

TS3005 Demo Board

A 1.55V to 5.25V, 1.35µA, 1.7ms to 33hrs Silicon Timer

FEATURES

- 5V Supply Voltage
 - FOUT/PWMOUT Output Period Range: \circ 47.4ms \leq t_{FOUT} \leq 27.6hrs
 - RSET = 10MΩ
- PWMOUT Output Duty Cycle:
 63% for FDIV2:0 = 000
 - CPWM = 0.1µF
- PWMOUT Duty Cycle Reduction
 1MΩ Potentiometer
- Fully Assembled and Tested
- > 2in x 2in 2-layer circuit board

COMPONENT LIST

DESIGNATION	QTY	DESCRIPTION	
C1	1	0.1µF ±10%	
		capacitor (0805)	
C2	1	4.7μF ±10%	
		capacitor (0805)	
R1, R2	2	10MΩ ± 1% (0805)	
PWM_ADJ	1	1MΩ Potentiometer	
U1	1	TS3005	
VDD,F_OUT,	3	Test points	
PWM_OUT		-	
J1, FDIV0, FDIV1,	3	Jumper	
FDIV2			

DESCRIPTION

The demo board for the TS3005 is a completely assembled and tested circuit board that can be used for evaluating the TS3005. The TS3005 is a singlesecond-generation Touchstone Semi supply, oscillator/timer fully specified to operate at a supply voltage range of 1.55V to 5.25V while consuming less than 1.5µA(max) supply current. Requiring only a resistor to set the base output frequency (or output period) at 49Hz (or 20.5ms) with a 50% duty cycle, the TS3005 timer/oscillator is compact, easy-to-use, and versatile. Optimized for ultra-long life, low frequency, battery-powered/portable applications, the TS3005 joins the TS3001, TS3002, TS3003, TS3004, and TS3006 in Touchstone's CMOS timer family in its "NanoWatt Analog™" series of high-performance analog integrated circuits.

The TS3005 requires only an RSET = $10M\Omega$ resistor to set the FOUT/PWMOUT output period range to between 47.4ms and 27.6 hours. To change the output period, an FDIV2:0 combination can be selected. With an on-board 0.1μ F CPWM capacitor, the duty cycle of PWMOUT is set at approximately 63%. Further reduction of the duty cycle is available with an on-board $1M\Omega$ potentiometer. The complete circuit is designed at a supply voltage of 5V. The TS3005 is fully specified over the -40°C to +85°C temperature range and is available in a low-profile, 10-pin 3x3mm TDFN package with an exposed backside paddle.

Product datasheet and additional documentation can be found on the factory web site at <u>www.touchstonesemi.com</u>.

ORDERING INFORMATION

Figure 1. TS3005 Demo Board Circuit

DESCRIPTION

The TS3005 requires only an RSET = $10M\Omega$ resistor to set the FOUT/PWMOUT output period between 47.4ms and 27.6 hours. To change the output period, an FDIV2:0 combination can be selected. With an onboard 0.1µF CPWM capacitor, the duty cycle of PWMOUT is set at approximately 63%. Further reduction of the duty cycle is available with an onboard 1M Ω potentiometer. The complete circuit is designed at a supply voltage of 5V and it is shown in Figure 1.

The TS3005 is a user-programmable oscillator where the period of the square wave at its FOUT terminal is generated by an external resistor connected to the RSET pin. The output period is given by:

$$t_{FOUT}$$
 (s) = $\frac{8^{FDIV2:0} \times RSET \times 512}{1.08F11}$

Equation 1. FOUT Frequency Calculation where FDIV2:0 = 0 to 7

With $R_{SET} = 10M\Omega$ and FDIV2:0=000(0), the FOUT period is approximately 47.4ms with a 50% duty cycle. As design aids, Tables 1 lists TS3005's typical FOUT period for various standard values for R_{SET} and FDIV2:0 = 111(7).

R _{SET} (ΜΩ)	t _{FOUT}
0.360	59.67min
1	1.09hrs
2.49	6.87hrs
4.32	11.93hrs
6.81	18.81hrs
9.76	26.93hrs
12	33.1hrs

Table 1: $\overline{t_{FOUT}}$ vs R_{SET} for FDIV2:0 = 111(7)

The TS3005 also provides a separate PWM output signal at its PWMOUT terminal that is anti-phase with respect to FOUT. To adjust the pulse width of the PWMOUT output, a single capacitor can be placed at the CPWM pin. To determine the capacitance needed for a desired pulse width, the following equation is to be used:

 $CPWM(F)= \begin{array}{c} Pulse \ Width(s) \ x \ I_{CPWM} \\ \hline V_{CPWM} \cong 300mV \end{array}$

Equation 2. CPWM Capacitor Calculation

where I_{CPWM} and V_{CPWM} is the current supplied and voltage applied to the CPWM capacitor, respectively. The pulse width is determined based on the period of FOUT and should never be greater than the period at FOUT. Make sure the PWM_CNTRL pin is set to at least 400mV when calculating the pulse width of PWMOUT. Note V_{CPWM} is approximately 300mV, which is the RSET voltage. Also note that I_{CPWM} is either 1µA or 100nA. Refer to Table 2 for the output period range available with a 10M Ω RSET resistor.

FDIV 2:0	t _{FOUT}	I _{СРWM} (А)
000	47.4ms	1µ
001	379.2ms	1µ
010	3.03s	100n
011	24.26s	100n
100	3.23min	100n
101	25.88min	100n
110	3.451hrs	100n
111	27.6hrs	100n

Table 2: FOUT and PWMOUT Frequency
Range per FDIV2:0 Combination
for R_{SET} = 10MQ

The PWMOUT output pulse width can be adjusted further after selecting a CPWM capacitor. This can be achieved by applying a voltage to the PWM_CNTRL pin between V_{RSET} and GND. With a voltage of at least V_{RSET}, the pulse width is set based on Equation 2. For example, with a period of 47.4ms and a 0.1µF capacitor at the CPWM pin generates a pulse width of approximately 30ms. This can be calculated using Equation 2. By reducing the PWM_CNTRL voltage from V_{RSET} \cong 300mV to GND, the pulse width can be reduced further. Note that V_{RSET} can be set up to VDD.

QUICK START PROCEDURE Required Equipment

- TS3005 Demo Board
- DC Power Supply
- Oscilloscope Model Agilent DSO1014A or equivalent
- > Two 10X, $15pF//10M\Omega$ oscilloscope probes
- Potentiometer screwdriver

To evaluate the TS3005 silicon timer, the following steps are to be performed:

- 1) Before connecting the DC power supply to the demo board, turn on the power supply, set the DC voltage to 5V, and then turn it off.
- Connect the DC power supply positive terminal to the test point labeled VDD. Connect the negative terminal of the DC power supply to the test point labeled GND.
- To monitor the FOUT output signal, connect the signal terminal of an oscilloscope probe to the test point labeled FOUT and the ground terminal to the test point labeled GND.
- 4) To monitor the PWMOUT output signal, connect the signal terminal of a second oscilloscope probe to the test point labeled PWM_OUT and the ground terminal to the test point labeled GND.

5) Select two channels on the oscilloscope and set the vertical voltage scale and the vertical position on each channel to 2V/DIV and 0V, respectively. Set the horizontal time scale to 10ms/DIV. The coupling should be DC coupling. Turn on the power supply.

The supply current will vary depending on the load on the output. Given the default set-up on the board, the FOUT/PWMOUT output period is approximately 47.4ms. The PWMOUT duty cycle is set to approximately 63%. With an output load of 15pF on both FOUT and PWMOUT outputs due to the oscilloscope probes, the supply current should be less than 3μ A.

- To change the period, change the combination of FDIV2:0 via jumpers FDIV2, FDIV1, and FDIV0. Refer to Table 2.
- 7) If further reduction of the duty cycle of the PWMOUT output is desired, turn the potentiometer clockwise. If jumper J1 is removed, the PWM_CNTRL pin is tied to VDD and the potentiometer will not change the PWMOUT output duty cycle.

Figure 3. Top Layer View #1

Figure 5. Bottom Layer (GND) #2

Figure 4. Top Layer View #2

