8 DECADE MULTIPLEXED COUNTER

January 2003

FEATURES:

- DC to 7.5 MHz Count Frequency
- Multiplexed BCD and 7 Segment Outputs
- DC to 500 kHz Scan Frequency
-+4.75 V to +15 V Operation (Vss - Vdd)
- Compatible with CMOS Logic
- High Input Noise Immunity
- Counter Output Latches
- Leading Zero Blanking
- Low Power Dissipation
- All inputs protected
- 40 Pin DIP - See Figure 1

DESCRIPTION: (See Block Diagram, Figure 4.)
The LS7030 is a MOS, 8 decade up counter. The circuit includes latches, multiplexer, leading zero blanking and 7 segment data outputs.

8 DECADE UP COUNTER

The eight decade ripple through counter increments on the negative edge of the input count pulse. Maximum ripple time is $12 \mu \mathrm{~s}$ (99999999 to 00000000). Maximum count frequency is 7.5 MHz .

RESET

All decades are reset to zero when $\overline{\text { Reset input is brought low for }}$ a minimum of $4 \mu \mathrm{~s}$. The Overflow flip-flop is reset at the same time. Reset must be high for a minimum of $1 \mu \mathrm{~s}$ before next valid count can be recorded.

LATCHES

Contents of counter are transferred to latches when $\overline{\text { LOAD signal }}$ is brought low for a minimum of $4 \mu \mathrm{~s}$ and kept low until a minimum of $12 \mu \mathrm{~s}$ has elapsed from previous negative edge of count pulse (ripple time). Storage of valid data occurs when $\overline{\mathrm{LOAD}}$ signal is high for a minimum of $1 \mu \mathrm{~s}$ before next negative edge of count pulse or reset. Data is transferred for Overflow flip-flop to Overflow latch at the same time.

SCAN OSCILLATOR AND COUNTER

The scan counter is driven by an internal oscillator whose frequency is determined by a capacitor connected between Oscillator input and Scan input. An external scan clock applied to Scan input can also drive the scan counter. Scan counter advances on negative edge of scan clock.

The counter scans from MSD to LSD. When Scan Reset input is brought high the scan counter is forced to MSD state. Internal synchonization guarantees proper scanning no matter when Scan Reset is brought low relative to scan clock. Maximum scan frequency is 500 kHz .

DECIMAL POINT

A high at the Decimal Point input resets the Blanking flip-flop causing the display to unblank. Decimal Point should be brought high at start of digit time which has active Decimal Point.

DIGIT STROBES

Timing of Digit Strobes is arranged such that both edges of strobe are guardbanded by a minimum 400 ns within valid BCD data when scan frequency is 100 kHz or less. The guardband is a minimum of 200 ns at 250 kHz scan frequency. At 500 kHz only negative edge of Strobe is guaranteed to be within valid BCD data by a minimum 200ns.

OVERFLOW

The Overflow flip-flop sets on the first negative transition of the Overflow Input and remains set until Reset is brought low. Data is transferred from Overflow flip-flop to Overflow Latch when Load is brought low. A high at the Overflow Latch causes display to unblank. Overflow Output is output of Overflow Latch. MSB outputs of Decades 6, 7, 8 are available for use as Overflow Input.

BLANKING

Leading zero blanking is employed. At start of each MSD to LSD scan, display is blanked until a nonzero digit or active decimal point is encountered. Displaly unblanks during LSD time and for a whole scan when Overflow output is high. When Scan Reset is applied, display blanks to prevent display damage.

Blanking information is available at $\overline{\text { Blank output and is incorporated }}$ into 7 segment information.

BCD and 7 SEGMENT DATA

Data is available in BCD and 7 segment format. BCD data can be demultiplexed using Digit Strobes as latch enable signals.

POWER SUPPLIES

+4.75 Volts to +15 Volts single power supply operation is obtained when VGG and VDD are tied together. Inputs and outputs are CMOS compatible and Minimum Input Noise Immunity of 25% of power supply is guaranteed except for Test Count Input. (Inputs are TTL compatible at +4.75 V to +5.25 V operation.)

MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNITS
Storage Temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature	TA	-25 to +70	${ }^{\circ} \mathrm{C}$
Voltage (any pin to Vss)	Vmax	-30 to +0.5	V

DC ELECTRICAL CHARACTERISTICS

(VDD $=\mathrm{VGG}=\mathrm{OV}$, Vss $=+4.75$ to $+15 \mathrm{~V},-25^{\circ} \mathrm{C} \leq \mathrm{TA} \geq+70^{\circ} \mathrm{C}$ unless otherwise specified.)

NOTE 1: Current Sink = Same as segment and strobe outputs.
Current Source $=\mathrm{N} / \mathrm{A}$ at Voh $=$ Vss -0.5 V for Vss $=+4.75 \mathrm{~V}$
$35 \mu \mathrm{~A}$ at $\mathrm{Voh}=\mathrm{Vss}-1 \mathrm{~V}$ for $\mathrm{Vss}=+4.75 \mathrm{~V}$
40% of segment and strobe outputs at all other specified operating points.
NOTE 2: Limit segment current to 4.5 mA maximum.
Limit strobe current to 6 mA maximum.
The following inputs have internal pull down resistors to VdD with maximum sink current of $5 \mu \mathrm{~A}$ at Vss input.

Scan Reset	Test Count	Count
Decimal Point	Overflow	Lamp Test

SCAN OSCILLATOR

CAPACITANCE	TYPICAL OSCILLATOR FREQUENCY		
	$\mathbf{4 . 7 5 V}$	$\mathbf{1 0 V}$	$\mathbf{1 5 V}$
50 pF	40.0 kHz	24.2 kHz	22.2 kHz
100 pF	22.2 kHz	14.8 kHz	13.8 kHz
470 pF	5.0 kHz	3.6 kHz	3.5 kHz
750 pF	3.3 kHz	2.4 kHz	2.2 kHz
2000 pF	1.3 kHz	0.91 kHz	0.85 kHz

ELECTRICAL CHARACTERISTICS:

(VDD $=$ VGG $=\mathrm{OV}$, Vss $=+4.75$ to $+15 \mathrm{~V},-25^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ unless otherwise specified.)

PARAMETER
Count test and Count frequency
(Vss = +5V $\pm 5 \%$)
(Vss $=+10 \mathrm{~V}$)
(Vss = +15V)
Scan frequency
Count Pulse Width
(Vss $=+5 \mathrm{~V} \pm 5 \%$)
(Vss $=+10 \mathrm{~V}$)
(Vss $=+15 \mathrm{~V}$)
Count Ripple Time
Load Pulse Width
Load Removal Tme
Reset Pulse Width
Reset Removal Time
Rise and fall time
Count Pulse
Reset Pulse
test Count Pulse
*Strobe Guard Band time (fsc $\leq 100 \mathrm{kHz}$)
*Strobe Guard Band time ($100 \mathrm{kHz} \leq \mathrm{fsc} \leq 250 \mathrm{kHz}$)
*Strobe Guard Band time ($250 \mathrm{kHz} \leq \mathrm{fsc} \leq 500 \mathrm{kHz}$) negative edge only

SYMBOL	MIN	MAX	UNITS
$\mathrm{fc}, \mathrm{ftc}$			
$\mathrm{fc}, \mathrm{ftc}$	DC	7.5	MHz
$\mathrm{fc}, \mathrm{ftc}$	DC	6	MHz
fsc	DC	5	MHz
	DC	500	kHz

tcpw	66	-	$n s$
tcpw	83	-	$n s$
tcpw	100	-	$n s$
tcr	-	12	$\mu \mathrm{~s}$
tlpw	4	-	$\mu \mathrm{s}$
tir	-	1	$\mu \mathrm{~s}$
trpw	4	-	$\mu \mathrm{s}$
trr	-	1	$\mu \mathrm{~s}$

trfc	-	4	$\mu \mathrm{~s}$
trfr	-	4	$\mu \mathrm{~s}$
trftc	-	80	$\mu \mathrm{~s}$

tgb 400 - ns
tgb 200 - ns
tgb 200 - ns

FIGURE 2. GUARD BANDED STROBE

TTL COMPATIBLE OUTPUTS:
POWER SUPPLIES: VSs $=+5 \mathrm{~V} \pm 5 \%, \mathrm{VDD}=0 \mathrm{~V}, \mathrm{VGG}=-12 \mathrm{~V} \pm 5 \%$
OUTPUT LEVELS: "1" Level \geq Vss -0.5 V (sourcing $100 \mu \mathrm{~A}$) $\}$ BLANK AND BCD "0" Level $\leq 0.4 \mathrm{~V}$ (sinking 1.6 mA) $\}$ DATA OUTPUTS
" 1 " Level \geq Vss - 0.5 V (sourcing $40 \mu \mathrm{~A}$) $\}$ OVERFLOW " 0 " Level $\leq 0.4 \mathrm{~V}$ (sinking 0.18 mA) \} OUTPUT

All other outputs as specified for single power supply, Vss $=+15 \mathrm{~V}$, operation.
Inputs as specified for single power supply, $\mathrm{Vss}=+5 \mathrm{~V} \pm 5 \%$ operation.

The information included herein is believed to be accurate and reliable. However, LSI Computer Systems, Inc. assumes no responsibilities for inaccuracies, nor for any infringements of patent rights of others which may result from its use.

