

PRODUCTION DATA - Mar 7, 2016

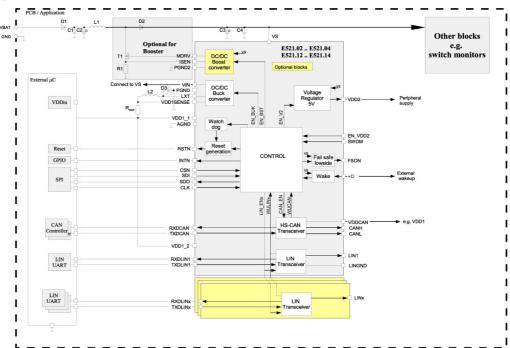
Features

- · High efficiency 5V DC/DC buck converter
- Optional DC/DC boost converter
- Wakeable HS-CAN transceiver (ISO11898-2 and -5)
- Up to four LIN transceiver LIN 2.1, SAE-J2602 conformance
- Operating range 2.5V up to 28V
- Typ. 45μA sleep current consumption
- Typ. 85µA standby current consumption with active DC/DC buck converter
- Configurable μC watchdog (cycle time and type)
- BUS pins ESD-protected 8kV according to IEC-61000-4-2
- Package QFN44L7

with Booster	Without Booster	No. of LINs
E521.12	E521.02	2
E521.13	E521.03	3
E521.14	E521.04	4

Applications

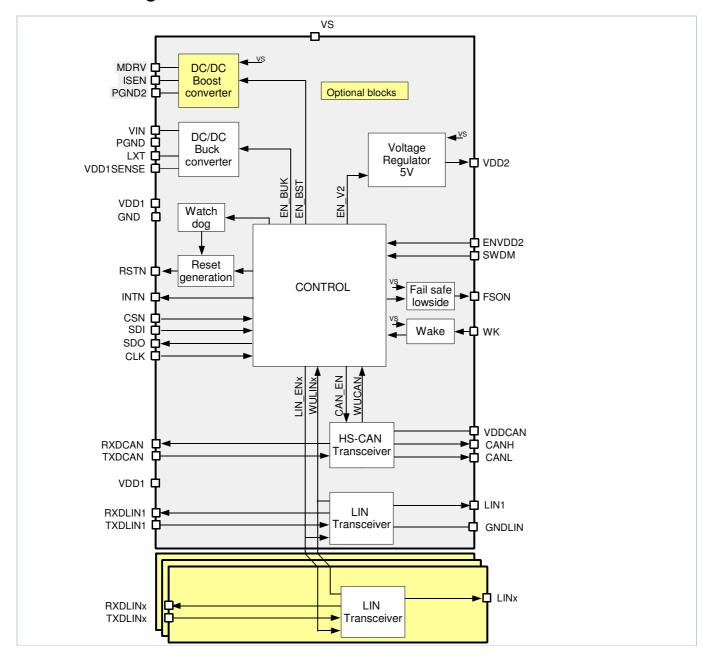
· Body control units, gateways


General Description

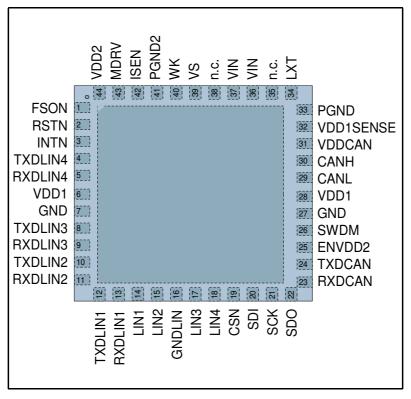
The CAN/LIN SBC family with DC/DC voltage regulator provides beside the CAN and LIN tranceivers the main μC power supply with a high efficiency DC/DC converter. An additional linear regulator can be used independently as peripheral supply. All supplies are monitored and can signalize a fail event by SPI interface. The main DC/DC supply monitor can generate a μC reset. System failure can activate a fail-safe output signal for limp home support.

The CAN/LIN SBC family provides SLEEP, STOP, ACTIVE and FAILSAFE states.

The device is capable of detecting local and remote wake-up events which can be individually enabled via SPI.


Typical Applications Circuit

ELMOS Semiconductor AG reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.


Elmos Semiconductor AG Data Sheet QM-No.: 25DS0093E.01

Functional Diagram

PRODUCTION DATA - Mar 7, 2016

Pin Configuration

Note: Top view, not to scale

Pin Description

Pin	Name	Туре	Description
1	FSON	0	Fail safe output, open drain stage, low active
2	RSTN	Ю	Reset output, low active, pull up
3	INTN	Ю	Interrupt output, low active, pull up Setup for bit SBC.CFG
4	TXDLIN4	I	LIN4 transmit data, pull up, optional E521.04/.14, only all other versions are not connected
5	RXDLIN4	0	LIN4 receive data E521.04/.14 only, all other versions are not connected
6	VDD1	S	Voltage Supply 1
7	GND	S	Ground
8	TXDLIN3	I	LIN3 transmit data, pull up, optional E521.03/.04/.13/.14 only, all other versions are not connected

PRODUCTION DATA - Mar 7, 2016

Pin	Name	Туре	Description
9	RXDLIN3	0	LIN3 receive data
3	TIADLING		E521.03/.04/.13/.14 only, all other versions are not connected
10	TXDLIN2	I	LIN2 transmit data, pull up
11	RXDLIN2	0	LIN2 receive data
12	TXDLIN1	I	LIN1 transmit data, pull up
13	RXDLIN1	0	LIN1 receive data
14	LIN1	Ю	LIN1 bus line
15	LIN2	Ю	LIN2 bus line
16	GND	S	LIN ground
17	LIN3	Ю	LIN3 bus line,
17	LINO	10	E521.03/.04/.13/.14 only, all other versions are not connected
18	LIN4	Ю	LIN4 bus line,
10	LIIVT		E521.04/.14 only, all other versions are not connected
19	CSN	I	SPI chip select, low active, pull up
20	SDI	I	SPI serial data input
21	SCK	I	SPI clock, pull down
22	SDO	0	SPI serial data output
23	RXDCAN	0	CAN receive data
24	TXDCAN	I	CAN transmit data, pull up
25	ENVDD2	I	Enables VDD2
26	SWDM		Must be connected to GND in application
20	2 AN DINI	l 	Enables software development function, pull down
27	GND	S	Ground
28	VDD1	S	Voltage Supply 1
29	CANL	Ю	CANL bus Line
30	CANH	Ю	CANH bus Line
31	VDDCAN	S	HS-CAN supply
32	VDD1SENSE	Ю	VDD1 Sense Back to DCDC Buck Converter
33	PGND	S	DCDC Buck Converter Power Ground
0.4	LVT	10	DCDC Buck Converter
34	LXT	Ю	Integrated Highside Switch Output

PRODUCTION DATA - Mar 7, 2016

Pin	Name	Туре	Description
35	n.c.		Not connected
36	VIN	S	DCDC Supply
37	VIN	S	DCDC Supply
38	n.c.		Not connected, leave open
39	VS	S	Battery supply voltage
40	WK	I	Local wake up input, pull up or pull down
41	PGND2	S	Power ground 2 (Boost Converter), E521.12/.13/.14 only, all other versions are not connected
42	ISEN	I	Sense Input (Boost Converter), E521.12/.13/.14 only, all other versions are not connected
43	MDRV	0	Main Gate Driver Output (Boost Converter), E521.12/.13/.14 only, all other versions are not connected
44	VDD2	S	Peripheral voltage supply
-	EP	S	Exposed Pad. Connect to large copper ground plane for optimal heat dissipation. Connect to GNDA and GNDD.

Note: S = Supply, I/O = Input/Output

PRODUCTION DATA - Mar 7, 2016

1 Absolute Maximum Ratings

Stresses beyond these absolute maximum ratings listed below may cause permanent damage to the device. These are stress ratings only; operation of the device at these or any other conditions beyond those listed in the operational sections of this document is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. All voltages with respect to ground. Currents flowing into terminals are positive, those drawn out of a terminal are negative.

Description	Condition	Symbol	Min	Max	Unit
Voltage at VS 1), 2)	continuous	V _{vs}	-0.3	40	V
Voltage at VIN 1), 2)	continuous	V _{vs}	-0.3	40	V
Voltage at WK, FSON, ENVDD	continuous	V_{WK}	-0.3	40	V
Voltage at LIN14, CANL, CANL	continuous	V _{CANL}	-27	40	V
Voltage at LXT	continuous	V_{LXT}	-2	V _{VIN} + 0.3	V
Voltage at VDDCAN	continuous	V _{VDDCAN}	-0.3	5.5	V
Voltage at SWDM	continuous	V _{SWDM}	-0.3	5.5	V
Voltage at digital pins TXDLIN14, RXDLIN14, TXDCAN, RXDCAN	continuous	V _{TXDLIN}	-0.3	V _{VDD1} +0.3	V
Voltage at VDD1	continuous	V_{VDD1}	-0.3	5.5	V
Voltage at VDD2	continuous	V_{VDD2}	-5	40	V
Current at WK	continuous	I _{wk}	-15	1	mA
Current of VDD1	continuous	I _{VDD1}	-500		mA
Current of VDD2, internally limited	continuous	I _{VDD2}	-200	1	mA
Current at ENVDD2	continuous	I _{ENVDD2}	-15	1	mA
Maximum load at RXDCAN		C _{RXDCAN,LOAD}		10	pF
Junction temperature	continuous	T _{JUNC}	-40	150	°C
Storage temperature	continuous	T _{STG}	-55	125	∞

¹⁾ The device is implicitly protected against load dump

 $^{^{\}mbox{\tiny 2)}}$ The device is implicitly protected against jump start

PRODUCTION DATA - Mar 7, 2016

2 ESD Protection

Description	Condition	Symbol	Min	Max	Unit
ESD HBM protection pins VDD2, LINx, WK, CANH and CANL	1)	V _{ESD(HBM)}	-8	+8	kV
ESD HBM protection all other pins	1)	V _{ESD(HBM)}	-2	+2	kV
ESD system level protection pins VDD2, LINx, WK, CANH and CANL	to ground	$V_{\text{ESD(IEC)}}$	-6	+6	kV
ESD CDM Protection at all Pins	2)	V _{ESD(CDM)}	-500	+500	V
ESD CDM Protection at Edge Pins	2)	V _{ESD(CDM)C}	-750	+750	V

 $^{^{1)}}$ According to AEC-Q100-002 (HBM) chip level test, C=100pF, R=1.5k Ω $^{2)}$ According to AEC-Q100-011 (CDM) chip level test, R=1 Ω $^{2)}$ Similar to IEC61000-4-2, C=150pF, R=330 Ω

3 Recommended Operating Conditions

Description	Condition	Symbol	Min	Тур	Max	Unit
Functional range E521.0204		$V_{VS,FUNC}$	5.5	-	28	V
Functional range E521.1214		$V_{\text{VS,FUNC}}$	2.5	-	28	V
Limited functional range E521.0204		$V_{\text{VS,FL,LR}}$	2.5	-	5.5	٧
Limited functional range E521.0204, E521.1214		$V_{\text{VS,FL,HR}}$	28	-	40	V
Ambient temperature		Т _{АМВ}	-40	-	125	S

PRODUCTION DATA - Mar 7, 2016

4 Electrical Characteristics

 $(V_{VS} = 5.5V \text{ to } 28V, T_{AMB} = -40 \,^{\circ}\text{C} \text{ to } +125 \,^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{VS} = 12.0V \text{ and } T_{AMB} = +25 \,^{\circ}\text{C}$. Positive currents flow into the device pins.)

4.1 Power Supply and References; pins VS, GND

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Current consumption in SBC mode SLEEP 1)	SBC mode SLEEP, $V_S = V_{LIN} = V_{WK} = 13.5V$, $I_{VDD1} = 0$ mA, $I_{VDD2} = 0$ mA, $T_{J} < 40$ °C, Booster is off All wake up sources enabled	Ivs,sleep		45	110	μА
1a	Current consumption in SBC mode SLEEP 1)	SBC mode SLEEP, $V_S = V_{LIN} = V_{WK} = 13.5V$, $I_{VDD1} = 0$ mA, $I_{VDD2} = 0$ mA, $T_J > 40$ °C, Booster is off All wake up sources enabled	Ivs,sleep,40		65	150	μА
2	Current share for CAN wake up capability in SBC mode SLEEP	V _S = 13.5V Not production tested	I _{VS,CAN,SLEEP}		5	10	μΑ
3	Current share for LIN wake up capability in SBC mode SLEEP	$V_S = 13.5V$ Not production tested	I _{VS,LIN,SLEEP}		2	5	μΑ

Table 1: DC Characteristics SLEEP

¹⁾ not production tested

PRODUCTION DATA - Mar 7, 2016

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Current consumption in SBC mode STOP without booster	SBC mode STOP, $V_{VS} = V_{LIN} = V_{WK} = 13.5V$, $I_{VDD1} = 0$ mA, CAN off, LIN off, VDD2 off, All wake up sources enabled, $T_J > 40^\circ$	lvs,stb,t<=125°C		100	170	μА
1a	Current consumption in SBC mode STOP without booster	SBC mode STOP, $V_{VS} = V_{LIN} = V_{WK} = 13.5V$, $I_{VDD1} = 0$ mA, CAN off, LIN off, VDD2 off, All wake up sources enabled, $T_J < 40^{\circ}$	Ivs,stb,t<=40℃		85	140	μА
2	Additional current if VDD2 has load	$V_{VS} = 13.5V, I_{VDD2} = -40mA$	I _{VS,VDD2}		0.1*I _{VDD2}		mA
3	Current consumption of VDD2 voltage regulator in case of low load of 0.2mA 1)	$\begin{aligned} V_{VS} &= 13.5V, \\ I_{VDD2} &= -0.2mA \end{aligned}$	I _{VS,VDD2,0.2m} A		1		mA
4	Additional current in SBC mode STOP if cyclic wake up enabled 1)	STOP Mode, V _{VS} = V _{LIN} = V _{WK} = 13.5V, Cyclic wake up enabled	I _{VS,STB,CYCLIC}		10		μА

Table 2: DC Characteristics STOP

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	NORMAL mode current		I _{VS,NOM}		150	400	μΑ
	consumption						
2	Current consumption in active mode for all LINs	LIN dominant	I _{VS,LIN,ACT,DOM}		1.5	3	mA
	not production tested						
3	Current consumption in active mode for all LINs	LIN recessive	I _{VS,LIN,ACT,REC}		0.25	0.5	mA
4	Current consumption in active mode for CAN	CAN recessive	I _{VDDCAN,CAN,ACT,REC}		1	3	mA
5	Current consumption in active mode for CAN	CAN dominant	I _{VDDCAN,CAN,ACT,DOM}		40	105	mA
	not production tested						

Table 3: DC Characteristics NORMAL

1) not production tested

PRODUCTION DATA - Mar 7, 2016

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Power on threshold according to pin VS		$V_{\text{VS,PU}}$	4		5	٧
2	Power down threshold according to pin VS		$V_{VS,PD}$	2.0		2.5	V

Table 4: DC Characteristics POR

4.1.1 Internal Time Base

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
	Internal time base, started automatically on demand. Most times specified are derived from this internal time base directly or by using prescalers.		t _{osc}	0.875		1.125	μS

Table 5: AC Characteristics

4.2 SBC Operating Modes

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	time out in SBC states INIT and RESTART		$t_{TO,INIT}$	230	256	290	ms
2	time out in SBC states INIT and RESTART for VDD1 start up	VS rises above V _{ON-OFF,VS} in before and not fallen below V _{ON-OFF_f,VS}	t _{TO,VDD1}	1.4	1.5	1.8	S
3	duration for changes between SBC states	detection of vaild state change condi- tion	t_{MODE_CHANGE}		8		μs
4	VS voltage threshold to be exceeded in order to start timeout $t_{TO,VDD1}$		$V_{\text{ON-OFF,VS}}$	6.3	6.6	6.9	V
5	VS voltage threshold to be underflow in order to deactivate timeout $t_{\text{TO,VDD1}}^{1)}$		$V_{ON\text{-}OFF_f,VS}$	5.75	6.05	6.35	V

Table 6: AC Characteristics

1) Hysteresis is designed to 550mV, Not production tested

PRODUCTION DATA - Mar 7, 2016

VDD1 current observation in STOP mode

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Timeout for whole system to enter STOP mode and therefore to decrease current consumption	SPI command for STOP mode sent	t _{tran_} stop	2.3	2.6	3.2	ms
2	Threshold for VDD1 observation, 5V system. Upper limit ensures a safe voltage difference to VDD1 of 50mV using production test data for each particular IC.	SBC mode STOP	k1 _{VDD1,5} v	4.625		V _{VDD1} - 50mV	V
3	Minimum time VDD1 needs to stay above k1 _{VDD1}	VDD1_CFG[7:6]= 0h	t1 ₀	4.7		6.4	ms
	After this time DCDC is switched on for ton_REG,STOP in order to recharge VDD1						
4	Minimum time VDD1 needs to stay above k1 _{VDD1}	VDD1_CFG[7:6]= 1h	t1 ₁	9.7		12.4	ms
	After this time DCDC is switched on for t _{ON_REG,STOP P} in order to recharge VDD1	(default)					
5	Minimum time VDD1 needs to stay above k1 _{VDD1}	VDD1_CFG[7:6]= 2h	t1 ₂	19.5		24.5	ms
	After this time DCDC is switched on for ton_REG,STOP in order to recharge VDD1						
6	Minimum time VDD1 needs to stay above k1 _{VDD1}	VDD1_CFG[7:6]= 3h	t1 ₃	39.5		48.6	ms
	After this time DCDC is switched on for ton_REG,STOP in order to recharge VDD1						
7	On time of DCDC during regular recharge phase	STOP mode	ton_reg,stop	110		160	μS
8	Internal delay of DCDC after switching on request		$t_{DEL,ON}$	-	10	25	μS

Table 7: Characteristics

PRODUCTION DATA - Mar 7, 2016

4.2.1 Configuration for transition behaviour to states FAILSAFE or RESTART

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Pull down resistance active during determination phase for SBC_CFG.CFG	SBC state INIT	R _{INTN,SBC_CFG,CFG,PD}	80	105	150	kΩ
2	Voltage level for detecting logic level low at INTN	SBC state INIT	V _{INTN,SBC_CFG,L}			0.7	V
3	Voltage level for detecting logic level high at INTN	SBC state INIT	$V_{INTN,SBC_CFG,H}$	2.6			V

Table 8: DC Characteristics

Software Development function; pin SWDM

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Voltage to be applied to pin SWDM in order to enable software development function		V _{ENABLE,SWDM}	0.7			VDD1
2	Pull down resistance		R _{PD,SWDM}	80	120	200	kΩ

Table 9: DC Characteristics

Over temperature behaviour

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	CAN over temperature detected	CAN enabled	$T_{OT,CAN}$	150			လိ
2	LIN over temperature detected. Each LIN has its own sensor.	LIN enabled	$T_{OT,LIN}$	150			°C
3	VDD1 over temperature detected 1)	VDD1 enabled	$T_{\text{OT,VDD1}}$	150	165		.c
4	VDD1 over temperature detection hysteresis 1)	VDD1 enabled	$T_{OT,VDD1,HYST}$		40		°C
5	VDD2 over temperature warning detected	VDD2 enabled	T _{OT,VDD2,WARN}	120			℃
6	Temperature difference between failure and warning threshold	VDD2 enabled	T _{OT,VDD2,FAIL} to WARN	10			°C
7	VDD2 over temperature detected	VDD2 enabled	$T_{OT,VDD2,FAIL}$	140		180	∞
8	Over temperature for aux. internal structures detected	System in state NORMAL	$T_{OT,INT}$	140			℃
9	Over temperature detection hysteresis, valid for all sensors except otherwise stated 1)	Temperature sensor enabled	Т _{от,нувт}		20		℃

Table 10: OT Characteristics

1) Not production tested

PRODUCTION DATA - Mar 7, 2016

SPI communication; pins SCK, SDI, SDO, CSN

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	High level input voltage		$V_{\text{CSN,INH}}$	0.7			VDD1
2	Low level input voltage		$V_{\text{CSN,INL}}$			0.3	VDD1
3	High level input current	$V_{CSN} = V_{VDD1}$	I _{CSN,LEAK}	-1	0	1	μA
4	Pull up resistor	$V_{CSN} = 0V$	R _{CSN,PU}		120		kΩ
5	High level input voltage		$V_{SCK,INH}$	0.7			VDD1
6	Low level input voltage		$V_{SCK,INL}$			0.3	VDD1
7	Pull down resistor	$V_{\text{SCK}} = V_{\text{VDD1}}$	R _{SCK,PD}		120		kΩ
8	High level input voltage		$V_{\text{SDI,INH}}$	0.7			VDD1
9	Low level input voltage		$V_{\text{SDI,INL}}$			0.3	VDD1
10	Low level output voltage	$I_{SDO} = 1 \text{mA}$	$V_{\text{SDO,OUTL}}$			0.4	V
11	High level output voltage	$I_{SDO} = -1 \text{mA}$	$V_{SDO,OUTH}$	V _{VDD1} - 0.4			V

Table 11: DC Characteristics

PRODUCTION DATA - Mar 7, 2016

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Serial clock cycle (1)	SCK	tscyc	125			ns
2	SCK "H" pulse width (1)	SCK	t _{shw}	50			ns
3	SCK "L" pulse width (1)	SCK	t _{SLW}	50			ns
4	data setup time (WR) (1)	SDI	t _{sds}	50			ns
5	data hold time (1)	SDI	t _{sDH}	50			ns
6	access time (1)	SDO	t _{ACC}			50	ns
7	output enable time (1)	SDO	toE			50	ns
8	output disable time (1)	SDO	t _{od}			50	ns
9	SCK-CSN (1)	CSN	t _{scc}	50			ns
10	CSN "H" pulse (1)	CSN	t _{CHW}	5			us
	Minimum time between two consecutive SPI accesses						
11	CSN-SCK time (1)	CSN	t _{css}	125			ns
12	output disable time (1)	CSN	t _{CSH}	120			ns

Table 12: AC Characteristics

(1) not production tested

4.3 Watchdog; pin RSTN

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Minimum watchdog time base important for safe trigger area		$t_{\text{WD,PER,MIN}}$	0.85			t _{WD,PER}
2	Maximum watchdog time base important for safe trigger area		$t_{\text{WD},\text{PER},\text{MAX}}$			1.15	t _{WD,PER}
3	First open window	open window after RSTN is released	$t_{WD,FOW}$	230		290	ms
4	Watchdog reset time		t _{wd,rstn}	450		650	μS

Table 13: AC Characteristics

PRODUCTION DATA - Mar 7, 2016

4.3.1 External Reset / Reset clamping

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output low level	I _{RSTN} = 1mA	$V_{RSTN,OUTL}$			0.4	V
		$V_{VDD1} > 3V$					
2	internal pull up resistor	$V_{RSTN} = 0V$	R _{RSTN,PU}	22	32	42	kΩ
3	Voltage level for detecting low at RSTN		$V_{RSTN,INL}$			0.7	V
4	Voltage level for detecting high at RSTN		$V_{RSTN,INH}$	2.6			V

Table 14: DC Characteristics

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	debounce time for external applied reset		t _{rstn,deb}		4		ms
2	time out for short detection to VDD1		t _{RSTN,TO,VDD}		16		ms
3	time out for short detection to GND , can only be detected after twd.rstn or tvdd1,rstn		twdrstn,to,gnd		16		ms

Table 15: AC Characteristics

4.4 Local wake up; pin WK

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Threshold of local wake up, V_{WK} rising	V _{wk} rising	$V_{WK,TH,LH}$	0.6		0.8	VS
2	Threshold of local wake up, V_{WK} falling	$V_{w\kappa}$ falling	$V_{WK,TH,HL}$	0.5		0.7	VS
3	Pull up current	$V_{WK} > V_{WK,TH,LH_max} $ $VS - V_{WK} > 1V$	$I_{WK,PU}$	-100		-10	μΑ
4	Pull down current		I _{WK_PD}	10		100	μΑ
5	Leakage current	VS = 12V, $V_{WK} = 0V$ or $V_{WK} = V_{VS}$	lwk_leak	-2		+2	μΑ

Table 16: DC Characteristics

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Local wake up debounce time	Threshold crossing transition detected	$t_{\sf WK,DEB}$	20		30	μs

Table 17: AC Characteristics

PRODUCTION DATA - Mar 7, 2016

4.5 LIN Transceiver; pins LIN1 to LIN4, TXDLIN1 to TXDLIN4, RXDLIN1 to RXDLIN4, GND-LIN

4.5.1 Characteristics

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	functional range LIN transceiver		$V_{\text{LIN,VS}}$	7	-	18	V
2	recessive output voltage	TXDLINx = 1	$V_{LIN,REC}$	V _{vs} -1V	-	V_{VS}	-
3	dominant output voltage	$ \begin{aligned} $	$V_{LIN,DOM}$	-	-	1.2	V
4	dominant output voltage	$ \begin{array}{l} \textbf{TXDLINx} = 0, \ V_{VS} = \\ 18V, \ R_{LIN} = 0.5k\Omega \ to \\ V_{VS} \end{array} $	$V_{\text{LIN,DOM1}}$	-	-	2.0	V
5	receiver dominant level		$V_{\text{LIN,THDOM}}$	-	-	0.4	VS
6	receiver recessive level		$V_{LIN,THREC}$	0.6	-	-	VS
7	LIN bus center voltage	V _{LINx,BUSCNT} = (V _{LINx,THDOM} + V _{LINx,THREC}) / 2	$V_{LIN,BUSCNT}$	0.475	-	0.525	VS
8	receiver hysteresis	$V_{\text{LINx,THREC}}$ - $V_{\text{LIN,THDOM}}$	$V_{LIN,HYS}$	0.02	-	0.175	VS
9	output current limitation	$V_{\text{LINx}} = V_{\text{VS,MAX}} = 18V$	$I_{LIN,LIM}$	40	-	200	mA
10	pull up resistance		$R_{\text{LIN,SLAVE}}$	20	33	60	kΩ
11	leakage current flowing into pin LIN	transmitter passive, $7V < V_{VS} < 18V, 7V < V_{LINx} < 18V, V_{LINx} > V_{VS}$	ILIN,BUSREC	-	-	20	μΑ
12	pull up current flowing out of pin LIN	transmitter passive, $7V < V_{VS} < 18V$, $V_{LINx} = 0V$	$I_{LIN,BUSDOM}$	-1	-	-	mA
13	leakage current, ground disconnected (GND device = VS)	$V_{VS} = 13.5V, \ 0V < V_{LINx} < 18V$	I _{LIN,NOGND}	-1	-	0.1	mA
14	leakage current, supply disconnected	$\begin{aligned} V_{VS} &= 0V, \\ 0V &< V_{LINx} < 18V \end{aligned}$	I _{LIN}	-	-	20	μΑ
15	leakage current, supply disconnected, $T_J = 85^{\circ}\text{C}$,	$\begin{aligned} V_{VS} &= 0V, \\ 0V &< V_{LINx} < 18V \end{aligned}$	I _{LIN,85}	-	-	15	μА
	not production tested						
16	clamping voltage, not production tested	$V_{VS} = 0V, I_{LINx} = 1mA$	$V_{LIN,CLAMP}$	40		-	V

Table 18: DC Characteristics

PRODUCTION DATA - Mar 7, 2016

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	input capacitance, not production tested!	7V < V _{VS} < 18V	$C_{LIN,PIN}$	-	-	30	pF
2a	receive propagation delay		$t_{\text{RXD,PDR}}$, $t_{\text{RXD,PDF}}$	-	-	6	μS
2b	receive propagation delay in FLASH mode ¹⁾		${\sf t_{{\sf RXD,PDR,FLASH}}}$, ${\sf t_{{\sf RXD,PDF,FLASH}}}$	-	-	2.5	μѕ
3	receive propagation delay symmetry		$t_{\sf RXD,SYM}$	-2	-	2	μS
4	wake up debounce time		t _{LIN,WU}	70		150	μs
5	Duty cycle 1 1)	$\begin{split} &V_{\text{LIN,THREC}}(\text{max}) = \\ &0.744^*V_{\text{VS}}, \\ &V_{\text{LIN,THDOM}}(\text{max}) = \\ &0.581^*V_{\text{VS}}, V_{\text{VS}} = 7\text{-} \\ &18V, t_{\text{BIT}} = 50\text{us}, \\ &D_{\text{LIN,1}} = t_{\text{BUSREC}}(\text{min})/\\ &(2^*t_{\text{BIT}}) \end{split}$	D _{LIN,1}	0.396	-	-	-
6	Duty cycle 2 1)	$\begin{array}{l} V_{\text{LIN,THREC}}(min) = \\ 0.422^*V_{VS}, \\ V_{\text{LIN,THDOM}}(min) = \\ 0.284^*V_{VS}, V_{VS} = 7 \\ 18V, t_{\text{BIT}} = 50\text{us}, \\ D_{\text{LIN,2}} = t_{\text{BUS}}, \\ \text{REC}(max)/(2^*t_{\text{BIT}}) \end{array}$	D _{LIN,2}	-	-	0.581	-
7	Duty cycle 3 ¹⁾	$\begin{array}{l} V_{\text{LIN,THREC}}(\text{max}) = \\ 0.778^* V_{\text{VS}}, \\ V_{\text{LIN,THDOM}}(\text{max}) = \\ 0.616^* V_{\text{VS}}, V_{\text{VS}} = 7 \\ 18V, t_{\text{BIT}} = 96\text{us}, \\ D_{\text{LIN,3}} = t_{\text{BUSREC}}(\text{min}) / \\ (2^* t_{\text{BIT}}) \end{array}$	D _{LIN,3}	0.417	-	-	1
8	Duty cycle 4 1)	$\begin{array}{l} V_{\text{LIN,THREC}}(\text{min}) = \\ 0.389^* V_{\text{Vs}}, \\ V_{\text{LIN,THDOM}}(\text{min}) = \\ 0.251^* V_{\text{VS}}, V_{\text{VS}} = 7 - \\ 18V, t_{\text{BIT}} = 96 \text{us}, \\ D_{\text{LIN,4}} = t_{\text{BUS-}} \\ _{\text{REC}}(\text{max})/(2^* t_{\text{BIT}}) \end{array}$	D _{LIN,4}	-	-	0.590	-
9	receive data baud rate 2)	flash mode, V _{VS} = 13V	$B_{LIN,RXD}$			250	kBd/s
10	transmit data baud rate 2)	$\begin{array}{l} flash\ mode, C_{LIN} = \\ 200PF,\ R_{LIN} = \\ 0.5k\Omega \\ V_{VS} = 13V \end{array}$	$B_{\text{LIN},TXD}$			125	kBd/s

Table 19: AC Characteristics

- 1) Bus load conditions (C_{LIN},R_{LIN}): 1nF, 1k Ω or 6.8nF, 660 Ω or 10nF, 500 Ω
- 2) Not production tested

PRODUCTION DATA - Mar 7, 2016

4.5.2 LIN TXD/RXD

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output low level range	$I_{RXD,LINx} = 1mA$	$V_{RXD,LINx,OUTL}$	-	-	0.4	V
2	output high level range	$I_{RXD,LINx} = -1mA$	$V_{RXD,LINx,OUTH}$	V _{VDD1} - 0.4	-	-	V
3	input low voltage range		$V_{TXD,LINx,INL}$	-	-	0.3	VDD1
4	input high voltage range		$V_{TXD,LINx,INH}$	0.7	-	-	VDD1
5	Internal TXD pull up resistor	$V_{TXD,LINx} = 0V$	$R_{TXD,LINx,PU}$	80	110	150	kΩ

Table 20: DC Characteristics

4.5.3 LIN Failure detection and recovery

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	time out for txd dominant clamping failure		t _{LIN,TXD,DOM}	8.5		12.5	ms
2	time out for LIN dominant clamping failure		t _{LIN,BUS,DOM}	8.5		12.5	ms

Table 21: AC Characteristics

PRODUCTION DATA - Mar 7, 2016

HS-CAN Transceiver; pins CANH, CANL, RXDCAN, TXDCAN, VDDCAN

 $(V_{VS} = 5.5V \text{ to } 28V, T_{AMB} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}, V_{CAN} = -12V \text{ to } +12V \text{ unless otherwise noted.}$ Typical values are at $V_{VS} = 12.0V$ and $T_{AMB} = +25 ^{\circ}\text{C}$. Positive currents flow into the device pins.)

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	CANH dominant output voltage	$V_{TXDCAN} = 0V$ $R_L = 50\Omega$ to 65Ω	$V_{DOM_OUT_H}$	3.0		4.5	V
2	CANL dominant output voltage	$V_{TXDCAN} = 0V$ $R_L = 50\Omega$ to 65Ω	$V_{DOM_OUT_L}$	0.5		2.0	V
3	Matching of dominant output voltages (V _{VDDCAN} - (V _{CANH} + V _{CANL}))	$V_{TXDCAN} = 0V$ $R_L = 50\Omega$ to 65Ω	$V_{DOM_OUT_MATCH}$	-400		400	mV
4	Differential bus dominant output voltages (V _{CANH} -V _{CANL})	$V_{TXDCAN} = 0V$ $R_L = 50\Omega$ to 65Ω	$V_{DIFF_OUT_DOM}$	1.5		3.0	V
5	Recessive output voltage on CANH and CANL	V _{TXDCAN} = V _{VDD1} CAN NORMAL and LISTEN mode	V_{REC_OUT}	2.0	V _{VDDCAN} /	3.0	V
6	Differential receiver threshold voltage	CAN NORMAL and LISTEN mode	V_{DIFF_TH}	500	700	900	mV
7	Differential receiver threshold voltage, CAN off and wake up detection capability enabled	CAN off, wakeable	$V_{DIFF_TH_OFF}$	400		1150	mV
8	Differential receiver hysteresis voltage	CAN NORMAL and LISTEN mode	V_{DIFF_HYST}		60		mV
9	Differential bus recessive output voltages (VCANH - VCANL)	CAN recessive, no load	$V_{REC_OUT_OFF}$	-100		50	mV
9a	Recessive output voltage at CANH and CANL, low power mode	CAN recessive, no load	$V_{REC,LP}$	-100		100	mV
10	Short circuit output current on CANL	$V_{TXDCAN} = 0V$ $V_{CANL} = 40V$	I _{SC_OUT_CANL}	40		100	mA
11	Short circuit output current on CANH	$V_{TXDCAN} = 0V$ $V_{CANH} = -5V$	I _{SC_OUT_CANH}	-100		-40	mA
12	Recessive bus current	$V_{TXDCAN} = V_{VDD1}$ -27V < $V_{CANH/L}$ < 32V	I _{REC_OUT}	-5		5	mA
13	Input leakage current on CANL and CANH	VDD connected to GND with $R = 0\Omega$ and $R = 47k\Omega$ $V_{CANH} = V_{CANL} = 5V$	I _{LEAK_IN}	-10		10	μΑ
14	Common mode input resistance		R_{I_COM}	15		35	kΩ
15	Differential input resistance		R_{LDIF}	30		70	kΩ
15a	Common mode input capacitance not production tested	$V_{TXDCAN} = VDD1$	C_l_COM		20		pF
15b	Differential input capacitance not production tested	$V_{TXDCAN} = VDD1$	C_{I_DIF}		10		pF
15c	Internal R _{in} resistor matching of CANH and CANL		$R_{\text{in_matching}}$	-3		3	%

PRODUCTION DATA - Mar 7, 2016

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
16	Differential bus recessive output voltages (V _{CANH} - V _{CANL})	$V_{TXDCAN} = VDD1$	V _{DIFF_OUT_REC_LOAD}	-5		5	mV
17	VDDCAN monitor threshold	HS-CAN enabled	$V_{\text{VDDCAN}, \text{UV}}$	4.2		4.6	V
18	VDDCAN monitor threshold hysteresis	HS-CAN enabled	V _{VDDCAN,UV,HYST}		100		mV
	CANH / CANL common mode voltage range		$V_{\sf CAN}$	-12		12	V

Table 22: DC Characteristics

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Data rate range to be transmitted and received	CAN NORMAL or LISTEN mode	DR _{CAN}	40		1000	kBit/s
2	Delay TXDCAN to bus dominant not production tested	CAN NORMAL mode	t _{CAN,D_TXD_BUS} (dom)	25		110	ns
3	Delay TXDCAN to bus recessive not production tested	CAN NORMAL mode	t _{CAN,D_TXD_BUS(rec)}	10		95	ns
4	Delay bus to RXDCAN dominant not production tested	CAN NORMAL or LISTEN mode	t _{CAN,D_BUS_RXD(dom)}	15		115	ns
5	Delay bus to RXDCAN recessive not production tested	CAN NORMAL or LISTEN mode	tcan,d_bus_rxd(rec)	35		160	ns
6	Propagation delay TXDCAN to RXDCAN	CAN NORMAL mode	tcan,pd_txd_rxd	40		255	ns
7	Dominant time for wake up via bus	CAN off, wake up capability enabled, VS = 12V	t _{CAN,WAKE_BUS_DOM}	0.75		5	μS
8	Recessive time for wake up via bus	CAN off, wake up capability enabled, VS = 12V	tcan,wake_bus_rec	0.75		5	μS
9	wake up time out	CAN_CFG.RC = 0, CAN_CFG.WU = 1	t _{CAN,WAKE2}	0.5		2	ms
10	CAN activation time	CAN_CFG.RC = 1	t _{CAN,ACTIVE}			50	μs

Table 23: AC Characteristics

PRODUCTION DATA - Mar 7, 2016

4.5.4 TXDCAN and RXDCAN

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output low level range	$I_{RXDCAN} = 1mA$	$V_{RXD,CAN,OUTL}$	-	-	0.4	V
2	output high level range	$I_{RXDCAN} = -1mA$	$V_{RXD,CAN,OUTH}$	V _{VDD1} - 0.4	-	-	V
3	input low voltage range		$V_{TXD,CAN,INL}$	-	ı	0.3	VDD1
4	input high voltage range		$V_{TXD,CAN,INH}$	0.7	-	•	VDD1
5	Internal TXDCAN pull up resistor	$V_{TXDCAN} = 0V$	R _{TXD,CAN,PU}	80	110	150	kΩ

Table 24: DC Characteristics

4.5.5 CAN Failure detection and recovery

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	time out for TXD dominant clamping failure		t _{CAN,TXD,DOM}	1.4		1.9	ms
2	time out for BUS dominant clamping failure		t _{CAN,BUS,DOM}	1.4		1.9	ms
3	duration of bus dominant or recessive time for CAN bus failure detection		t _{BUS,FAIL}		6		μs

Table 25: AC Characteristics

4.6 Limp Home support; pin FSON

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output low level	$I_{FSON} = 1mA$	$V_{FSON,OUTL}$			0.4	V
		$V_{VS} > V_{VS,PD}$					

Table 26: DC characteristics

4.7 Interrupt; pin INTN

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	output low level	$I_{INTN} = 1mA$	$V_{INTN,OUTL}$			0.4	٧
		$V_{VDD1} > 3V$					
2	pull up resistor	$V_{INTN} = 0V$	R _{INTN,PU}	80	105	150	kΩ

Table 27: DC Characteristics

ı	No.	Description	Condition	Symbol	Min	Тур	Max	Unit
		·	Interrupt state change condition detected	t _{INTN,SETUP}		8		tosc

Table 28: AC Characteristics

PRODUCTION DATA - Mar 7, 2016

4.8 DCDC Buck converter; pins VIN, VDD1, VDD1SENSE, LXT, PGND

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	VDD1 output voltage if enabled, E521.0204, E521.1214	$\begin{split} I_{VDD1} &= \text{-}500\text{mA}, \\ C_{VDD1} &> 22 \mu\text{F, ESR} \\ &< 120\text{m}\Omega, V_{VIN} > \\ 5.5 V \end{split}$	V _{VDD1,5} v	4.9		5.1	V
2	Quiescent current consumption of DCDC buck converter in case of switched off, e.g. in SBC mode SLEEP	V _{VIN} = 13.5V DCDC off	Ivin,dcdc_off		9	20	μΑ
3	Quiescent current consumption of DCDC buck converter in case of switched on, e.g. in SBC mode NORMAL	$V_{VIN} = 13.5V$ DCDC on Duty cycle = 0%	IVIN,DCDC_ON		160		μΑ
4	reset threshold 1 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 0h, VDD1 falling	V _{TH1,VDD1,RSTN}	4.4		4.6	V
5	reset release threshold 1 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 0h, VDD1 rising	V _{TH1,VDD1_r,RSTN}	4.6		4.9	V
6	reset threshold 2 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 1h, VDD1 falling	V _{TH2,VDD1,RSTN}	3.8		4	V
7	reset release threshold 2 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 1h, VDD1 rising	V _{TH2,VDD1_r,RSTN}	4.0		4.25	V
8	reset threshold 3 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 2h, VDD1 falling	V _{TH3,VDD1,RSTN}	3.4		3.6	V
9	reset release threshold 3 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 2h, VDD1 rising	$V_{\text{TH3,VDD1_r,RSTN}}$	3.6		3.85	V
10	reset threshold 4 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 3h, VDD1 falling, default selection	V _{TH4,VDD1,RSTN}	3		3.2	V
11	reset release threshold 4 for VDD1 E521.0204, E521.1214 1)	VDD1_CFG.THR_ 1:THR_0 = 3h, VDD1 rising	V _{TH4,VDD1_r,RSTN}	3.2		3.45	V
12	LXT internal over current protection limit	$V_{VIN} > 5.5V$	I _{LXT}	650	800	1100	mA

¹⁾ Hysteresis of reset thresholds is designed to > 150mV in 5V system

Table 29: DC Characteristics

PRODUCTION DATA - Mar 7, 2016

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	reset delay time after release of VDD1 reset		t _{RSTN,VDD1}	4.5		6.5	ms
2	VDD1 under voltage debounce time		t _{DEB,VDD1}		10	50	μS
3	reset reaction time in case of under voltage condition		t _{RR,VDD1,RSTN}		14	20	μS

Table 30: AC Characteristics

4.8.1 Pulse Frequency Modulated (PFM) Converter

PFM Control Logic

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1		No over current detected	$T_{ON,MIN}$		260		ns
2	Minimum ON Time	Over current detected	$T_{ON,OC}$		100		ns
3	Minimum OFF time without over current		$T_{OFF,MIN,NOM}$		520		ns
4	Nominal minimum OFF time after over current detection		$T_{OFF,OC,NOM}$		1330		ns
5	Extended minimum OFF time after over currrent detection		$T_{OFF,OC,EXT}$		2450		ns
6		depending on ratio V _{VIN} /V _{DD1} and load conditions	F _{OP}	0		1.7	MHz
7	Peak Operation Frequency		F _{OP,MAX}	0.9	1.3	1.7	MHz

Table 31: AC characteristics

PRODUCTION DATA - Mar 7, 2016

Low drop regulator; pins VDD2, ENVDD2

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Parameter removed						
2	output voltage range	VDD2 enabled, $6V < V_{VS} < 28V$, $I_{VDD2} > -100mA$	V _{VDD2,100mA}	4.9	5.0	5.1	V
3	output current limitation	$V_{VDD2} = 0V, V_{VS} = 28V$	I _{VDD2,LIM}	-220		-110	mA
4	information only, RDS of regulator for $V_{VS} = 5.5V$	VDD2 enabled, Determined for	RDS _{VDD2,VS=5.5V}			12	Ω
		$V_{VS} = 5.5V$					
		Not production tested					
5	information only, RDS of regulator for $V_{VS} = 5.0V$	VDD2 enabled, Determined for	RDS _{VDD2,VS=5.0V}			13	Ω
		$V_{VS} = 5.0V$					
		Not production tested					
6	information only, RDS of regulator for $V_{VS} = 4.5V$	VDD2 enabled, Determined for	RDS _{VDD2,VS=4.5V}			15	Ω
		$V_{VS} = 4.5V$					
		Not production tested					
7	information only, RDS of regulator for $V_{VS} = 4.0V$	VDD2 enabled, Determined for	RDS _{VDD2,VS=4.0V}			17	Ω
		$V_{VS} = 4.0V$					
		Not production tested					
8	information only, RDS of regulator for $V_{\text{VS}} = 3.5 \text{V}$	VDD2 enabled, Determined for	RDS _{VDD2,VS=3.5V}			21	Ω
		$V_{VS} = 3.5V$					
		Not production tested					
9	under voltage threshold falling	VDD2 enabled	$V_{\text{UV,THR}}$	4.5		4.8	V
10	under voltage hysteresis	VDD2 enabled	$V_{\text{UV,HYS}}$		100		mV
11	threshold of ENVDD2 rising	V _{ENVDD2} rising	$V_{\text{ENVDD2,LH}}$	0.6		8.0	VS
12	threshold of ENVDD2 falling	V _{ENVDD2} falling	$V_{ENVDD2,HL}$	0.5		0.7	VS

Table 32: DC Characteristics

PRODUCTION DATA - Mar 7, 2016

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	under voltage debounce time		t _{DEB,UV}	150		280	μS

Table 33: AC Characteristics

4.9 DCDC Boost converter; pins MDRV, ISEN, PGND2

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	VS activation and output voltage E521.12, .13, .14 only	$V_{VDD1} > tbd.$	V_{BOOST}	6.0	6.5	7.0	V
2	Current sense threshold E521.12, .13, .14 only		V_{ISEN}	85	100	110	mV
3	Current sense input current E521.12, .13, .14 only	Booster disabled	I _{ISEN}	-1		1	μΑ
4	Minimum Booster input voltage to guarantee defined booster output voltage E521.12, .13, .14 only	$I_{load_VS} < 600 mA$	$V_{Booster_input_min}$	3.25			V
5	Minimum Booster input voltage to guarantee defined booster output voltage, current limited to lower value of than defined for V _{BAT_min} E521.12, .13, .14 only	$I_{load_VS} < tbd.$	V _{Booster_input_min_2}	2.5			V
6	Internal parasitic Resistance of the Booster-inductance E521.12, .13, .14 only		RDC_L _{BOOST}			30	mΩ
7	Pullup current at ISENSE-Pin during booster is on E521.12, .13, .14 only	Booster enabled	R _{ISENSE}		2	5	μА

Table 34: DC Characteristics

No.	Description	Condition	Symbol	Min	Тур	Max	Unit
1	Minimum switch off-time		T _{OFFMIN4}		0.47		μs
2	Maximum switch on-time		T _{ONMAX4}		8.4		μs
3	Minimum switch on-time		T _{ONMIN4}		150		ns

Table 35: AC Characteristics

PRODUCTION DATA - Mar 7, 2016

5 Functional Description

5.1 Power Supply and References; pins VS, GND

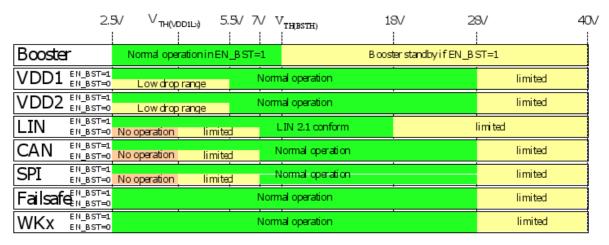


Fig. 1: Operating Range Limitations

5.1.1 Internal Time Base

Most times specified are derived from internal $1\mu s$ time base e.g. directly or by using prescalers based on this time base.

PRODUCTION DATA - Mar 7, 2016

5.2 SBC Operating Modes

The device provides the following states:

- OFF
- INIT
- NORMAL
- STOP
- SLEEP
- RESTART
- FAILSAFE

Transition between states is performed at the latest t_{STATE} CHANGE after valid condition detected.

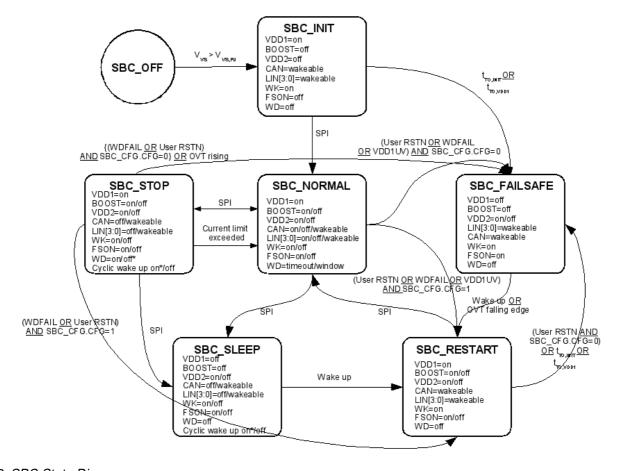


Fig. 2: SBC State Diagram

*) Watchdog and cyclic wake up use one timer. It is possible to use one at the same time only. A change between cyclic wake up and watchdog does not reset timer.

PRODUCTION DATA - Mar 7, 2016

Register Name	Address	Description
SBC_CFG	0x01	SBC configuration register.
WU_SRC	0x04	Wake up source register. Wake up source is cleared if register is read via SPI.
SPI_FAIL	0x05	SPI programming failure register. Register is cleared by reading via SPI.
VDD_STAT	0x1A	VDD1, VDD2 and VDDCAN status information.

Table 36: RegisterTable

Register SBC CFG (0x01)

	MSB							LSB				
Content	CLAMP	-	BOOST	FSON	CFG	STATE2	STATE1	STATE0				
Reset value	0	0	0	0	0	0	0	0				
Access	R	R	R/W	R	R/W	R/W	R/W	R/W				
	0 Externa	al reset le	norter than t _{wDF} ads to FSON s ten in register l	set immedia	tely	o FSUN set						
		_										
	FSON:	ic activo										

- FSON is active
 FSON is not active
- CFG: SBC state transition in case of watchdog failure
- 0.. FAILSAFE 1.. RESTART

STATE2 ... STATE0

000.. OFF

001.. INIT (cannot be set by SPI)

010.. NORMAL 011.. STOP 100.. RESTART 101.. FAILSAFE 110.. SLEEP 111.. reserved

Table 37: SBC configuration register.

PRODUCTION DATA - Mar 7, 2016

Register WU_SRC (0x04)

	MSB							LSB		
Content	LIN4	LIN3	LIN2	LIN1	CAN	VDD1	WD	WK		
Reset value	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		
Bit Description	LIN4: 1 wake up from LIN4 detected									
	LIN3: 1 wake up from LIN3 detected									
	LIN2 : 1 w	ake up from	LIN2 detec	ted						
	LIN1 : 1 w	ake up from	LIN1 detec	ted						
	CAN : 1 w	ake up from	CAN detec	ted						
	VDD1: 1 wake up in STOP mode due to VDD1 current limitation exceeded									
	WD: 1 cyclic wake up in STOP mode									
	WK : 1 wa	ake up from	local wake u	p pin WK de	etected					

Table 38: Wake up source register. Wake up source is cleared if register is read.

PRODUCTION DATA - Mar 7, 2016

Register SPI FAIL (0x05)

	· ,							
	MSB							LSB
Content	LIN4	LIN3	LIN2	LIN1	CAN	-	WD	FSM
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
D': D ' :'								

Bit Description

Register is cleared by reading via SPI

LIN4

- 1.. LIN4 is reason for interrupt, e.g. configuration of LIN4 in case of not beeing in SBC state NORMAL
- 0.. LIN4 is not reason for interrupt

I IN3

- 1.. LIN3 is reason for interrupt, e.g. configuration of LIN3 in case of not beeing in SBC state NORMAL
- 0.. LIN3 is not reason for interrupt

LIN2

- 1.. LIN2 is reason for interrupt, e.g. configuration of LIN2 in case of not beeing in SBC state NORMAL
- 0.. LIN2 is not reason for interrupt

LIN1

- 1.. LIN1 is reason for interrupt, e.g. configuration of LIN1 in case of not beeing in SBC state NORMAL
- 0.. LIN1 is not reason for interrupt

CAN

- 1.. CAN is reason for interrupt, e.g. configuration of CAN in case of not beeing in SBC state NORMAL
- 0.. CAN is not reason for interrupt

WD

- 1.. Watchdog is reason for interrupt, e.g. configuration of WD in case of not beeing in SBC state NORMAL
- Watchdog is not reason for interrupt

FSM

- 1.. State machine is reason for interrupt, e.g. trying to change into SBC state SLEEP with pending wake up
- 0.. State machine is not reason for interrupt

Table 39: SPI programming failure register.

PRODUCTION DATA - Mar 7, 2016

Register VDD_STAT (0x1A)

	MSB							LSB
Content	VDD2 ON	VDD2_EN PIN	VDD2OC	VDD2 UV	-	VDDCAN UV	VDD1 UV	-
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit Description	O Linear volume of the control of	2 set to logic 2 set to logic ver current d ver current n nder voltage nder voltage	level 1 level 0 etected ot detected detected not detected age detected age not detected	sabled d d cted				

Table 40: VDD1, VDD2 and VDDCAN status information.

PRODUCTION DATA - Mar 7, 2016

5.2.1 OFF state

The OFF mode is the unsupplied state. This mode is left automatically if $V_{VS} > V_{S,PU}$. It is entered automatically if $V_{VS} < V_{S,PD}$.

5.2.2 INIT state

The SBC is set to state INIT after $V_{VS,PU}$ is exceeded. The DCDC buck converter VDD1 is switched on. The default reset threshold $V_{TH4,VDD1,RSTN}$ is active. Pin **RSTN** is set to L. After reaching reset threshold reset delay time $t_{RSTN,VDD1}$ is applied. Then pin **RSTN** is set to H.

In case of **VDD1** does not start up beyond its reset level state transition to state FAILSAFE is performed after $t_{TO,VDD1}$. This function helps to prevent higher or even short currents to **VDD1** for longer times.

Transition from SBC state INIT to SBC state NORMAL must be initiated by SPI within $t_{TO,INIT}$. $t_{TO,INIT}$ starts with rising edge of **RSTN**.

The reset output pin **RSTN** is bidirectional and can be overwritten by the external μ C. In case of an internal reset extended by an external reset the timeout $t_{\text{WDRSTN},TO,GND}$ becomes active at the end of the internal reset duration. If the timeout is exceeded SBC changes to state FAILSAFE and **FSON** is set.

5.2.3 NORMAL state

State NORMAL is expected to be the main state. All configuration registers are accessable and watchdog is running.

Watchdog, CAN, VDD2, WK, FSON and LINs can be configured.

Low power state STOP and very low power state SLEEP can be entered via SPI.

If a watchdog trigger failure occurs or **RSTN** is overwritten externally or **VDD1** drops below the configurable reset threshold state is changed to FAILSAFE or RESTART depending on configuration of bit SBC_CFG.CFG.

5.2.4 STOP state

LIN and CAN transceivers are off but can be wakeable.

Watchdog cyclic wake up timer can be active. Configuration must be performed in state NORMAL in registers WD_CFG1 and WD_CFG2 prior entering state STOP as described for watchdog configuration change. Occurence of cyclic wake up generates an interrupt.

VDD2 regulator can be active depending on pin **ENVDD2** or bit VDD2_CFG.ON.

If **RSTN** is overwritten externally the state changed to FAILSAFE or RESTART mode depending on configuration of bit SBC CFG.CFG. Hence the regulator is enabled every t1_n an external reset is detectable only after that time only.

5.2.5 VDD1 current observation in SBC state STOP

A low current consumption is expected in SBC state STOP. To save current DCDC is switched off after an initial time $t_{TRAN,STOP}$. DCDC is enabled periodically for regular recharge phase $t_{ON_REG,STOP}$ every reload time t_{1n} .

Reload time can be configured in register VDD1 CFG. The undervoltage detection remains active.

In case of current consumption is too high voltage drops below undervoltage threshold $k1_{VDD1}$ and regulator is enabled for $t_{TRAN,STOP}$. If this happens more than once within $t1_n$ state is changed to SBC state NORMAL and an interrupt is generated. Otherwise SBC remains in state STOP.

PRODUCTION DATA - Mar 7, 2016

System behaviour concerning V_{VDD1} strongly depends on value of external capacitor. It is recommended to calculate value of external capacitor with knowledge of overall system STOP state current consumption and adding a safety margin in order to ensure SBC state STOP can be reached and kept.

Accessing register VDD1 CFG is not allowed in SBC state FAILSAFE.

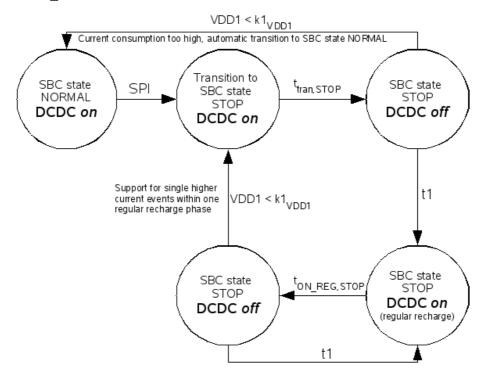


Fig. 3: Transition to and from SBC state STOP with current observation on VDD1

5.2.6 SLEEP state

LIN and CAN transceivers are off but can be wakeable. VDD1 voltage regulator is off and reset signal at **RSTN** is generated.

VDD2 regulator can be active depending on pin ENVDD2 or bit VDD2 CFG.ON.

A transition to state SLEEP with all wake up sources disabled is prohibited. The transistion is ignored, SPI failure bit is set and an interrupt is generated.

Wake up event causes a transition to state RESTART.

Watchdog can be configured to wake up device in state SLEEP.

5.2.7 RESTART state

State RESTART is an intermediate state being reached in case of failure conditions or wake up from states SLEEP or FAILSAFE.

State can be left to NORMAL using SPI command within limited amount of time $t_{TO,INIT}$. Otherwise state FAILSAFE is entered automatically.

5.2.8 FAILSAFE state

State FAILSAFE is entered in case of failure condition present only. Pin **FSON** is activated automatically. VDD1 regulator is switched off. Pin **RSTN** is set to low.

VDD2 regulator can be active depending on pin ENVDD2.

PRODUCTION DATA - Mar 7, 2016

With entering state FAILSAFE all wake up capabilities are enabled. In case of a wake up condition state RESTART is entered.

In case of an overtemperature failure state RESTART is entered when overtemperature condition vanishes.

5.2.9 Configuration for transition behaviour to modes FAILSAFE or RESTART

Transition behaviour in case of failure either to SBC state FAILSAFE or to SBC state RESTART can be setup using external circuitry connected to pin **INTN**.

Setup of behaviour is performed in state INIT at the end of SBC active RSTN time t_{RSTN,VDD1}. At this particular point voltage at **INTN** is sensed back. Desired behaviour is stored in register SBC_CFG.CFG.

For setup purposes during time of determination neither internal normal pull up resistor nor internal low side driver are active in **INTN** stage. Instead of an internal pull down resistor is active. There are two possible cases:

- 1. External pull up present: Detect logic level high
- 2. No *external* pull up present: Detect logic level low Diagram Fig. 4 shows principal implementation of **INTN** stage. T_{1N} and T_{1P} are used for normal operation. For setup phase both T_{1N} and T_{1P} are switched off and pull down controlled by T_{2N} is enabled.

Recommendation for selection of external pull up resistance towards VDD1

System with V_{VDD1} =5V: Select value of $\leq 85k\Omega$, e.g. $68k\Omega$

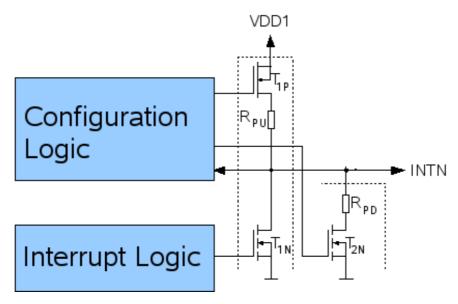


Fig. 4: INTN internal structure with support for setup SBC_CFG.CFG

Implementation of INTN stage for normal operation and setup of SBC_CFG.CFG.

An alternative way to change RESTART/FAILSAFE behaviour in case of a failure is setting bit SBC_CFG.CFG via SPI. But there are some limitations:

- 1. Bit SBC_CFG.CFG can not be set to L via SPI if an external pull up exists at pin INTN.
- 2. Bit SBC CFG.CFG can be written in states STOP and NORMAL only.
- 3. Bit SBC CFG.CFG is cleared in states RESTART and FAILSAFE.

PRODUCTION DATA - Mar 7, 2016

5.2.10 Software Development function; pin SWDM

High active pin **SWDM** determines activation of software development function. The only way to enable software development function is a high level of pin **SWDM** with internal release of pin **RSTN** in SBC states INIT or RESTART.

In final application pin SWDM must be connected to electrical ground.

With software development function enabled following changes apply to system behaviour:

- 1. no watchdog related reset at pin RSTN is generated
- 2. automatic watchdog related transitions to states FAILSAFE or RESTART are not performed
- 3. external events at RSTN are ignored
- 4. exceeding of timeout $t_{\text{TO,INIT}}$ is ignored

All failures are signaled as usual in SPI status register. All other functional blocks behave as described.

Setting pin **SWDM** to low logic level disables software development function.

5.2.11 Over temperature behaviour

IC implements 8 independent temperature sensors:

- 1. LIN1
- 2. LIN2
- 3. LIN3
- 4. LIN4
- 5. HS-CAN
- 6. VDD2 voltage regulator
- 7. VDD1 DCDC buck converter
- 8. Internal aux. structures

In case of over temperature detected in LIN or CAN transceivers corresponding interface is switched off and an interrupt is set.

VDD2 voltage regulator features both warning and over temperature shutdown functionality including interrupt generation.

VDD1 over temperature detection results in an external reset at **RSTN**.

In case of internal auxiliary structures report an over temperature situation system changes to SBC state FAILSAFE. If overtemperature vanishes device will enter SBC state RESTART.

Register Name	Address	Description
OT_STAT	0x1F	Over temperature detection status register.

Table 41: RegisterTable

PRODUCTION DATA - Mar 7, 2016

Register OT_STAT (0x1F)

	MSB							LSB			
Content	LIN4	LIN3	LIN2	LIN1	CAN	VDD2	VDD1	AUX			
Reset value	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	R			
Bit Description	LIN4: 1 LIN4 over temperature detected 0 LIN4 over temperature not detected										
	LIN3: 1 LIN3 over temperature detected 0 LIN3 over temperature not detected										
	LIN2: 1 LIN2 over temperature detected 0 LIN2 over temperature not detected										
	LIN1: 1 LIN1 over temperature detected 0 LIN1 over temperature not detected										
	CAN: 1 CAN over temperature detected 0 CAN over temperature not detected										
	VDD2: 1 VDD2 over temperature detected 0 VDD2 over temperature not detected										
	VDD1: 1 VDD1 over temperature detected 0 VDD1 over temperature not detected										
	AUX: 1 Over temperature in other internal aux. structures detected 0 Over temperature in other internal aux. structures not detected										

Table 42: Over temperature detection status register.

5.3 SPI communication; pins SCK, SDI, SDO, CSN

The SPI interface is used for:

- storing-/and reading CAN data-/timing and system configurations
- · reading diagnosis register

By setting CSN to low level, the communication can be achieved and by setting to high level leads to disabling the communication (in this case, pin SDO is high impedance). During the transmission data shifts are controlled by the serial clock signal (SCK) according to the following rules:

- · data is shifted MSB first, LSB last
- · data is shifted out on the rising edge of SCK and is sampled on the falling edge of SCK
- · data transmission length is always 16 Bit

SPI write is performed setting MSB Bit A7 of address value to 1. During read Bit A7 needs to be 0.

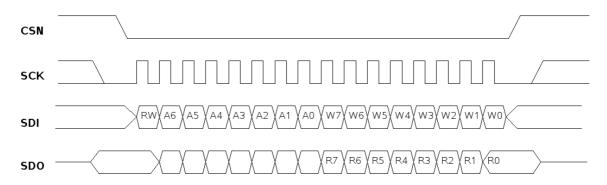


Fig. 5: SPI access

Bit RW

- 1: write access
- 0: read access

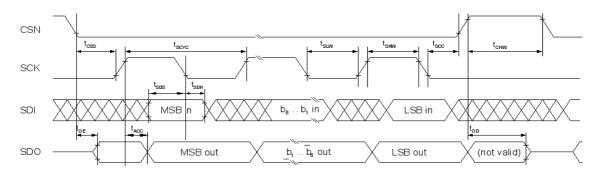


Fig. 6: SPI Timing diagram

SPI timing diagram. For configuration of write and read access check corresponding diagrams.

PRODUCTION DATA - Mar 7, 2016

5.4 Watchdog; pin RSTN

Design implements watchdog functionality that can be used in window or timeout mode. Watchdog mode depends on system state.

5.4.1 Time out mode

The time out mode is an easier and less secure type of the watchdog modes. A closed window does not exist. The watchdog trigger can be applied at any time within the watchdog cycle. A watchdog trigger is detected as a write access to the register WD_TRIG. The bit TRIG_BIT must toggle. A correct watchdog trigger starts a new window period.

The period can be configured in registers WD_CFG1 and WD_CFG2 in the range from 4ms up to 1024ms using formula 4ms*(1+PER[7:0]).

In case of an incorrect watchdog trigger the SBC will enter states RESTART or FAILSAFE depending on configuration in SBC CFG. A watchdog failure generates a reset setting the pin **RSTN** to L for two.RSTN.

The first period always starts with 256ms. The first TRIG_BIT must be H.

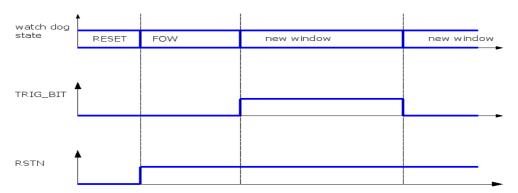


Fig. 7: watchdog time out mode

Fig. 8: watchdog time out mode without trigger

5.4.2 Window mode

The window mode is the secure type of the watchdog modes. It consists of a closed and an open window. A closed window is 50% of the configured watchdog period.

PRODUCTION DATA - Mar 7, 2016

A triggering of the watchdog is only allowed in the open window. A watchdog trigger is detected as a write access to register WD_TRIG. The bit TRIG_BIT must toggle. A correct watchdog trigger starts a new window period.

The period can be configured in registers WD_CFG1 and WD_CFG2 in the range from 4ms up to 1024ms using formula 4ms*(1+PER[7:0]).

In case of an incorrect watchdog trigger the SBC will enter SBC state RESTART or FAILSAFE depending on configuration in register SBC_CFG. A watchdog generates a reset setting the pin **RSTN** to low for $t_{WD,RSTN}$.

The first period always starts with 256ms. The first TRIG_BIT must be high.

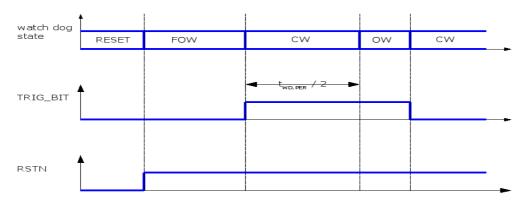


Fig. 9: watchdog window mode

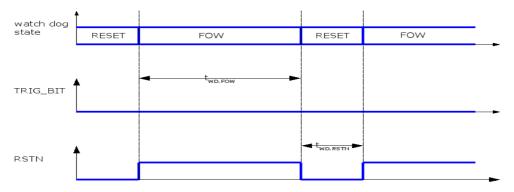


Fig. 10: watchdog window mode no trigger in FOW

Behaviour of watchdog in case of missing trigger in open window.

PRODUCTION DATA - Mar 7, 2016

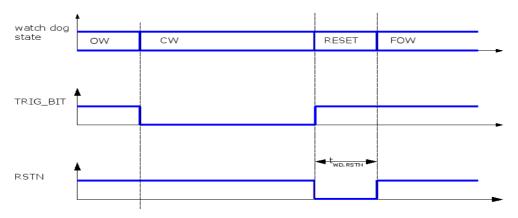


Fig. 11: watchdog window mode trigger in closed window

Behaviour of watchdog in case of trigger in closed window.

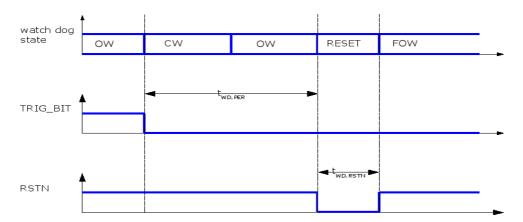


Fig. 12: watchdog window mode no trigger in open window

Behaviour of watchdog in case of missing trigger in open window.

PRODUCTION DATA - Mar 7, 2016

Fig. 13: safe trigger area

5.4.3 Configuration

The configuration of watchdog is allowed in SBC state NORMAL only. Registers WD_CFG1 and WD_CFG2 must be written within one watchdog cycle. The corresponding bits of WD_CFG1 and WD_CFG2 as well as WD_PER1 and WD_PER2 must be equal. Only in this case the configuration is valid. The configuration currently used can be read in registers WD_CFG and WD_PER.

Register Name	Address	Description
WD_CFG	0x08	Current watchdog configuration. Change of configuration has to be performed using WD_CFG1 and WD_CFG2 including correct watchdog trigger afterwards within one watchdog cycle in SBC state NORMAL
WD_CFG1	0x09	Watchdog configuration register 1
WD_CFG2	0x0A	Watchdog configuration register 2
WD_STAT	0x0B	Watchdog status register
WD_PER	0x0C	Current watchdog period. Change of period has to be performed using WD_PER1 and WD_PER2 including correct watchdog trigger afterwards within one watchdog cycle.
WD_TRIG	0x0D	Watchdog trigger register
WD_PER1	0x0E	Watchdog period register 1
WD_PER2	0x0F	Watchdog period register 2

Table 43: Watchdog RegisterTable

PRODUCTION DATA - Mar 7, 2016

Register WD_CFG (0x08)

	MSB							LSB		
Content	TBASE	WD	CWK1	CWK0	MODE	-	-	-		
Reset value	0	0	0	0	1	0	0	0		
Access	R	R	R	R	R	R	R	R		
Bit Description	1 Output t 0 Output t	time base time base	e NORMAL: at RXDLIN1 at RXDLIN1	on off						
	1 Watchd	og on	TOP, overwr	ites GWK1:						
	1 Cyclic w	CWK1 : In SBC states STOP: 1 Cyclic wake up on 0 Cyclic wake up off								
	CWK0: In SBC state SLEEP: 1 Cyclic wake up on 0 Cyclic wake up off									
	MODE: — 1 Time ou 0 Window	ıt mode								

Table 44: Current watchdog configuration. Change of configuration has to be performed using WD_CFG1 and WD_CFG2 including correct watchdog trigger afterwards within one watchdog cycle in SBC mode NORMAL

Register WD_CFG1 (0x09)

	MSB							LSB	
Content	TBASE	WD	CWK1	CWK0	MODE	-	-	-	
Reset value	0	0	0	0	1	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R	R	R	
Bit Description	1 Output to 0 Output to WD : In SE	time base time base BC state ST log on,	e NORMAL: at RXDLIN1 at RXDLIN1 FOP, overwr	on					
	O Watchdog off CWK1: In SBC states STOP: 1 Cyclic wake up on O Cyclic wake up off								
	CWK0 : In SBC state SLEEP: 1 Cyclic wake up on 0 Cyclic wake up off								
	MODE : 1 Time ou 0 Window								

Table 45: Watchdog configuration register 1

PRODUCTION DATA - Mar 7, 2016

Register WD_CFG2 (0x0A)

	MSB							LSB		
Content	-	-	-	MODE	CWK0	CWK1	WD	TBASE		
Reset value	0	0	0	1	0	0	0	0		
Access	R	R	R	R/W	R/W	R/W	R/W	R/W		
Bit Description	MODE: 1 Time o 0 Window									
	CWK0 : In SBC state SLEEP: 1 Cyclic wake up on 0 Cyclic wake up off									
	CWK1: In SBC states STOP: 1 Cyclic wake up on 0 Cyclic wake up off									
	WD: In SBC state STOP, overwrites CWK1: 1 Watchdog on 0 Watchdog off									
	TBASE: In SBC state NORMAL: 1 Output time base at RXDLIN1 on 0 Output time base at RXDLIN1 off									

Table 46: Watchdog configuration register 2

Register WD_STAT (0x0B)

	MSB							LSB
Content	-	-	-	-	-	-	SWDM	WDRSTN
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit Description	0 Softwar WDRSTN	e develor : log failure	oment func	tion enabled tion disabled urred occured				

Table 47: watchdog status register

PRODUCTION DATA - Mar 7, 2016

Register WD_TRIG (0x0D)

	MSB							LSB			
Content	-	-	-	-	-	-	-	TRIG			
Reset value	0	0	0	0	0	0	0	0			
Access	R	R	R	R	R	R	R	W			
Bit Description		TRIG: Watchdog trigger, expects alternating content After watchdog enable first bit TRIG must be 1									

Table 48: watchdog trigger register

Register WD_PER (0x0C)

	MSB							LSB				
Content	PER[7]	PER[6]	PER[5]	PER[4]	PER[3]	PER[2]	PER[1]	PER[0]				
Reset value	0	0	1	1	1	1	1	1				
Access	R	R R R R R										
Bit Description	PER[7] : C	PER[7]: Current watchdog period setup										
	PER[6] : C	urrent watch	dog period s	etup								
	PER[5] : C	urrent watch	dog period s	etup								
	PER[4] : C	urrent watch	dog period s	etup								
	PER[3] : C	urrent watch	dog period s	etup								
	PER[2]: Current watchdog period setup											
	PER[1] : C	urrent watch	dog period s	etup								
	PER[0] : C	urrent watch	dog period s	etup								

Table 49: Current watchdog period. Change of period has to be performed using WD_PER1 and WD_PER2 including correct watchdog trigger afterwards within one watchdog cycle.

PRODUCTION DATA - Mar 7, 2016

Register WD_PER1 (0x0E)

	MSB							LSB			
Content	PER[7]	PER[6]	PER[5]	PER[4]	PER[3]	PER[2]	PER[1]	PER[0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bit Description	PER[7] : W	PER[7]: Watchdog period setup									
	PER[6] : W	PER[6]: Watchdog period setup									
	PER[5] : W	atchdog per	od setup								
	PER[4] : W	atchdog per	od setup								
	PER[3] : W	atchdog per	od setup								
	PER[2] : Watchdog period setup										
	PER[1]: Watchdog period setup										
	PER[0] : W	atchdog per	od setup								

Table 50: Watchdog period register 1

Register WD_PER2 (0x0F)

	MSB							LSB			
Content	PER[0]	PER[1]	PER[2]	PER[3]	PER[4]	PER[5]	PER[6]	PER[7]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Bit Description	PER[0] : W	ER[0] : Watchdog period setup									
	PER[1] : W	PER[1]: Watchdog period setup									
	PER[2] : W	PER[2] : Watchdog period setup									
	PER[3] : W	atchdog peri	od setup								
	PER[4] : W	atchdog peri	od setup								
	PER[5] : W	PER[5] : Watchdog period setup									
	PER[6] : W	atchdog peri	od setup								
	PER[7] : W	atchdog peri	od setup								

Table 51: Watchdog period register 2.

PRODUCTION DATA - Mar 7, 2016

5.4.4 Watchdog timing adjustment

For very exact watchdog trigger requirements an internal time base with target frequency of 7.8125 kHz can be connected to pin **RXDLIN1**.

This function can be enabled accessing register WD_CFG.TBASE with correct access valid for watchdog configuration. Function needs to disabled via SPI again in order to receive messages using **LIN1** again.

period	minimum period	maximum period
4096 us * (WD_PER + 1)	(period - 256 us) /1.1	(period + 256 us) /0.88

Table 52: Watchdog period and accuracy

PRODUCTION DATA - Mar 7, 2016

5.4.5 External Reset / Reset clamping

If RSTN is overwritten externally seven cases have to be distinguished. Please also check figure Fig. 14 for details.

- 1. The SBC wants to give a reset and an external source pulls the RSTN line down. After the time the SBC want to release the RSTN a timeout twdrstn,to,gnd starts. If no timeout occurs (first section in figure Fig. 14) SBC state and FSON remain unchanged.
- 2. If the timeout occurs and the SBC detects a RSTN clamp to GND the SBC switches to either state FAILSAFE or to state RESTART depending on configuration of bit SBC_CFG.CFG and the FSON pin is set (second section in figure Fig. 14).
- 3. The SBC wants to give a reset and an external source pulls the RSTN line up dominantly. At the time SBC usually releases the reset a clamp to VDD1 is detected. So SBC holds down the reset and starts timeout twdrstn,to,vdd1. If the dominant pull up releases while the timeout runs the SBC gives a regular reset and FSON remains unchanged (third section in figure Fig. 14).
- 4. If the dominant pull up does not release while the timeout runs SBC switches to either state FAILSAFE or to state RESTART depending on configuration of bit SBC_CFG.CFG and FSON is set (fourth section in figure Fig. 14).
- 5. The SBC does not want to give a reset and an external source pulls down pin **RSTN**. There are two configurations. Configuration one is SBC_CFG.CLAMP is set to one. This causes timeout two starting. If no timeout occurs (**fifth** section in figure Fig. 14) the state is changed to RESTART and FSON is unchanged.
- 6. If the timeout occurs and the SBC detects a RSTN clamp to GND the SBC switches either to mode FAILSAFE or to mode RESTART depending on configuration of bit SBC_CFG.CFG and pin FSON is set (Sixth section in figure Fig. 14).
- 7. Configuration two is SBC_CFG.CLAMP is set to zero. No timeout starts and the SBC detects a RSTN clamp to GND as soon as an external clamp to GND occurs. In case of this the SBC switches to either mode FAILSAFE or to mode RESTART depending on configuration of bit SBC_CFG.CFG and pin FSON is set (Seventh section in figure Fig. 14).

Fig. 14: Different RSTN behaviour

Behaviour of RSTN and configuration options

5.5 Local wake up; pin WK

The device can be woken up from states SLEEP and FAILSAFE via pin WK with either a rising or a falling edge. The edge sensitivity can be configured in register WK_CFG. To suppress glitches the input pin is debounced with tWK,DEB.

The wake up event is signaled at pin INTN if it is configured in register WK CFG.

If the local wake up is not used in application, the pin WK has to be connected to pin VS.

A transition into state SLEEP is prohibited with a pending wake up request. The request must be cleared via SPI reading register WU_SRC.

Register Name	Address	Description
WK_CFG		configuration register of pin WK. Register is writeable in SBC state NORMAL only. In SBC states INIT, RESTART or FAILSAFE all bits are set to H.

Table 53: WK RegisterTable

PRODUCTION DATA - Mar 7, 2016

Register WK_CFG (0x10)

	MSB							LSB
Content	-	-	-	-	-	-	FALL	RISE
Reset value	0	0	0	0	0	0	1	1
Access	R	R	R	R	R	R	R/W	R/W
Bit Description	FALL : A fa	alling edge a	at pin WK lea	ds to a wake	up event. 1)			
	RISE : A ri	sing edge at	t pin WK lead	ls to a wake	up event. 1)			

Table 54: configuration register of pin WK

¹⁾ In SBC states INIT, RESTART or FAILSAFE all bits are set to H.

PRODUCTION DATA - Mar 7, 2016

5.6 LIN Transceiver; pins LIN1 to LIN4, TXDLIN1 to TXDLIN4, RXDLIN1 to RXDLIN4, GND-LIN

5.6.1 Characteristics

The LIN BUS physical interface is implemented as a LIN 2.1 standard high-voltage single wire interface (ISO 9141) for baud rates from 2.4kBds to 20.4kBds. The LIN bus has two logical values; the dominant state (BUS voltage near GND) represents logical LOW level and the recessive state (BUS voltage near VS) represents logical HIGH level. In the recessive state the BUS is pulled high by an internal pull-up resistor (typ. 30 k Ω) and a diode in series, so no external pull-up components are required for slave applications. Master applications require an additional external pull-up resistor and a series diode. The LIN protocol output data stream on the TXD signal is converted into the LIN bus signal through a current limited, wave-shaping low-side driver with control as outlined by the LIN Physical Layer Specification Revision 2.1. The receiver converts the data stream from the bus and outputs it to RXD.

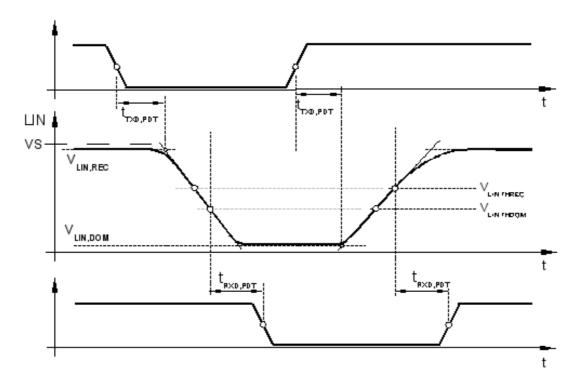


Fig. 15: LIN transceiver physical layer timing

The LIN transceiver can handle a bus voltage swing from +40V down to ground and survives -27V. The device also prevents back feed current through the LIN pin to the supply pin in case of a ground shift / loss or supply voltage disconnection.

In sleep mode the LIN block requires a very low quiescent current by using a special wake up comparator allowing the remote wakeup via the LIN bus. The sleep mode can be activated during recessive or dominant level of LIN bus line.

PRODUCTION DATA - Mar 7, 2016

5.6.2 LIN Flash Mode

A Flash mode allows an increasing of the transmit baud rate up to 115kBds and the receiver baud rate up to 250kBds. The feature is configured in register LINx_CFG.

5.6.3 LIN Wake Up

The device can be woken up remotely using corresponding pin **LINx**. The wake up capability can be switched on in corresponding register LINx_CFG. In state FAILSAFE this feature is enabled regardless of configuration.

When a wake up is recognized, the corresponding flag in register WU_SRC is set.

The device supports two different behaviours.

- 1. A falling edge at pin **LIN** followed by a dominant bus level $V_{\text{LIN},\text{DOM}}$ maintained for a time period $t_{\text{LIN},\text{WU}}$ results in a remote wake up request.
- 2. A falling edge at pin **LIN** followed by a dominant bus level $V_{\text{LIN},DOM}$ maintained for a time period $t_{\text{LIN},WU}$, followed by a rising edge results in a remote wake up request.

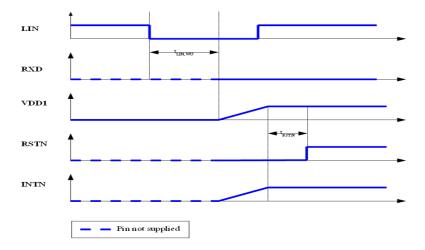


Fig. 16: LIN wake up in mode SLEEP

PRODUCTION DATA - Mar 7, 2016

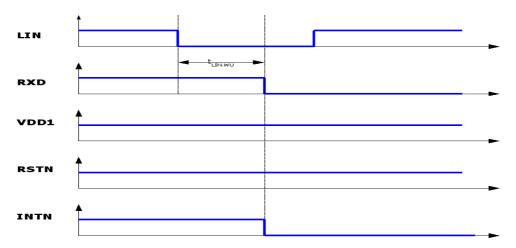


Fig. 17: LIN wake up in mode INIT

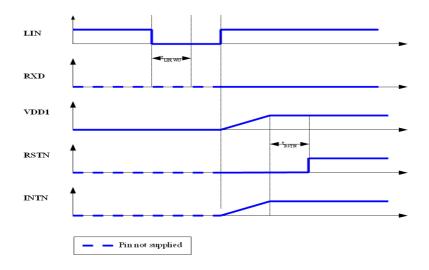


Fig. 18: LIN wake up at rising edge in mode SLEEP

PRODUCTION DATA - Mar 7, 2016

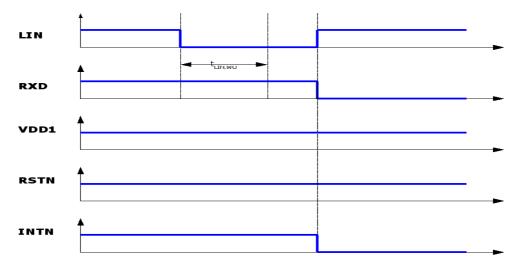


Fig. 19: LIN wake up at rising edge in mode INIT

5.6.4 LIN Failure detection and recovery

All local or bus failures are signaled in register LINx_STAT.

There are two possibilities to recover the normal operation after a failure:

- · Sending two SPI commands for LIN Normal Mode, first disable receiver, second enable receiver
- If RXD is dominant while TXD is recessive since LIN receives dominant bus levels again without driving the bus dominant by itself

TXD Dominant clamping failure

This failure can only be detected if the LINx transmitter is enabled, e.g. if bit TR in register LINx_CFG is set to high. If **TXDx** is clamped dominant for longer than $t_{\text{LIN,TXD,DOM}}$ the transmitter is disabled and a failure flag is set.

RXD dominant clamping failure

This failure can be detected if the receiver is enabled, e.g. if bit TR in register LINx_CFG is set. If **RXDx** is clamped to dominant level for 4 consecutive LINx cycles the transmitter is disabled and a failure flag is set.

RXD recessive clamping failure

This failure can be detected if the receiver is enabled, e.g. bit TR in register LINx_CFG is set. If **RXDx** is clamped to recessive level for 4 consecutive **LINx** cycles the transmitter is disabled and a failure flag is set.

BUS dominant clamping failure

This failure can be detected if the receiver is enabled, e.g. if bit TR in register LINx_CFG is set. If **LINx** is clamped to low for longer than $t_{\text{LIN,BUS,DOM}}$ a failure flag is set. The transmitter is not disabled.

PRODUCTION DATA - Mar 7, 2016

OT failure

If OT occurs transmitter is disabled and a failure flag is set. The transmitter is enabled if the temperature falls below its threshold and if the conditions for the failure recovery are present.

TXD to RXD clamping failure

This failure can only be detected if the transmitter is enabled. Pin **TXDLINx** is set to low that LINx becomes dominant. Afterwards pin **RXDLINx** is set to low too controlled by the receiver. In case of error c52ondition present pin **TXDLINx** can not be released to high because the driver of **RXDLINx** is much stronger. If **TXDLINx** is clamped dominant for longer than t_{LIN,TXD,DOM} the transmitter is disabled and a failure flag is set.

5.6.5 LIN Configuration

All configuration registers are writeable in state NORMAL only.

Register Name	Address	Description			
LIN_CFG	0x06	Shortcut to LIN1-4 TR and RC configuration bits			
LIN1_CFG	0x20	Configuration register for LIN1			
LIN_INT	0x21	LIN interrupt register			
LIN1_STAT	0x22	Status register for LIN1			
LIN2_CFG	0x24	Configuration register for LIN2			
LIN2_STAT	0x26	tatus register for LIN2			
LIN3_CFG	0x28	Configuration register for LIN3			
LIN3_STAT	0x2A	Status register for LIN3			
LIN4_CFG	0x2C	Configuration register for LIN4			
LIN4_STAT	0x2E	Status register for LIN4			

Table 55: LIN RegisterTable

Register LIN_INT (0x21)

rtegister Ent_itt	(0,21)									
	MSB							LSB		
Content	LIN4	LIN3	LIN2	LIN1	-	-	-	-		
Reset value	0	0	0	0	0	0	0	0		
Access	R	R R R R R								
Bit Description	LIN4 : 1	LIN4: 1 LIN4 is reason for interrupt								
	0 LIN4 is	0 LIN4 is not reason for interrupt								
	LIN3 : 1	LIN3: 1 LIN3 is reason for interrupt								
	0 LIN3 is	not reason	n for interrup	ot						
	LIN2 : 1	LIN2 is rea	son for inte	rrupt						
	0 LIN2 is	0 LIN2 is not reason for interrupt								
	LIN1 : 1	LIN1 : 1 LIN1 is reason for interrupt								
	0 LIN1 is	not reason	n for interrup	ot						

Table 56: LIN interrupt register

PRODUCTION DATA - Mar 7, 2016

Register LIN1_CFG (0x20)

	MSB							LSB
Content	-	FAILINT	FLASH	WUINT	WUCFG	WU	TR	RC
Reset value	0	0	0	0	1	1	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit Description

FAILINT:

- 1...Interrupt enabled for LIN failures, could only be set if RC is set. This is locked by hardware.
- 0...Interrupt disabled for LIN failures

FLASH: The FLASH mode deactivates filtering and provides a baud rate of up to 125kBaud for transmitting and 250kBaud for receiving.

- 1...Flash mode enabled
- 0...Flash mode disabled

WUINT:

- 1...Interrupt enabled if WU is detected
- Interrupt disabled if WU is detected

WUCFG:

- 1... Wake up is performed with next rising edge after LIN wake up debounce time
- 0.. Wake up is performed after LIN wake up debounce time

WU:

- 1...Wake up capability enabled, could only be set if RC and TR are not set. This is locked by hardware.
- 0...Wake up capability disabled

TR

- 1...Transmitter enabled, RC is enabled automatically, WU is cleared
- 0...Transmitter disabled

RC:

- 1...receiver enabled, read bus only, WU is cleared
- 0...receiver disabled

Table 57: Configuration register for LIN1

PRODUCTION DATA - Mar 7, 2016

Register LIN1_STAT (0x22)

	MSB							LSB		
Content	-	Bus short	TXDDOM	BUSDOM	RXDREC	RXDDOM	-	-		
Reset value	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		
Bit Description	Bus short									
	1LIN shor	t circuit dete	ected							
	0LIN shor	t circuit not	detected							
	TXDDOM:									
	1TXD per	1TXD permanent dominant clamping timeout exceeded								
	0TXD per	manent don	ninant clamp	ing timeout	not exceede	d				
	BUSDOM:									
	1LIN pern	nanent domi	nant clampi	ng timeout e	xceeded					
	0LIN pern	nanent domi	nant clampi	ng timeout n	ot exceeded					
	RXDREC :									
	1RXD per	manent rece	essive clamp	oing timeout	exceeded					
	0RXD permanent recessive clamping timeout not exceeded									
	RXDDOM:									
	1RXD permanent dominant clamping timeout exceeded									
	0RXD per	rmanent don	ninant clamp	ing timeout	not exceede	d				

Table 58: Status register for LIN1

PRODUCTION DATA - Mar 7, 2016

Register LIN2 CFG (0x24)

	MSB							LSB
Content	-	FAILINT	FLASH	WUINT	WUCFG	WU	TR	RC
Reset value	0	0	0	0	1	1	0	0
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit Description

FAILINT:

- 1...Interrupt enabled for LIN failures, could only be set if RC is set. This is locked by hardware.
- 0...Interrupt disabled for LIN failures

FLASH: The FLASH mode deactivates filtering and provides a baud rate of up to 125kBaud for transmitting and 250kBaud for receiving.

- 1...Flash mode enabled
- 0...Flash mode disabled

WUINT:

- 1...Interrupt enabled if WU is detected
- Interrupt disabled if WU is detected

WUCFG:

- 1... Wake up is performed with next rising edge after LIN wake up debounce time
- 0.. Wake up is performed after LIN wake up debounce time

WU:

- 1...Wake up capability enabled, could only be set if RC and TR are not set. This is locked by hardware.
- 0...Wake up capability disabled

TR

- 1...Transmitter enabled, RC is enabled automatically, WU is cleared
- 0...Transmitter disabled

RC:

- 1...receiver enabled, read bus only, WU is cleared
- 0...receiver disabled

Table 59: Configuration register for LIN2

PRODUCTION DATA - Mar 7, 2016

Register LIN2_STAT (0x26)

	MSB							LSB		
Content	-	Bus short	TXDDOM	BUSDOM	RXDREC	RXDDOM	-	-		
Reset value	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		
Bit Description	Bus short									
	1LIN shor	t circuit dete	ected							
	0LIN shor	t circuit not	detected							
	TXDDOM:									
	1TXD per	1TXD permanent dominant clamping timeout exceeded								
	0TXD per	manent don	ninant clamp	ing timeout	not exceede	d				
	BUSDOM:									
	1LIN pern	nanent domi	nant clampi	ng timeout e	xceeded					
	0LIN pern	nanent domi	nant clampi	ng timeout n	ot exceeded					
	RXDREC :									
	1RXD per	manent rece	essive clamp	oing timeout	exceeded					
	0RXD permanent recessive clamping timeout not exceeded									
	RXDDOM:									
	1RXD permanent dominant clamping timeout exceeded									
	0RXD per	rmanent don	ninant clamp	ing timeout	not exceede	d				

Table 60: Status register for LIN2

PRODUCTION DATA - Mar 7, 2016

Register LIN3_CFG (0x28) - should not be used with E521.02 and E521.12

	MSB							LSB		
Content	-	FAILINT	FLASH	WUINT	WUCFG	WU	TR	RC		
Reset value	0	0	0	0	1	1	0	0		
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Bit Description	FAILINT:									
	1Interrup	t enabled fo	r LIN failures	s, could only	be set if RC	is set. Th	is is locked by	hardware.		
	0Interrup	t disabled fo	r LIN failures	3						
			node deactiv aud for rece		and provid	es a baud	rate of up to 1	25kBaud for		
	1Flash m	ode enabled	k							
	0Flash m	Flash mode disabled								
	WUINT :									
	1Interrup	t enabled if \	WU is detect	ted						
	0Interrup	t disabled if	WU is detec	ted						
	WUCFG:									
	1 Wake ι	up is perform	ned with next	t rising edge	after LIN w	ake up del	oounce time			
	0 Wake u	p is perform	ed after LIN	wake up de	bounce time)				
	WU:									
	1Wake u hardware.	p capability	enabled, cou	ıld only be s	et if RC and	TR are no	ot set. This is lo	ocked by		
	0Wake u	0Wake up capability disabled								
	TR:	TR:								
	1Transm	1Transmitter enabled, RC is enabled automatically, WU is cleared								
	0Transm	0Transmitter disabled								
	RC:	RC:								
	1receiver	enabled, re	ad bus only,	WU is clear	red					

Table 61: Configuration register for LIN3

0...receiver disabled

PRODUCTION DATA - Mar 7, 2016

Register LIN3_STAT (0x2A) - should not be used with E521.02 and E521.12

	MSB							LSB	
Content	-	Bus short	TXDDOM	BUSDOM	RXDREC	RXDDOM	-	-	
Reset value	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit Description	Bus short	:							
	1LIN shor	t circuit dete	ected						
	0LIN shor	t circuit not	detected						
	TXDDOM:								
	1TXD per	1TXD permanent dominant clamping timeout exceeded							
	0TXD per	0TXD permanent dominant clamping timeout not exceeded							
	BUSDOM:								
	1LIN pern	nanent dom	inant clampi	ng timeout e	xceeded				
	0LIN pern	nanent dom	inant clampi	ng timeout n	ot exceeded	l			
	RXDREC :								
	1RXD per	rmanent rec	essive clam	oing timeout	exceeded				
	0RXD permanent recessive clamping timeout not exceeded								
	RXDDOM:								
	1RXD permanent dominant clamping timeout exceeded								
	0RXD per	rmanent dor	ninant clamp	ing timeout	not exceede	ed			

Table 62: Status register for LIN3

PRODUCTION DATA - Mar 7, 2016

Register LIN4_CFG (0x2C) - should not be used with E521.02, E521.03, E521.12 and E521.13

	MSB							LSB		
Content	-	FAILINT	FLASH	WUINT	WUCFG	WU	TR	RC		
Reset value	0	0	0	0	1	1	0	0		
Access	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Bit Description	FAILINT:									
	1Interrupt	enabled for	LIN failures	, could only	be set if RC	is set. This i	is locked by l	hardware.		
	0Interrupt	disabled for	r LIN failures	3						
			ode deactive		and provide	es a baud rat	e of up to 12	5kBaud for		
	1Flash m	ode enabled								
	0Flash m	ode disabled	t							
	WUINT :									
	1Interrupt	enabled if V	VU is detect	ed						
	0Interrupt	disabled if \	WU is detec	ted						
	WUCFG:									
	1 Wake u	p is perform	ed with next	rising edge	after LIN wa	ake up deboi	unce time			
	0 Wake up	o is performe	ed after LIN	wake up dek	ounce time					
	WU:									
	1Wake up hardware.	capability e	enabled, cou	ld only be se	et if RC and	TR are not s	set. This is lo	cked by		
	0Wake up	capability o	disabled							
	TR:	TR:								
	1Transmitter enabled, RC is enabled automatically, WU is cleared									
	0Transmitter disabled									
	RC:									
	1receiver	enabled, rea	ad bus only,	WU is clear	ed					
	0receiver	disabled								

Table 63: Configuration register for LIN4

PRODUCTION DATA - Mar 7, 2016

Register LIN4_STAT (0x2E) - should not be used with E521.02, E521.03, E521.12 and E521.13

	MSB							LSB
Content	-	Bus short	TXDDOM	BUSDOM	RXDREC	RXDDOM	-	-
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R
Bit Description	Bus short							
	1LIN shor	t circuit dete	ected					
	0LIN shor	t circuit not	detected					
	TXDDOM:							
	1TXD per	manent don	ninant clamp	ing timeout	exceeded			
	0TXD per	manent don	ninant clamp	ing timeout	not exceede	d		
	BUSDOM:							
	1LIN pern	nanent domi	nant clampi	ng timeout e	xceeded			
	0LIN pern	nanent domi	nant clampi	ng timeout n	ot exceeded			
	RXDREC :							
	1RXD per	1RXD permanent recessive clamping timeout exceeded						
	0RXD permanent recessive clamping timeout not exceeded							
	RXDDOM:							
	1RXD permanent dominant clamping timeout exceeded							
	0RXD per	rmanent don	ninant clamp	ing timeout	not exceede	d		

Table 64: Status register for LIN4

Register LIN_CFG (0x06)

	MSB							LSB	
Content	TR4	RC4	TR3	RC3	TR2	RC2	TR1	RC1	
Reset value	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit Description	TR4 : Sam	ne as LIN4_C	FG.TR. Sho	uld set to 0	with E521.02	2, E521.03, E	521.12 and	E521.13	
	RC4 : Sam	RC4: Same as LIN4_CFG.RC. Should set to 0 with E521.02, E521.03, E521.12 and E521.13							
	TR3 : Sam	TR3: Same as LIN3_CFG.TR. Should set to 0 with E521.02 and E521.12							
	RC3 : Sam	RC3: Same as LIN3_CFG.RC. Should set to 0 with E521.02 and E521.12							
	TR2 : Sam	TR2 : Same as LIN2_CFG.TR							
	RC2 : Sam	RC2 : Same as LIN2_CFG.RC							
	TR1 : Sam	TR1 : Same as LIN1_CFG.TR							
l	RC1 : Sam	ne as LIN1_C	FG.RC						

Table 65: Shortcut to LIN1-4 TR and RC configuration bits

PRODUCTION DATA - Mar 7, 2016

5.7 HS-CAN Transceiver; pins CANH, CANL, RXDCAN, TXDCAN, VDDCAN

The HS-CAN transceiver is compatible to ISO 11898-5.

CANH and CANL interface the CAN protocol controller to HS-CAN physical layer wires. Data rate can be selected up to 1MegBaud.

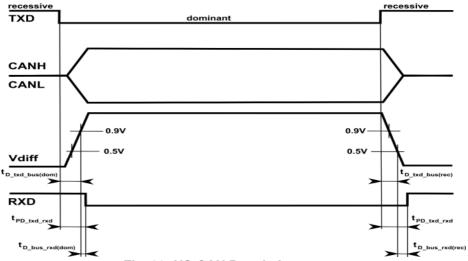


Fig. 20: HS-CAN Bus timing

5.7.1 CAN Wake up

The device is capable detecting wake up pattern at the CAN bus if configured. A wake up pattern ideally consists of four consecutive symbols dominant, recessive, dominant and recessive. The dominant bus states have to be longer than $t_{\text{CAN,WAKE_BUS_REC}}$. The pattern must be applied within t_{WAKE2} .

When the wake up pattern is recognized, the corresponding flag in register WU_SRC is set.Pin **INTN** is set low if bit CAN_CFG.WUINT was set high. Pin **RXDCAN** is set to low until bit CAN_CFG.RC is set high or register WU_SRC is read.

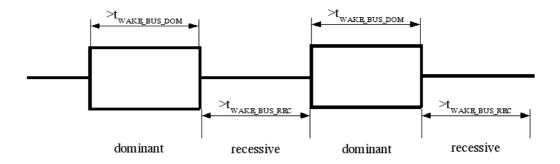


Fig. 21: Remote Wakeup Pattern

PRODUCTION DATA - Mar 7, 2016

5.7.2 CAN Failure detection and recovery

All CAN related local or bus failures are signaled in register CAN_STAT.

There are two possibilities to recover the normal operation after a failure:

- Sending the SPI command for CAN Normal Operation Mode
- If RXD is dominant while TXD is recessive

TXD Dominant clamping failure

This failure can only be detected if the transmitter is enabled, e.g. bit TR in register CAN_CFG is set to high. If **TXD-CAN** is clamped dominant for longer than t_{CAN,TXD,DOM} the transmitter is disabled and a failure flag is set.

RXD dominant clamping failure

This failure can be detected if the receiver is enabled, e.g. bit RC or TR in register CAN_CFG is set. If **RXDCAN** is clamped low for 4 consecutive **CAN** cycles the transmitter is disabled and a failure flag is set.

RXD recessive clamping failure

This failure can be detected if the receiver is enabled, e.g. bit RC or TR in register CAN_CFG is set. If **RXDCAN** is clamped recessive level for 4 consecutive **CAN** cycles the transmitter is disabled and a failure flag is set.

BUS dominant clamping failure

This failure can be detected if the receiver is enabled, e.g. bit RC or TR in register CAN_CFG is set. If CAN is clamped dominant for longer than t_{CAN,BUS,DOM} a failure flag is set. The transmitter is not disabled.

TXD to RXD clamping failure

This failure can only be detected if the transmitter is enabled. Pin **TXDCAN** is set to low that CAN becomes dominant. Afterwards pin **RXDCAN** is set to low too controlled by the receiver. In case of error condition present pin **TXDCAN** can not be released to high because the driver of **RXDCAN** is much stronger. If **TXDCAN** is clamped dominant for longer than $t_{CAN,TXD,DOM}$ the transmitter is disabled and a failure flag is set.

OT failure

If OT occurs the transmitter is disabled and a failure flag is set. The transmitter is enabled again if the temperature falls below its threshold and the conditions for the failure recovery are present.

CANH to GND clamping failure

This failure can be detected if the transmitter is enabled, e.g. bit TR in register CAN_CFG is set. If the short is present for 4 consecutive **CAN** cycles of at least tbus, FAIL a failure flag is set. The transmitter is not disabled. The failure is cleared if CANH is not clamped to GND anymore.

PRODUCTION DATA - Mar 7, 2016

CANL to GND clamping failure

This failure can be detected if the transmitter is enabled, e.g. bit TR in register CAN_CFG is set. If the short is present for 4 consecutive **CAN** cycles of at least tbus, FAIL a failure flag is set. The transmitter is not disabled. The failure is cleared if CANH is not clamped to GND anymore.

CANH to VDDCAN/VS clamping failure

This failure can be detected if the transmitter is enabled, e.g. bit TR in register CAN_CFG is set. If the short is present for 4 consecutive **CAN** cycles of at least tbus, FAIL a failure flag is set. The transmitter is not disabled. The failure is cleared if CANH is not clamped to **VDDCAN/VS** anymore.

CANL to VCC/VS clamping failure

This failure can be detected if the transmitter is enabled, e.g. bit RC or TR in register CAN_CFG is set. If the short is present for 4 consecutive **CAN** cycles of at least tbus, FAIL a failure flag is set. The transmitter is not disabled. The failure is cleared if CANH is not clamped to **VDDCAN/VS** anymore.

5.7.3 CAN Configuration

Register Name	Address	Description
CAN_CFG	0x30	Configuration register for CAN
CAN_STAT	0x32	Status register for CAN

Table 66: CAN RegisterTable

Register CAN CFG (0x30)

	MSB							LSB
Content	-	FAILINT	-	WUINT	BF	WU	TR	RC
Reset value	0	0	0	1	0	1	0	0
Access	R	R/W	R	R/W	R/W	R/W	R/W	R/W
Bit Description	FAILINTEN: 1interrupt enabled for CAN failures							
	0interrupt disabled for CAN failures							
	WUINT: 1interrupt enabled if WU is detected							
	0interrupt disabled if WU is detected							
	BF: 1 CAN bus short failure detection enabled 0 CAN bus short failure detection disabled							
	WU : 1wa	ıke up capab	ility enabled	, only valid i	f RC and TR	are 0		
	0wake up	capability d	sabled					
	TR: 1trar	nsmitter enal	oled, RC is e	nabled auto	matically, W	U is masked	d	
	0transmitter disabled							
	RC: 1receiver enabled, listen only, WU is masked							
	0receiver	disabled						

Table 67: Configuration register for CAN

PRODUCTION DATA - Mar 7, 2016

Register CAN_STAT (0x32)

	MSB							LSB	
Content	CHVCC	CHGND	CLVCC	CLGND	RXDREC	RXDDOM	BUSDOM	TXDDOM	
Reset value	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit Description	CHVCC: 1 CANH to VCC or VS clamping detected								
	0 CANH to VCC or VS clamping not detected								
	CHGND : 1 CANH to GND clamping detected								
	0 CANH to GND clamping not detected								
	CLVCC : 1 CANL to VCC or VS clamping detected								
	0 CANL to VCC or VS clamping not detected								
	CLGND: 1 CANL to GND clamping detected								
	0 CANL to	GND clamp	ing not dete	cted					
	RXDREC :	1 RXD per	manent rece	ssive clamp	ing timeout	exceeded			
	0 RXD per	manent rec	essive clamp	ing timeout	not exceede	ed			
	RXDDOM:	1 RXD per	manent don	ninant clamp	ing timeout	exceeded			
	0 RXD per	rmanent don	ninant clamp	ing timeout	not exceede	d			
	BUSDOM:	1 CAN per	manent dom	ninant clamp	ing timeout	exceeded			
	0 CAN permanent dominant clamping timeout not exceeded								
	TXDDOM: 1 TXD permanent dominant clamping timeout exceeded								
	0 TXD per	manent don	ninant clamp	ing timeout	not exceede	d			

Table 68: Status register for CAN

PRODUCTION DATA - Mar 7, 2016

5.8 Limp Home support; pin FSON

SBC features limp home support using pin FSON.

Activation of **FSON** is not linked to SBC mode FAILSAFE only. Please check sections 5.8.1 and 5.2 for details.

In order to activate output pin **FSON** using SPI command. Both registers FSON_CFG1 and FSON_CFG2 need to be accessed within one watchdog period for system safety reasons. If contents of registers is equal pin FSON is activated when watchdog is triggered. Otherwise no change is made.

Register Name	Address	Description
FSON_STAT	0x02	FSON status register.
FSON_CFG1	0x1B	FSON configuration register 1
FSON_CFG2	0x1C	FSON configuration register 2

Table 69: FSON RegisterTable

Register FSON CFG1 (0x1B)

	MSB							LSB	
Content	CLAMP	-	-	SPI	-	-	-	-	
Reset value	1	0	0	0	0	0	0	0	
Access	R/W	R	R	R/W	R	R	R	R	
Bit Description	cription CLAMP: 1 External reset shorter than two RSTN, TO, GND will not lead to FSON set								
	0 External reset leads to FSON set immediately								
	SPI: 1 Activate FSON								
	0 Deactiva	0 Deactivate FSON							

Table 70: FSON configuration register 1

Register FSON_CFG2 (0x1C)

	MSB							LSB	
Content	-	-	-	-	SPI	-	-	CLAMP	
Reset value	0	0	0	0	0	0	0	1	
Access	R	R	R	R	R/W	R	R	R/W	
Bit Description	on SPI: 1 Activate FSON								
	0 Deactivate FSON								
	CLAMP: 1 External reset shorter than twdrstn,to,GND will not lead to FSON set								
	0 Externa	reset leads	to FSON se	t immediatel	у				

Table 71: FSON configuration register 2

PRODUCTION DATA - Mar 7, 2016

Register FSON_STAT (0x02)

	MSB							LSB	
Content	-	VDD1UV	WD	ОТ	INITTO	RSTNSC	FSON_SPI	FSON_INT	
Reset value	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit Description	VDD1UV: 1VDD1 under voltage detected								
	0 VDD1 under voltage not detected								
	WD : 1Watchdog trigger failure detected								
	0Watchdog trigger failure not detected								
	OT: 1Over temperature detected								
	0Over temperature not detected								
	INITTO: 1	Timeout in r	node INIT d	etected					
	0Timeout	n mode INI7	not detecte	d					
	RSTNSC:	1 RSTN cla	mped low ex	ternally					
	0 RSTN no	t clamped lo	w externally						
	FSON_SPI	: 1 FSON a	ctivated via	SPI					
	0 FSON not activated via SPI								
	FSON_INT: 1FSON activated due to FAILSAFE condition detected								
	0 FSON no	t activated c	lue to no FA	ILSAFE con	dition detect	ed			

Table 72: FSON status register.

PRODUCTION DATA - Mar 7, 2016

5.8.1 Activation of FSON

FSON is activated in following cases:

- 1. SBC init mode not left within time t_{TO.INIT}
- 2. VDD1 time out t_{TO,VDD1}
- 3. Activated by SPI command accessing FSON_CFG1.FSON_SPI and FSON_CFG2.FSON_SPI within one watch-dog cycle
- 4. Permanent clamping of RSTN to GND
- 5. Permanent clamping of RSTN to VDD1
- 6. External Reset on RSTN (partly configurable with SBC_CFG.CLAMP)
- 7. Over temperature
- 8. Watchdog failure

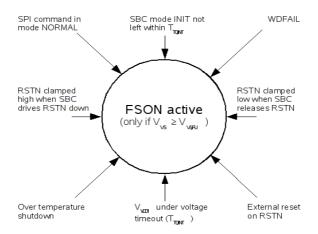


Fig. 22: Activation of FSON

Activation sources for limp home output FSON

5.8.2 Deactivation of FSON

FSON is deactivated in following cases:

- 1. μ C sent deactivation command via SPI AND SBC is in state NORMAL AND μ C sent correct watchdog trigger
- 2. VS falls below VS_{VS,PD}

PRODUCTION DATA - Mar 7, 2016

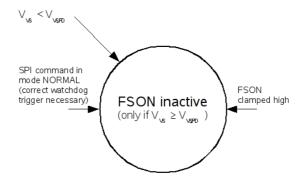


Fig. 23: Deactivation of FSON

Deactivation sources for limp home output FSON

5.9 Interrupt; pin INTN

The interrupt pin is driven low if the following interrupt sources/conditions occur:

- wake up event at CAN, LIN or WK, cyclic wake up
- · over temperature warning
- · over temperature shut down
- under voltage at VDD1 or VDD2
- · communication failures at CAN or LIN

Interrupts can be enabled in configuration registers of the corresponding modules.

For over temperature and under voltage the appearance and disappearance is signaled via an interrupt. Therefore after SPI reading of interrupt source pin **INTN** is not blocked if the interrupt condition is still active.

In order to evaluate detailed reason for interrupt read corresponding status registers.

Register Name	Address	Description
INT	0x03	Interrupt status register
VDD_STAT	0x1A	VDD1, VDD2 and VDDCAN status information.

Table 73: INTN RegisterTable

PRODUCTION DATA - Mar 7, 2016

Register INT (0x03)

	MSB							LSB	
Content	CAN	LIN	WAKE	VDDx	OTWARN	ОТ	FSM/SPI	-	
Reset value	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	
Bit Description	CAN: 1 HS-CAN interface is reason for interrupt LIN: 1 At least one of the LIN interfaces is reason for interrupt WAKE: 1 Wake up event is reason for interrupt VDDx: 1 Under voltage condition is reason for interrupt OTWARN: 1 Over temperature warning level crossing is reason for interrupt								
	OT : 1 Over temperature shutdown level crossing is reason for interrupt								
	FSM/SPI:	1 FSM or S	SPI are reaso	ons for interi	rupt				

Table 74: Interrupt status register

Register VDD STAT (0x1A)

	MSB							LSB		
Content	VDD2 ON	VDD2 ENA PAD	VDD2OC	VDD2 UV	-	VDDCAN UV	VDD1 UV	-		
Reset value	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		
Bit Description	VDD2 ON:	VDD2 ON : 1Linear voltage regulator VDD2 enabled								
	0Linear vo	0Linear voltage regulator VDD2 disabled								
	VDD2 ENA PAD : 1ENVDD2 set to logic level 1									
	0 ENVDD2 set to logic level 0									
	VDD2OC : 1VDD2 over current detected									
	0 VDD2 ov	er current no	ot detected							
	VDD2 UV :	1 VDD2 un	der voltage	detected						
	0 VDD2 uı	nder voltage	not detected	d						
	VDDCAN UV: 1 VDDCAN under voltage detected. If CAN is not activated, this bit is high without generating a interrupt in this case.									
	0 VDDCAN under voltage not detected									
	VDD1 UV : 1 VDD1 under voltage detected									
	0 VDD1 uı	nder voltage	not detected	d						

Table 75: VDD1, VDD2 and VDDCAN status information.

PRODUCTION DATA - Mar 7, 2016

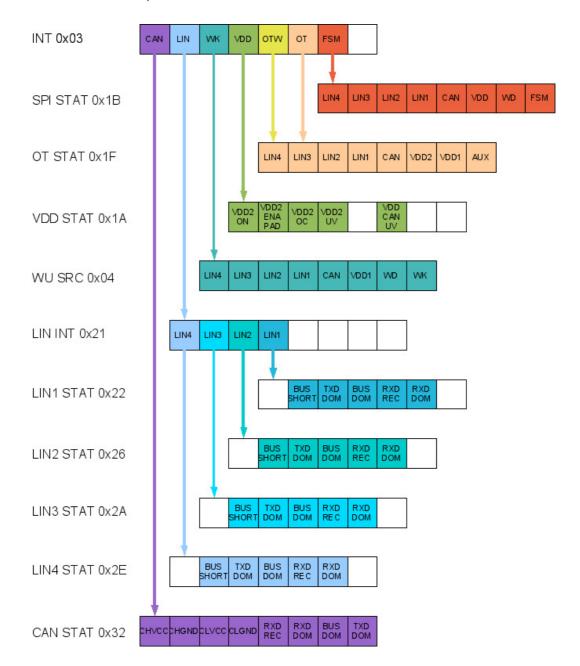


Fig. 24: Interrupt and status register dependency

In case of interrupt detailed information can be read from device in order to evaluate reason for interrupt.

PRODUCTION DATA - Mar 7, 2016

5.10 DCDC Buck converter; pins VIN, VDD1, VDD1SENSE, LXT, PGND

Register Name	Address	Description
VDD1_CFG		VDD1 configuration register Writing register in SBC state FAILSAFE is not allowed

Table 76: VDD1 RegisterTable

Register VDD1_CFG (0x14)

	MSB							LSB		
Content	t1_1	t1_0	IDLE	-	-	STOP	THR_1	THR_0		
Reset value	0	1	1	0	0	0	0	0		
Access	R/W	R/W	R/W	R	R	R	R/W	R/W		
Bit Description	t1_1 : config	guration of ti	me t1 for SE	BC mode ST	OP observa	tion				
	t1_0 : confi	guration of ti	me t1 for SE	BC mode ST	OP observa	tion				
	005ms									
	0110ms									
	1020ms									
	1140ms									
	IDLE :									
	1 activate IDLE prevention									
	0 deactivate IDLE prevention									
	IDLE detected:									
	• DCDC on									
	 DCDC rep 	orts IDLE								
	• V(VDD1) <	< typ. 0.98*V	DD1 _{nom}							
	STOP : sel	ection of be	haviour in	state stop						
	1in case o	f high currer	it consumpti	on state rem	ains in STO	P				
	0in case o	f high currer	it consumpti	on state is c	hanged to N	ORMAL				
	THR_1 : se	lection of res	et threshold	I						
	THR_0 : se	lection of res	et threshold	l						
	$00V_{\text{TH1,VDD}}$	1,RSTN								
	01V _{TH2,VDD1,RSTN}									
	10V _{TH3,VDD1,RSTN}									
	11V _{TH4,VDD}	1,RSTN								

Table 77: VDD1 configuration register

Remark: Register Writing register in SBC state FAILSAFE is not allowed

PRODUCTION DATA - Mar 7, 2016

5.10.1 General Description

The DCDC buck converter is a fixed output voltage step-down converter intended for automotive and general battery driven applications, featuring open loop stability and short current limitation for the integrated driver transistor.

The device is offered in a 5V output voltage version providing up to 500mA output current.

The modulation scheme is based on **P**ulse **F**requency **M**odulation. For operation a clock signal is not needed, providing minimum ON/OFF time regulation for the internal switch. Internal current measurement allows to reduce the ON time below the given nominal ON time to prevent excessive current flow in the inductor.

5.10.2 Pulse Frequency Modulated Converter

The following sub chapters provide descriptions of the blocks implemented to control the output voltage. The regulation principle provides an adaptive operation frequency of typ. up to 1.3MHz, depending on $V_{\text{VID}1}$ voltage ratio and load conditions.

PFM Control Logic

PFM control logic generates the timings necessary to control the converter based on a combination of output voltage, temperature and measured switch current. It provides adaptive frequency, depending on input voltage to output voltage ratio in the range of 0Hz up to typ. >1.3MHz.

Internal Power Switch

The internal highside power switch connects **VIN** and **LXT** controlled by PFM control logic.

The highside power switch current is limited providing saturation protection to the inductor and to prevent over current damage to the application. It allows startup of the converter without soft-start measures.

5.10.3 Application / Implementation Hints

Output voltage ripple is strongly dependent on peripheral elements chosen (L_{LXT} and $C_{VDD1SENSE}$) and their parasitic behavior. ESR of output capacitance $C_{VDD1SENSE}$ must be suitable to ensure a small ripple for proper regulation (see recommended operating conditions). The ripple voltage can be calculated by

 $V_{\text{RIPPLE,VDD1SENSE}} = R_{\text{ESR,COUT}} * I_{\text{RIPPLE,L LXT}}$

The DC resistance of L_{LXT} reduces the efficiency but does not affect the output voltage ripple. (Though a high resistance can generate a significant thermal power within the inductor). Furthermore higher DC resistance will also increase the minimum input voltage requirements for nominal output voltage.

The free-wheeling diode must have a low forward voltage as well as a low reverse recovery time. Parasitic capacitance of this diode decreases the overall efficiency and causes current spikes when the driver turns on (consider this behaviour for EMI).

For low power requirements on VDD1 consider the leakage of the freewheeling diode at nominal converter output voltage. Leakage current will contribute to the overall output current of the converter.

A reverse polarity diode for VIN is recommended. In EMC sensitive environments additional decoupling measures at VIN are recommended.

PRODUCTION DATA - Mar 7, 2016

5.10.4 VDD1 under-voltage monitor

If $VDD1 < V_{THx,VDD1_f,RSTN}$ a reset is generated and pin RSTN is set to L. SBC enters state RESTART or FAILSAFE depending on SBC_CFG.CFG. If $VDD1 > V_{THx,VDD1,RSTN}$ reset will be enlarged and RSTN will be held L for $t_{RSTN,VDD1}$. After that RSTN is set to H.

To prevent high or short current events **VDD1** is monitored. If **VDD1** < $V_{THx,VDD1,RSTN}$ timeout $t_{TO,VDD1}$ is started. If timeout exceeds SBC is set to state FAILSAFE and regulator is switched off. If **VDD1** > $V_{THx,VDD1,RSTN}$ timeout is reset.

Timeout is enabled only if **VS** > V_{ON-OFF-VS}. Otherwise **VDD1** will not reach its output value.

5.11 Low drop regulator; pins VDD2, ENVDD2

The on chip low drop voltage regulator (LDO) provides a voltage of typically 5.0V at pin **VDD2**. LDO can be active in SBC operating states NORMAL, STOP, SLEEP, RESTART or FAILSAFE. It can be activated via SPI or via pin **ENVDD2**. **VS** related pin **ENVDD2** has higher priority. In order to save system current **ENVDD2** does not implement pull down functionality.

If the external pin **ENVDD2** is low the SPI register determines status of LDO. Otherwise if the pin **ENVDD2** is high the LDO is activated independently of the contents of the register VDD2_CFG.ON. In case of external deactivation of **VDD2** using pin **ENVDD2** LDO is switched off as well as SPI register is reset to off state. Register VDD2_CFG can be written in state NORMAL only. It is cleared in state FAILSAFE. The LDO is limited in output current. Current limitation is always activated. Over voltage protection against VS and reverse polarity protection are implemented. An over temperature protection using both warning and shutdown levels is implemented. In case of over temperature detection an interrupt is generated. Voltage supervision including interrupt generation is implemented.

Register Name	Address	Description
VDD2_CFG	0x18	VDD2 configuration register

Table 78: VDD2 RegisterTable

Register VDD2 CFG (0x18)

	MSB							LSB
Content	-	-	-	-	-	-	-	ON
Reset value	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R/W
Bit Description	ON: 1 enables regulator							

Table 79: VDD2 configuration register

PRODUCTION DATA - Mar 7, 2016

5.12 DCDC Boost converter; pins MDRV, ISEN, PGND2

For applications relevant during startup, an optional input voltage boost converter can be added. The boost converter activates if the supply voltage at pin VS falls below the V_{BOOST} level. Then the gate driver sets active level on pin MDRV driving the gate of external power-MOS-switch for either maximum ON-time T_{ONMAX4} or till the current reaches the threshold V_{ISEN} sensing on shunt at pin ISEN. After switching off at pin MDRV the next switch on will be only after expiration minimum OFF-time T_{OFFMIN4} . Each switch on event holds the pin MDRV active at least for the minimum ON-time T_{ONMIN4} regardless of current sense level at pin ISEN. So the boost converter is self oscillating. It can also be deactivated if pin ISEN is not connected to external Rsense and externally pulled up between 2V and VDD1 level.

Booster activation is controlled using SBC CFG.BOOST. In default setup booster set to off.

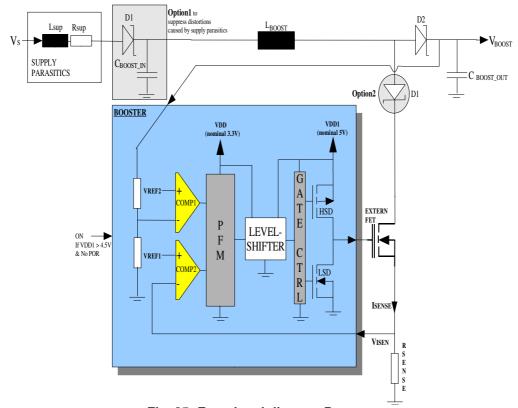


Fig. 25: Functional diagram Booster

PRODUCTION DATA - Mar 7, 2016

6 Register Table

Register Name	Address	Description
SBC CFG	0x01	SBC configuration register.
FSON STAT	0x02	FSON status register.
INT	0x03	Interrupt status register
WU SRC	0x04	Wake up source register. Wake up source is cleared if register is read.
SPI FAIL	0x05	SPI programming failure register. Register is cleared by reading via SPI.
LIN CFG	0x06	Shortcut to LIN1-4 TR and RC configuration bits
WD_CFG	0x08	Current watchdog configuration. Change of configuration has to be performed using WD_CFG1 and WD_CFG2 including correct watchdog trigger afterwards within one watchdog cycle in SBC mode NORMAL
WD CFG1	0x09	Watchdog configuration register 1
WD CFG2	0x0A	Watchdog configuration register 2
WD STAT	0x0B	watchdog status register
WD_PER	0x0C	Current watchdog period. Change of period has to be performed using WD_PER1 and WD_PER2 including correct watchdog trigger afterwards within one watchdog cycle.
WD TRIG	0x0D	watchdoa triaaer reaister
WD PER1	0x0E	Watchdog period register 1
WD PER2	0x0F	Watchdog period register 2.
WK_CFG	0x10	configuration register of pin WK. Register is writeable in SBC state NORMAL only. In SBC states INIT, RESTART or FAILSAFE all bits are set to H.
VDD1_CFG	0x14	VDD1 configuration register. Writing register in SBC state FAILSAFE is not allowed
VDD2 CFG	0x18	VDD2 configuration register
VDD STAT	0x1A	VDD1. VDD2 and VDDCAN status information.
SPI STAT	0x1B	Status register with respect to FSM.
OT STAT	0x1F	Over temperature detection status register.
LIN1 CFG	0x20	Configuration register for LIN1
LIN INT	0x21	LIN interrupt register
LIN1 STAT	0x22	Status register for LIN1
LIN2 CFG	0x24	Configuration register for LIN2
LIN2 STAT	0x26	Status register for LIN2
LIN3 CFG	0x28	Configuration register for LIN3
LIN3 STAT	0x2A	Status register for LIN3
LIN4 CFG	0x2C	Configuration register for LIN4
LIN4 STAT	0x2E	Status register for LIN4
CAN CFG	0x30	Configuration register for CAN
CAN STAT	0x32	Status register for CAN

Table 80: Register Table

PRODUCTION DATA - Mar 7, 2016

7 Applications Information

7.1 Overview

The device E521.02 .. E521.04 is used in application without pre-booster, while E521.12 .. E521.14 supports pre-boost functionality. The following chapters show typical operating circuits of these two use cases.

7.2 Typical Operating Circuit with booster

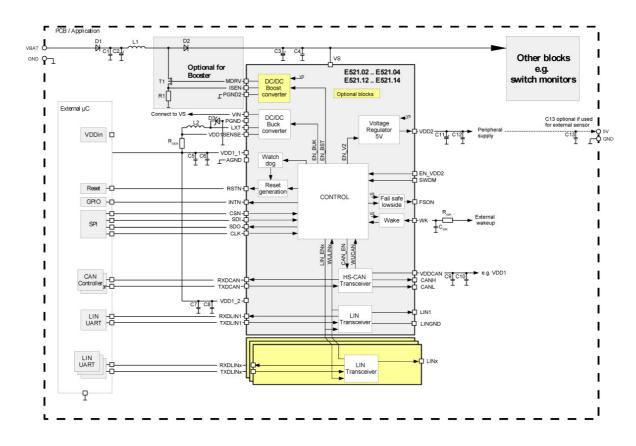


Table 81. External Components

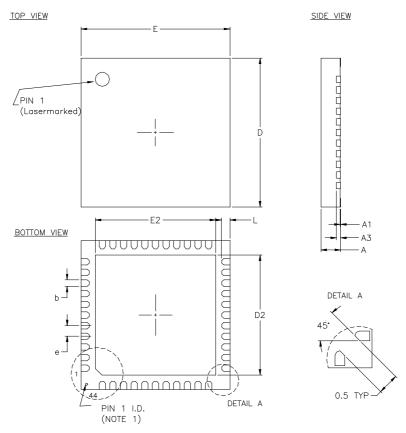
Description	Condition	Symbol	Min	Тур	Max	Unit
Battery supply input pins						
Battery filter capacitor to ground		C ₁		100		nF
Battery buffer capacitor to ground		C_2		47		μF
EMC filter inductor	Saturation current relative to maximum application current I_{VDD1}	L ₁		2.2		μН

PRODUCTION DATA - Mar 7, 2016

Description	Condition	Symbol	Min	Тур	Max	Unit
VS, VIN buffer capacitance to ground	Effective ESR of C_3 , C_4 shall be $< 300 m\Omega$	C ₃	10	22	-	μF
VS, VIN filter capacitance to ground	Effective ESR of C_3 , C_4 shall be $< 300 m\Omega$	C ₄		100		nF
wĸ						
Optional LP filter capacitance for WK		Сwк		22		nF
LP filter resistor for pin WK		R _{wK}	1	3.3	10	kΩ
VDD1						
Inductance at LXT to output voltage	$I_{VDD1} < 500 mA$	L ₂	18	33	82	μH
Serial Resistance of LXT Inductance	$I_{VDD1} < 500 mA$	R _{L2}		0.1	0.6	Ω
Relative Saturation Current of LXT Inductor	Saturation current relative to maximum application current I _{VDD1}	I _{L2,SAT}	130			%
Freewheeling Diode Forward Voltage e.g. MBR	Forward current 1.3 x I(VDD1) T _{AMB} = 25 °C	V_{D2}		0.6	1	V
Reverse Recovery Time of Freewheeling Diode	Forward current 1.3 x I(VDD1) T _{AMB} = 25 °C	t _{D2,rec}		10	25	ns
Peak to peak voltage ripple at VDD1SENSE for regulation, regulation ripple included in 2% tolerance window for VDD1		V _{VDD1} SENSE,RIPP	10		100	mV
VDD1SENSE Decoupling resistor		R _{SER}	50	60	140	mΩ
VDD1_1 external buffer capacitor	Effective ESR of C_5 , C_6 , C_7 , C_8 shall be $< 10 m\Omega$	C ₅		10		μF
VDD1_1 external filter capacitor	Effective ESR of C_5 , C_6 , C_7 , C_8 shall be $< 10 m\Omega$	C ₆		33		nF
VDD1_2 external buffer capacitor	Effective ESR of C_5 , C_6 , C_7 , C_8 shall be $< 10 m\Omega$	C ₇		10		μF
VDD1_2 external filter capacitor	Effective ESR of C_5 , C_6 , C_7 , C_8 shall be $< 10 m\Omega$	C ₈		33		nF
VDDCAN						
VDDCAN external buffer capacitor	ESR < TBD	C ₉		10		μF
VDDCAN external filter capacitor	ESR < TBD	C ₁₀		33		nF

PRODUCTION DATA - Mar 7, 2016

Description	Condition	Symbol	Min	Тур	Max	Unit
VDD2						
External buffer capacitor for VDD2	ESR > 200mΩ	C ₁₁	2.2		22	μF
External filter capacitor	close to pin VDD2	C ₁₂		100		nF
External filter capacitor	close to external connector if used as external sensor sup- ply (global pin)	C ₁₃		4.7		nF
Booster (optional)						
Booster inductance	I _{sat} depends on R _{sense} selection	L ₁		2.2		μH
Booster diode, e.g. SS24		D_2				
Booster input buffer capacitance		C ₂	50	100	-	μF
Booster input filter capacitance		C ₁		TBD		nF
Booster output buffer capacitance	$I_{LOAD_VS} < 600 mA$ ESR < $50 m\Omega$	C ₃	50		-	μF
Booster output filter capacitance		C ₄		TBD		nF
Current sense resistance	I _{sat_Lboost} > 1.8A	R _{1_60}		60		mΩ
Current sense resistance	I _{sat_Lboost} > 3.6A	R _{1_30}		30		mΩ
RDSon of the external FET	$V_{VDD1} > 4.5V$	R _{DSON,T1}			30	mΩ
Total gate charge of the external FET	$\begin{aligned} V_{DS} &= 5V \\ V_{GS} &= 5V \\ I_{D} &= 3.6A \\ V_{th} &< 3V \end{aligned}$	Qb _{BOOST_ext_FET}			10	nC
Maximal forward current of the external Booster diode D1, D2		I _{AV(SKD_BOOST)}	3.6			Α
Maximal forward voltage of the external Booster diode D1, D2 @ 3.6A		$V_{F(SKD_BOOST)}$			500	mV


PRODUCTION DATA - Mar 7, 2016

8 Package Information

The E521.14 device family is available in a Pb free, RoHs compliant, QFN44L7 plastic package according to JEDEC MO-220 K.01 VKKD-3.

The package is classified to Moisture Sensitivity Level 3 (MSL 3) according to JEDEC J-STD-020C with a soldering peak temperature of (260+5) ℃.

Note: Thermal resistance junction to ambient R_{th,ja} is typ. 24 ℃/W, based on JEDEC standard JESD-51-2, JESD-51-5 and JESD-51-7.

Description	Symbol	mm			inch			
		min	typ	max	min	typ	max	
Package height	Α	0.80	0.90	1.00	0.031	0.035	0.039	
Stand off	A1	0.00	0.02	0.05	0.000	0.00079	0.002	
Thickness of terminal leads, including lead finish	А3		0.20 REF			0.0079 REF		
Width of terminal leads	b	0.18	0.25	0.30	0.007	0.010	0.012	
Package length / width	D/E		7.00 BSC			0.276 BSC		
Length / width of exposed pad	D2 / E2	5.50	5.65	5.80	0.217	0.223	0.229	
Lead pitch	е		0.5 BSC			0.020 BSC		
Length of terminal for soldering to substrate	L	0.35	0.40	0.45	0.014	0.016	0.018	
Number of terminal positions	N		44			44		

Note: the mm values are valid, the inch values contains rounding errors

PRODUCTION DATA - Mar 7, 2016

WARNING – Life Support Applications Policy

Elmos Semiconductor AG is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Elmos Semiconductor AG products, to observe standards of safety, and to avoid situations in which malfunction or failure of an Elmos Semiconductor AG Product could cause loss of human life, body injury or damage to property. In development your designs, please ensure that Elmos Semiconductor AG products are used within specified operating ranges as set forth in the most recent product specifications.

General Disclaimer

Information furnished by Elmos Semiconductor AG is believed to be accurate and reliable. However, no responsibility is assumed by Elmos Semiconductor AG for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Elmos Semiconductor AG. Elmos Semiconductor AG reserves the right to make changes to this document or the products contained therein without prior notice, to improve performance, reliability, or manufacturability.

Application Disclaimer

Circuit diagrams may contain components not manufactured by Elmos Semiconductor AG, which are included as means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. The information in the application examples has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of Elmos Semiconductor AG or others.

PRODUCTION DATA - Mar 7, 2016

Contact Information

Headquarters

Elmos Semiconductor AG

Heinrich-Hertz-Str. 1 • D-44227 Dortmund (Germany) ≅: +492317549100 ⊠: sales-germany@elmos.com ; www.elmos.com

Sales and Application Support Office North America

Elmos NA. Inc.

32255 Northwestern Highway • Suite 220 Farmington Hills

Sales and Application Support Office China

Elmos Semiconductor Technology (Shanghai) Co., Ltd. Unit 16B, 16F Zhao Feng World Trade Building,

No. 369 Jiang Su Road, Chang Ning District,

Shanghai, PR China, 200050 ≅: +86216210 0908 ⊠: sales-china@elmos.com

Sales and Application Support Office Korea

Elmos Korea

B-1007, U-Space 2, #670 Daewangpangyo-ro,

Sampyoung-dong, Bunddang-gu, Sungnam-si

Kyounggi-do 463-400 Korea ≅: +82317141131 ⊠: sales-korea@elmos.com

Sales and Application Support Office Japan

Elmos Japan K.K.

BR Shibaura N Bldg. 7F 3-20-9 Shibaura, Minato-ku,

Sales and Application Support Office Singapore

Elmos Semiconductor Singapore Pte Ltd.

3A International Business Park

© Elmos Semiconductor AG, 2016. Reproduction, in part or whole, without the prior written consent of Elmos Semiconductor AG, is prohibited.