RENESAS

M54679FP

2-Phase Stepper Motor Driver

Description

The M54679FP is a semiconductor integrated circuit designed for stepper motor driver used to Printer, PPC and Facsimile.

Features

- Wide supply voltage sphere $(10-35 \mathrm{~V})$.
- Bipolar, constant current PWM function.
- (Top side transistors PWM function, maximum current is 0.8 Amps).
- Few external components.
(This IC can be operated with 1 capacitor and 2 resistances).
- 4 phases input style (include the protection function of output through current).
- Output current change function (2 bits, 4 type currents).
- Thermal protection circuit.
- Include flywheel diodes.

Application

Printer, PPC and Facsimile.

Function

The M54679FP is a semiconductor integrated circuit which can drive two phase stepper motor.
It can control the direction of motor current and output motor current (4 steps) by I0, I1 terminals.
Also, it can drive the two phase bipolar stepper motor by one IC as it include two current control circuits.

M54679FP

Pin Configuration

Block Diagram

Pin Function

Terminal	Symbol	Function
Motor Supply Voltage	Vm1, Vm2	Power supply for motor drive.
Output terminals	Out1A, Out1B, Out2A, Out2B	Motor drive output terminals.
Current sensor	Rs1, Rs2	Output current sensing resistor (Rs) connection terminals.
Power supply	VCC	Control circuit power supply.
Phase input	Ph1A, Ph1B, Ph2A, Ph2B	Output current direction switch terminals.
Output current change	IO(1), I1(1), IO(2), I1(2)	Output current change (100\%, 70\%, 33\%, 0\%) terminals.
Standby input	Stby	Standby input (L: Standby, H or open: motor function) terminal.
Sense inputs	S1, S2	Input voltage terminal of comparators.
Vref input	Vref	Reference voltage due to setting output current.
Output of voltage stabilizer	Regout	Output of voltage stabilizer (3.5V).
A capacitor for oscillator	Fref	A capacitor due to PWM carrier frequency.
Power GND	P.GND	The GND terminal of bottom side flywheel diodes.

Absolute Maximum Ratings

($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	Symbol	Ratings	Units	Condition
Motor supply voltage	Vm	$-0.3-37$	V	
Output current	lout	± 0.8	A	Per one phase
Power supply	VCC	$-0.3-7.0$	V	
Logic input voltage	Vlogic	$-0.3-\mathrm{VCC}$	V	Ph1A, Ph1B, Ph2A, Ph2B, I0, I1, Stby
Analog input voltage	Vanalog	$-0.3-\mathrm{VCC}$	V	Vref, S1, S2
Output current sensing	VRs	1.5	V	Rs1, Rs2
Power dissipation	Pd	2.7	W	Under board mount condition.
Thermal derating	$\mathrm{K} \theta$	46	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Junction temperature	Tj	150	${ }^{\circ} \mathrm{C}$	
Operating temperature	Topr	$-20-75$	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	$-40-125$	${ }^{\circ} \mathrm{C}$	

Thermal Derating

Recommended Operating Conditions

		Limits			
Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply	Vcc	4.5	5.0	5.5	V
Motor supply voltage	Vm	10	-	35	V
Output current	lout	50	-	800	mA
Rising time of logic inputs	tPLH	-	-	2.0	$\mu \mathrm{~S}$
Falling time of logic inputs	tPHL	-	-	2.0	$\mu \mathrm{~S}$
PWM ON time	Ton	5.0	-	50	$\mu \mathrm{~S}$
PWM OFF time	Toff	5.0	-	50	$\mu \mathrm{~S}$
Thermal shut down	TSDon	-	160	-	${ }^{\circ} \mathrm{C}$

Electrical characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VM}=24 \mathrm{~V}\right.$ unless otherwise noted. $)$

Control Circuit

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Supply current	ICC1	39	56	73	mA	Stby = H, Ph*A = H, Ph*B = L (Bridge ON)
	ICC2	20	27	40		Stby $=\mathrm{H}, \mathrm{Ph}^{*} \mathrm{~A}=\mathrm{Ph}^{*} \mathrm{~B}$ (Bridge OFF)
	ICC3	2.0	4.0	6.0		Stby $=\mathrm{L}$ (Standby condition)
Logic input voltage (Ph, I1, IO, Stby terminals)	Vlogic H	2.4	-	Vcc	V	
	Vlogic L	0	-	0.6		
Phase terminal input current	$\mathrm{l}(\mathrm{Ph}) \mathrm{H}$	-	-	10	$\mu \mathrm{A}$	Vin $=5 \mathrm{~V}$
	I(Ph) L	-20	-3.0	-		$\mathrm{Vin}=0 \mathrm{~V}$
I0, I1 terminals input current	$\mathrm{I}(\mathrm{IO}, \mathrm{I} 1) \mathrm{H}$	-	-	10	$\mu \mathrm{A}$	$\mathrm{Vin}=5 \mathrm{~V}$
	I(IO, I1) L	-400	-300	-		Vin $=0 \mathrm{~V}$
Standby terminal input current	I(Stby) H	-	-	10	$\mu \mathrm{A}$	Vin $=5 \mathrm{~V}$
	I(Stby) L	-400	-300	5.0		$\mathrm{Vin}=0 \mathrm{~V}$
Current sensing Comparators input current	I(S)	-20	-3.0	-	$\mu \mathrm{A}$	S1 or S2 terminals input current (S1 or S2 $=0 \mathrm{~V}$, Vref $=5 \mathrm{~V}$).
Current sensing Comparators input voltage sphere	V(S)	0	-	$\mathrm{VCH}(\mathrm{H})$	V	S1 or S2 terminal input voltage sphere
Vref input current	I(Vref)	-	500	650	$\mu \mathrm{A}$	Input current of Vref $(\mathrm{Vref}=5 \mathrm{~V}, 10=11=0 \mathrm{~V})$
Vref input voltage sphere	V(Vref)	0	-	Vcc	V	
Oscillation frequency of Fref	FC	20	30	40	kHz	C $=390 \mathrm{pF}$, Fref terminal oscillation
Voltage stabilizer output	Vreg	3.35	3.50	3.65	V	lout $=-0.1 \mathrm{~mA}-+1 \mathrm{~mA}$
Current sensing	$\mathrm{VCH}(\mathrm{H})$	475	500	525	mV	$\mathrm{IO}=\mathrm{L}, \mathrm{I} 11=\mathrm{L}, \mathrm{Vref}=5 \mathrm{~V}$ (Vref/10*100\%)
Comparators threshold	$\mathrm{VCH}(\mathrm{M})$	325	350	375	mV	$10=H, 11=L$, Vref $=5 \mathrm{~V}$ (Vref/10*70\%)
voltage	$\mathrm{VCH}(\mathrm{L})$	139	155	171	mV	IO = L, I1 = H, Vref = 5V (Vref/10*33\%)

Output Circuit

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{VM}=24 \mathrm{~V}\right.$ unless otherwise noted. $)$

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Output saturation voltage	Vsat	-	1.6	2.2	V	Top and Bottom at Load current 0.6A.
Output leakage current	Ileak	-100	-	+100	$\mu \mathrm{A}$	
VF of flywheel diode (Top)	VF(H)	-	1.7	2.3	V	If $=0.6 \mathrm{~A}$
VF of flywheel diode (Bottom)	$\mathrm{VF}(\mathrm{L})$	-	1.1	1.5	V	If $=0.6 \mathrm{~A}$
Turn ON delay of output	tdon	-	0.5	2.0	$\mu \mathrm{S}$	Time until output become ON since $\mathrm{S}>$ Vref
Turn OFF delay of output	tdoff	-	2.0	3.5	$\mu \mathrm{S}$	Time until output become OFF since S < Vref

Function Explanation

1. Ph inputs make a decision the output function.

Ph*A	Ph*B	Out* ${ }^{\text {A }}$	Out*B
L	L	OFF	OFF
H	L	H	L
L	H	L	H
H	H	OFF	OFF
*: 1 or 2			

2. Output current and terminal of output current setting.

$\mathbf{1 0}$	$\mathbf{I 1}$	Output current ratio	Current sensing comparators threshold voltage (Vref=5V)
L	L	100%	500 mV
H	L	70%	350 mV
L	H	30%	155 mV
H	H	0%	-

3. Equivalent circuit of Vref terminal.

The equivalent circuit of Vref terminal is shown in right circuit.
As Vref terminal needs typical $500 \mu \mathrm{~A}$ input current, consider this value when Vref voltage is set.

4. Current sensing comparators.

The current sensing comparators compare the voltage (VRs) of current sensing resistor and threshold voltage $\left(\mathrm{V}_{\mathrm{CH}}\right)$ of this comparators, then if VRs $>\mathrm{V}_{\text {CH }}$, the comparators output change and shut off the output.

5. Oscillation circuit.

External capacitor is charged and discharged by the constant current and a triangular waveform appears to Vref terminal.

The waveform voltage level is shown in right figure.
This triangular waveform is a carrier frequency of PWM circuit.
The carrier frequency change if this external capacitor value is changed.
M 54679 FP is designed that the oscillation frequency is 30 kHz
if the external capacitor value is 390 pF .
The oscillation frequency is in inverse proportion to the value of a external capacitor.

6. Spike current cancellation.

Output power transistors go to ON, then the spike current appears on the rs (current sensing) in a short time and this is caused by the internal delay time.

M54679FP has the cancellation circuit of the spike current as the current sensing comparators do not cause error functions.

So, the function of current sensing comparators are shut off during 2 ms since the output power transistors go to ON.

7. Ph signal delay circuit.

M54679FP has a delay time of 3.0μ s until output H -bridge power stage go to ON since Ph signal change Low to high.
This delay time is enough short time for the frequency (plus rate) of Ph signal and there is no problem in the normal function.

8. Rs and $S 1$ or $S 2$ terminal.

If S1 or S2 terminal (non-inverted input of the current sensing comparators) is connected the nearest position of current sensing resistor, the error of the current sensing by means of wire resistance on the board will be decreased.

9. Voltage stabilizer.

M54679FP has a voltage stabilizer of 3.5 V .
The reference voltage (Vref) can connect the output (Regout)
of voltage stabilizer directly.
In this case, the current capability of the output of voltage stabilizer is 1.0 mA (source current), 0.1 mA (sink current).

10. Setting output current.

As the output circuit of M54679FP is designed by the bipolar type NPN transistors, the current that go through the motor coil is smaller about 15 mA (typical) than the current that go through the current sensing resistor.

This is caused by the base current of the power transistors.
Therefore, be aware this base current when the output current is set.

M54679FP

11. Power GND terminal.

Power GND is connected the anodes of flywheel diodes of bottom side.
When the output H-bridge power stage goes to ON, as the flyback current go through this GND terminal, minimize the wire resistor of this GND on the board.

12. Output current timing chart under $\mathbf{P h}$ inputs and IO , I 1 output conditions.

Under output current wave forms show the current that a motor driver is going to control, so these do not show the actual current wave forms.

13. Inputs terminals.

Symbol
(18) pin: Stby
(21) $\mathrm{pin:} \mathrm{I1(1)}$
(23) $\mathrm{pin:} \mathrm{IO(2)}$
(22) $\mathrm{pin}: \mathrm{In}(2)$
Symbol

Application Circuit

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Techny do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams, charts, programs, algorithms,
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor ome page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assume no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

