 (Head Se		These 4 bits are the negative value of Head Number in the Drive/Head register.							
1	nDS1 (Idrive Sele	ect 1)	ct 1) This bit is "0", when drive 1 is selected.							
0	nDS0 (Idrive Sele	ect 0)	This bit is "0", when drive 0 is selected.							

13. Command register:

This register is write-only. Each command to be executed is written to this register, after setting the parameters as follows.

		Used Parameter								
Command	Command code	FR	SC	SN	CY	DR	HD	LBA		
Check power mode	E5H or 98H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Execute drive diagnostic	90H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
CFA erase sector	СОН	Ν	Y	Y	Y	Y	Y	Y		
Format track	50H	Ν	Y	Ν	Y	Y	Y	Y		
Identify Drive	ECH	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Idle	E3H or 97H	Ν	Y	Ν	Ν	Y	Ν	Ν		
Idle immediate	E1H or 95H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Initialize drive parameters	91H	Ν	Y	Ν	Ν	Y	Y	Ν		
Read buffer	E4H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Read multiple	C4H	Ν	Y	Y	Y	Y	Y	Y		
Read long sector	22H or 23H	Ν	Ν	Y	Y	Y	Y	Y		
Read sector	20H or 21H	Ν	Y	Y	Y	Y	Y	Y		
Read verify sector	40H or 41H	Ν	Y	Y	Y	Y	Y	Y		
Recalibrate	1XH	Ν	Ν	Ν	Ν	Y	Ν	Ν		
CFA request extended error	03H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Seek	7XH	Ν	Ν	Y	Y	Y	Y	Y		
Set features	EFH	Y	Ν	Ν	Ν	Y	Ν	Ν		
Set multiple mode	C6H	Ν	Y	Ν	Ν	Y	Ν	Ν		
Sleep	E6H or 99H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Stand by	E2H or 96H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Stand by immediate	E0H or 94H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
CFA translate sector	87H	Ν	Ν	Y	Y	Y	Y	Y		
CFA wear level	F5H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Write buffer	E8H	Ν	Ν	Ν	Ν	Y	Ν	Ν		
Write long sector	32H or 33H	Ν	Ν	Y	Y	Y	Y	Y		
Write multiple	C5H	Ν	Y	Y	Y	Y	Y	Y		
CFA write multiple w/o erase	CDH	Ν	Y	Y	Y	Y	Y	Y		
Write sector	30H or 31H	Ν	Y	Y	Y	Y	Y	Y		
CFA write sector w/o erase	38H	Ν	Y	Y	Y	Y	Y	Y		
Write verify	3CH	Ν	Y	Y	Y	Y	Y	Y		

Note: FR: Feature register

SC: Sector Count register

SN: Sector Number register

CY: Cylinder Low/High register

DR: DRV bit of Drive Head register

HD: Head Number of Drive/Head register

LBA: Logical Block Address Mode Supported

Y: The register contains a valid parameter for this command

N: The register does not contain a valid parameter for this command

ATA Command Specification

- 1. Check Power Mode (code: E5H or 98H): This command checks the power mode.
- 2. Execute Drive Diagnostic (code: 90H): This command performs the internal diagnostic tests implemented by the drive.
- 3. CFA Erase Sector (s) (code: C0H): This command is used to erase data sectors.
- 4. Format Track (code: 50H): This command writes the desired head and cylinder of the selected drive. But selected sector data is not exchanged. This drive expects one sector (512 bytes) of data from the host to follow the command with the same protocol as the Write Sector Command
- 5. Identify Drive (code: ECH): This command enables the host to receive parameter information from the drive.

Vord address	Default value	Total bytes	Data field type information
0	040AH	2	General configuration bit-significant information
1	XXXX	2	Default number of cylinders
2	0000H	2	Reserved
3	00XXH	2	Default number of heads
4	XXXX	2	Number of unformatted bytes per track
5	XXXX	2	Number of unformatted bytes per sector
6	XXXX	2	Default number of sectors per track
7 to 8	XXXX	4	Reserved
9	0000H	2	Reserved
10 to 19	XXXX	20	Serial number in ASCII
20	0001H	2	Buffer type(single ported)
21	0004H	2	Buffer size in 512 byte increments
22	0004H	2	# of ECC bytes passed on Read/Write Long Commands
23 to 46	XXXX	48	Firmware revision in ASCII etc.
47	0001H	2	Maximum number of sectors on Read/Write Multiple command
48	0000H	2	Double Word not supported
49	0200H	2	Capabilities: DMA NOT Supported (bit8), LBA supported (bit9)
50	0000H	2	Reserved
51	0400H	2	PIO data transfer cycle timing mode 4
52	0000H	2	DMA data transfer cycle timing mode not Supported
53 to 58	XXXX	12	Reserved
59	0101H	2	Multiple sector setting is valid
60 to 61	XXXX	4	Total number of sectors addressable in LBA Mode
62 to 255	0000H	388	Reserved

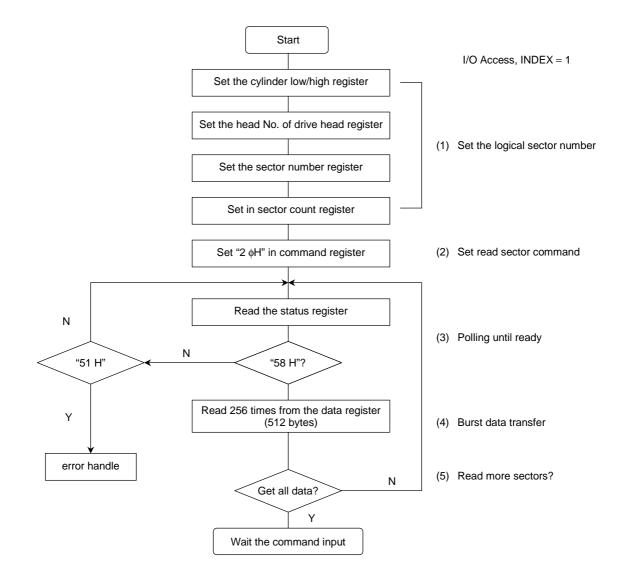
Identify Drive Information

6. Idle (code: E3H or 97H): This command causes the drive to set BSY, enter the Idle mode, clear BSY and generate an interrupt. If the sector count is non-zero, the automatic power down mode is enabled. If the sector count is zero, the automatic power mode is disabled.

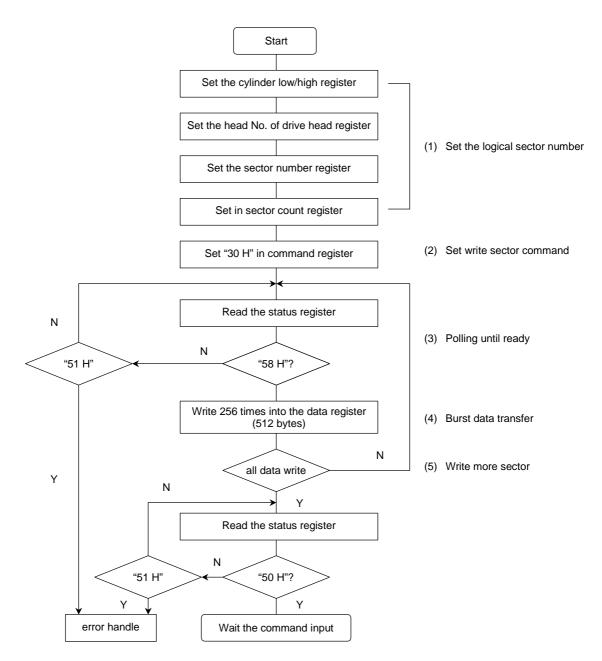
7. Idle Immediate (code: E1H or 95H): This command causes the drive to set BSY, enter the Idle(Read) mode, clear BSY and generate an interrupt.

- 8. Initialize Drive Parameters (code: 91H): This command enables the host to set the number of sectors per track and the number of heads per cycle.
- 9. Read Buffer (code: E4H): This command enables the host to read the current contents of the drive's sector buffer.
- 10. Read Multiple (code: C4H): This command performs similarly to the Read Sectors command. Interrupts are not generated on each sector, but on the transfer of a block which contains the number of sectors defined by a Set Multiple command.
- 11. Read Long Sector (code 22H or 23H): This command performs similarly to the Read Sector(s) command except that it returns 516 bytes of data instead of 512 bytes.
- 12. Read Sector(s) (code 20H, 21H): This command reads from 1 to 256 sectors as specified in the Sector Count register. A sector count of 0 requests 256 sectors. The transfer beings at the sector specified in the Sector Number register.
- 13. Read Verify Sector(s) (code: 40H or 41H): This command is identical to the Read Sectors command, except that DRQ is never set and no data is transferred to the host.
- 14. Recalibrate (code: 1XH): This command is effectively a NOP command to the drive and is provided for compatibility purposes.
- 15. CFA Request Extended Error (code: 03H): This command requests an extended error code after command ends with an error.
- 16. Seek (code: 7XH): This command is effectively a NOP command to the drive although it does perform a range check.

Feature	Operation
01H	Enable 8-bit data transfers.(CFA feature set only)
55H	Disable Read Look Ahead.
66H	Disable Power on Reset (POR) establishment of defaults at Soft Reset.
81H	Disable 8-bit data transfers. (CFA feature set only)
BBH	4 bytes of data apply on Read/Write Long commands.
ССН	Enable Power on Reset (POR) establishment of defaults at Soft Reset.


17. Set Features (code: EFH): This command is used by the host to establish or select certain features.

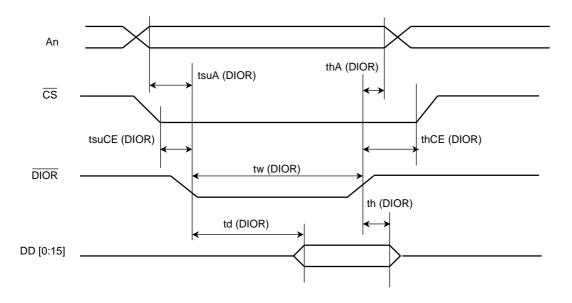
- 18. Set Multiple Mode (code: C6H): This command enables the drive to perform Read and Write Multiple operations and establishes the block count for these commands.
- 19. Sleep (code: E6H or 99H): This command causes the drive to set BSY, enter the Sleep mode, clear BSY and generate an interrupt.
- 20. Stand By (code: E2H or 96H): This command causes the drive to set BSY, enter the Standby mode, clear BSY and return the interrupt immediately.
- 21. Stand By Immediate (code: E0H or 94H): This command causes the drive to set BSY, enter the Standby mode, clear BSY and return the interrupt immediately
- 22. CFA Translate Sector (code: 87H): This command allows the host a method of determining the exact number of times a use sector has been erased and programmed
- 23. CFA Wear Level (code: F5H): This command is effectively a NOP command and only implemented for backward compatibility. The Sector Count Register will always be returned with a 00H indicating Wear Level is not needed.
- 24. Write Buffer (code: E8H): This command enables the host to overwrite contents of the drive's sector buffer with any data pattern desired.
- 25. Write Long Sector (code: 32H or 33H): This command is provided for compatibility purposes and is similar to the Write Sector(s) command except that it writes 516 bytes instead of 512 bytes.


- 26. Write Multiple (code: C5H): This command is similar to the Write Sector(s) command. Interrupts are not presented on each sector, but on the transfer of a block which contains the number of sectors defined by Set Multiple command.
- 27. CFA Write Multiple without Erase (code: CDH): This command is similar to the Write Multiple command with the exception that an implied erase before write operation is not performed.
- 28. Write Sector(s) (code: 30H or 31H): This command writes from 1 to 256 sectors as specified in the Sector Count register. A sector count of zero requests 256 sectors. The transfer begins at the sector specified in the Sector Number register.
- 29. CFA Write Sector(s) without Erase (code: 38H): This command is similar to the Write Sector(s) command with the exception that an implied erase before write operation is not performed.
- 30. Write Verify(s) (code: 3CH): This command is similar to the Write Sector(s) command, except each sector is verified immediately after being written.

Sector Transfer Protocol

1. Sector read: The protocol of sector(s) read is as follows.

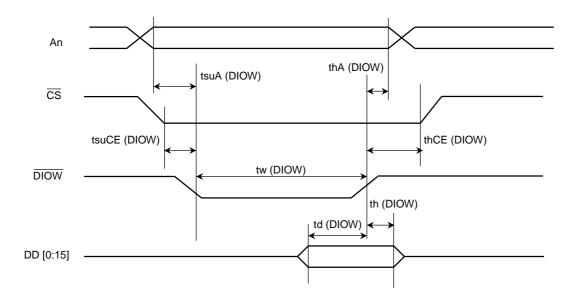
2. Sector write: The protocol of write sector(s) is as follows.



<u>AC Characteristics</u> (Ta = $-40 \sim +85^{\circ}$ C, V_{CC} = 5 V ± 10%)

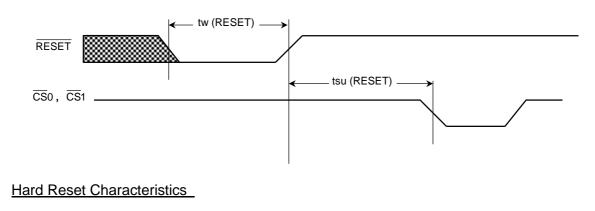
Access Read AC Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Data delay after DIOR	td (DIOR)	_	_	50	ns
Data hold following DIOR	th (DIOR)	5	—	_	ns
DIOR width time	tw (DIOR)	70	—	_	ns
Address setup before DIOR	tsuA (DIOR)	15	—	_	ns
Address hold following DIOR	thA (DIOR)	10	—		ns
CS setup before DIOR	tsuCS (DIOR)	5	—	_	ns
CS hold following DIOR	thCS (DIOR)	10	_		ns


Access Read Timing

Access Write AC Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Data setup before DIOW	tsu (DIOW)	20	_	_	ns
Data hold following DIOW	th (DIOW)	10	_	_	ns
DIOW width time	tw (DIOW)	70	_	_	ns
Address setup before DIOW	tsuA (DIOW)	15	_	_	ns
Address hold following DIOW	thA (DIOW)	10	_	_	ns
CS setup before DIOW	tsuCS (DIOW)	5	_	_	ns
CS hold following DIOW	thCS (DIOW)	10	_	_	ns


Access Write Timing

Power on Reset Characteristics

This table summarizes the power on reset sequence.

Hard Reset Timing

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Reset setup time	tsu (RESET)	2	_	_	ms	
Reset pulse width	tw (RESET)	25	_	_	μs	

Attention for Drive Use

- After performing the reset or power off operation, the information of all registers is cleared.
- Please do not insert or remove the drive while the host is active.
- After performing a hard reset, soft reset, power on reset or command input, commands cannot be applied to the drive while the bit7 (BSY) in the Status register is "high" level. Flash drive will not respond in this case.
- It is recommended that the drive should be formatted using an operating system before using it.