VM114

Version	:	PRE.001
Issue Date	:	2010/01/14
File Name	:	SP-VM114-PRE.001.doc
Total Page	:	8

Micro-actuator Driver with PC Interface

 新竹市科學園區展業一路9號7 棲之1
 SILICON TOUCH TECHNOLOGY INC.
 9-7F-1, Prosperity Road I, Science Based Industrial Park, Hsin-Chu, Taiwan 300, R.O.C.
 Tel: 886-3-5645656 Fax: 886-3-5645626

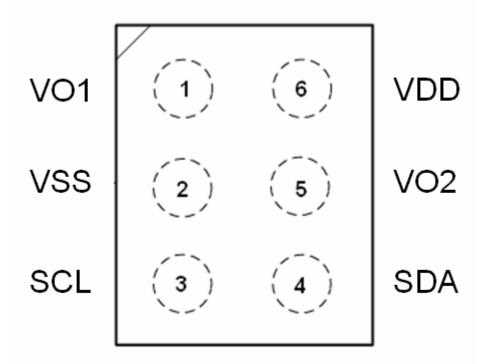
VM114

Micro-actuator Driver with f^2C Interface

General Specifications

VM114 is a micro-actuator driver IC with miniature package. It is one channel low voltage bi-directional motor driver IC. The design is optimal for driving different type micro-actuator, such as voice coil motor, piezo-actuator, or other DC motor actuators. It is suitable for camera module application or other portable devices.

Features and Benefits


- Low voltage operation (V_{DD Min} = 1.8 V)
- Low input current
- Zero standby current
- ♦ I²C serial interface
- Automatic power on reset
- Ultra small package: WLCSP (0.78*1.27*0.35mm)

Ordering Information

Part Number	Package	Marking
VM114 WLCSP	WLCSP, 6Pin	TBD

Micro-actuator Driver with I^2C Interface

TOP View

Pin Number	Pin Name	Description	
1	VO1	Driver output 1	
2	VSS	Ground	
3	SCL	I ² C Interface Clock Line(Serial Clock Line)	
4	SDA	I ² C Interface Data Line(Serial Data Line)	
5	VO2	Driver output 2	
6	VDD	Power supply	

VM114

未經授權而逕予重製、複製、使用或公開本文件,行為人得被追究侵權之相關民刑事責任 Unauthorized reproduction, duplication, use or disclosure of this document will be deemed as infringement.

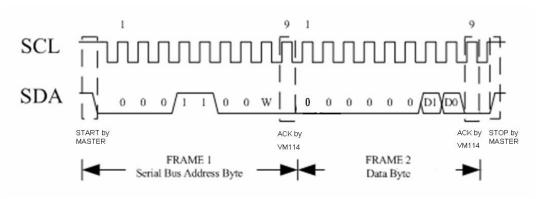
Characteristic	Symbol	Rating	Unit	
Supply Voltage	V _{DD}	4.5	V	
Input Voltage	V _{P1}	V _{DD} +0.4	V	
Io Peak Current	I _{OPeak}	400	mA	
I _{ODC} Current	I _{ODC}	280	mA	
Power Dissipation	P _D	300	mW	
Operating Temperature Range	T _{OPR}	-40 ~ 80	°C	
Storage Temperature Range	T _{STG}	-65 ~ 150	°C	

Absolute Maximum Ratings (Unless otherwise noted, $T_A=25\,^\circ$)

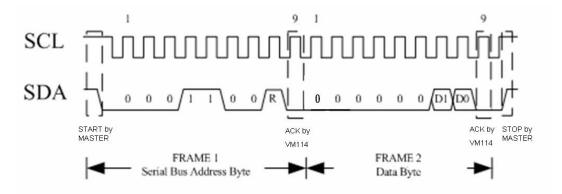
Electrical Characteristic

(Unless otherwise noted, $T_A = 25^{\circ}C \& V_{DD} = 2.8V$)

			,				
SUB	Condition		Unit				
Sym.	Condition	Min.	Тур.	Max.			
V_{DD}		1.8	2.8	4.5	V		
I _{DD}	No load	-	-	3	μA		
SDA SCL Input Terminal ($T_J = 25^{\circ}C$)							
V _{IH}	-	$0.5^{*}V_{DD}$	-	V _{DD} +0.4	V		
V _{IL}	-	-0.4	-	$0.2^{*}V_{DD}$	V		
I _{IH}	$V_{IN} = V_{DD}$	-	-	±1	μA		
IIL	V _{IN} = 0 V	-	-	±1	μA		
Output Terminal (O1, O2)							
R _{OH}	I _{OUT} =200mA	-	1.3	1.6	Ohm		
R _{OL}	I _{OUT} =200mA	-	0.7	0.9	Ohm		
	I _{DD} ℃) V _{IH} V _{IL} I _{IH} I _{IL}	V_{DD} I_{DD} No load $^{\circ}C$ V_{IH} V_{IH} - V_{IL} - I_{IH} $V_{IN} = V_{DD}$ I_{IL} $V_{IN} = 0 V$ R_{OH} $I_{OUT}=200mA$	Min. Min. V_{DD} 1.8 I_{DD} No load - $^{\circ}C$ $ 0.5^{*}V_{DD}$ V_{IH} - $0.5^{*}V_{DD}$ V_{IL} - -0.4 I_{IH} $V_{IN} = V_{DD}$ - I_{IL} $V_{IN} = 0$ - R_{OH} I_{OUT} =200mA -	Min. Typ. V_{DD} Min. Typ. V_{DD} 1.8 2.8 I_{DD} No load - - C 0.5^*V_{DD} - V_{IH} - 0.5^*V_{DD} - V_{IL} - - - I_{IH} $V_{IN} = V_{DD}$ - - I_{IL} $V_{IN} = 0$ - - R_{OH} I_{OUT} =200mA - 1.3	Sym. Condition Min. Typ. Max. V_{DD} 1.8 2.8 4.5 I_{DD} No load - - 3 $^{\circ}$ C) $^{\circ}$ C 0.5*V_{DD} - V_{DD}+0.4 V_{IH} - 0.5*V_{DD} - V_{DD}+0.4 V_{IL} - -0.4 - 0.2*V_{DD} I_{IH} $V_{IN} = V_{DD}$ - - ±1 I_{L} $V_{IN} = 0$ V - - ±1 R_{OH} I_{OUT} =200mA - 1.3 1.6		


未經授權而逕予重製、複製、使用或公開本文件,行為人得被追究侵權之相關民刑事責任 Unauthorized reproduction, duplication, use or disclosure of this document will be deemed as infringement.

Data Format


VM114 Write Mode

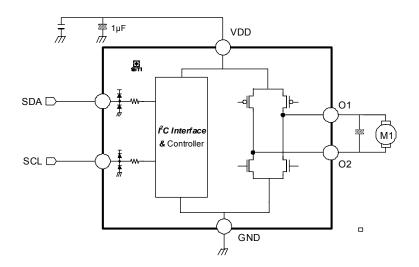
In the writing mode, data is written to VM114 and shifted into a 8-bit input register. After all 8 bits of data have been shifted in, a STOP signal is generated by master controller. The data in the input register is transferred to VM114 internal controller at the same time.

VM114 Read Mode

In reading mode, data is read from IC to a master controller in the same bit order.

<u>Table</u>

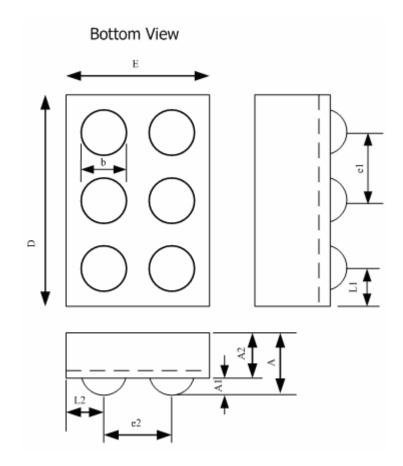
	Address					Address Data										
Serial Data Bits	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Function	ID6	ID5	ID4	ID3	ID2	ID1	ID0	R/W	0	0	0	0	0	0	D1	D0


D[1:0]: The output O1/O2 is set by D[1:0] as defined below.

VM114

未經授權而逕予重製、複製、使用或公開本文件,行為人得被追究侵權之相關民刑事責任 Unauthorized reproduction, duplication, use or disclosure of this document will be deemed as infringement. SITI Silicon Touch Technology Inc.

Inj	out	Output		
D1	D0	O1	O2	
0	0	Н	н	
0	1	Н	L	
1	0	L	н	
1	1	L	L	


Function Block

Application Notes

- The O1/O2 output H/H or L/L will brake the motor. Though the active current of driver is near to zero, if the application is required to turn off driver, please turn off the driver's power from VDD.
- □ The capacitor connected between the output nodes O1/O2 will reduce the noise generated by the motor when the motor is switched to opposed direction.

Package Specifications (WLCSP1): (0.78*1.27*0.35mm)

SYMBOL	DIMENSION (mm)					
	MIN.	NOM.	MAX.			
A	0.325	0.350	0.375			
A1	0.090	0.100	0.110			
A2	0.235	0.250	0.265			
b	0.234	0.260	0.286			
D	1.255	1.270	1.285			
E	0.765	0.780	0.795			
e1	0.380	0.400	0.420			
e2	0.380	0.400	0.420			
L1	0.215	0.235	0.255			
L2	0.170	0.190	0.210			

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.