

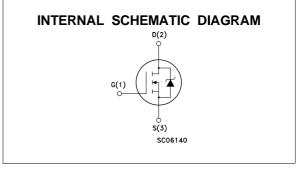
# STN2NF06

## N - CHANNEL 60V - 0.12Ω - 2A - SOT-223 STripFET<sup>TM</sup> POWER MOSFET

| ТҮРЕ     | V <sub>DSS</sub> R <sub>DS(on)</sub> |          | ID  |
|----------|--------------------------------------|----------|-----|
| STN2NF06 | 60 V                                 | < 0.15 Ω | 2 A |

- TYPICAL  $R_{DS(on)} = 0.12 \Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- AVALANCHE RUGGED TECHNOLOGY
- 100 % AVALANCHE TESTED
- APPLICATION ORIENTED -**CHARACTERIZATION**

#### DESCRIPTION


This Power Mosfet is the latest development of STMicroelectronics unique "Single Feature Size™ " stip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

#### **APPLICATIONS**

- DC MOTOR CONTROL (DISK DRIVES,etc.)
- DC-DC & DC-AC CONVERTERS
- SYNCHRONOUS RECTIFICATION

**ABSOLUTE MAXIMUM RATINGS** 





| Symbol                        | Parameter                                             | Value                                                                                                              | Unit |
|-------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|
| V <sub>DS</sub>               | Drain-source Voltage (V <sub>GS</sub> = 0)            | 60                                                                                                                 | V    |
| Vdgr                          | Drain- gate Voltage ( $R_{GS}$ = 20 k $\Omega$ )      | 60                                                                                                                 | V    |
| V <sub>GS</sub>               | Gate-source Voltage                                   | ± 20                                                                                                               | V    |
| ID                            | Drain Current (continuous) at T <sub>c</sub> = 25 °C  | 2                                                                                                                  | Α    |
| Ι <sub>D</sub>                | Drain Current (continuous) at T <sub>c</sub> = 100 °C | 1.8                                                                                                                | Α    |
| I <sub>DM</sub> (●)           | Drain Current (pulsed)                                | 8                                                                                                                  | Α    |
| P <sub>tot</sub>              | Total Dissipation at $T_c = 25$ °C                    | 2.5                                                                                                                | W    |
|                               | Derating Factor                                       | 0.02                                                                                                               | W/°C |
| dv/dt(1)                      | Peak Diode Recovery voltage slope                     | 6                                                                                                                  | V/ns |
| Tstg                          | Storage Temperature                                   | -65 to 150                                                                                                         | °C   |
| Tj                            | Max. Operating Junction Temperature                   | 150                                                                                                                | °C   |
| <ul> <li>Pulse wid</li> </ul> | th limited by safe operating area                     | (1) $I_{SD} \leq 8 \text{ A}$ , $di/dt \leq 200 \text{ A}/\mu s$ , $V_{DD} \leq V_{(BR)DSS}$ , $T_i \leq T_{JMAX}$ |      |

New RDS (on) spec. starting from JULY 98

 $00 \text{ A}/\mu\text{s}, \text{ V}_{DD} \leq \text{V}_{(BR)}\text{dss}, \text{ I}_{j} \leq \text{ I}_{JMAX}$ 

July 1998

#### THERMAL DATA

| R <sub>thj-pcb</sub><br>R <sub>thj-amb</sub> | Thermal Resistance Junction-PC Board<br>Thermal Resistance Junction-ambient | Max<br>Max | 50<br>60 | °C/W<br>°C/W |
|----------------------------------------------|-----------------------------------------------------------------------------|------------|----------|--------------|
|                                              | (Surface Mounted)                                                           |            |          |              |
| TI                                           | Maximum Lead Temperature For Soldering Purpose                              |            | 260      | °C           |

#### **AVALANCHE CHARACTERISTICS**

| Symbol          | Parameter                                                                                                | Max Value | Unit |
|-----------------|----------------------------------------------------------------------------------------------------------|-----------|------|
| I <sub>AR</sub> | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by $T_{\rm j}$ max)                 | 2         | A    |
| E <sub>AS</sub> | Single Pulse Avalanche Energy<br>(starting $T_j = 25 \ ^{\circ}C$ , $I_D = I_{AR}$ , $V_{DD} = 25 \ V$ ) | 20        | mJ   |

# **ELECTRICAL CHARACTERISTICS** ( $T_{case} = 25$ °C unless otherwise specified) OFF

| Symbol           | Parameter                                                | Test Conditions                                               | Min. | Тур. | Max.    | Unit     |
|------------------|----------------------------------------------------------|---------------------------------------------------------------|------|------|---------|----------|
| $V_{(BR)}$ dss   | Drain-source<br>Breakdown Voltage                        | $I_D = 250 \ \mu A$ $V_{GS} = 0$                              | 60   |      |         | V        |
| I <sub>DSS</sub> | Zero Gate Voltage<br>Drain Current (V <sub>GS</sub> = 0) | $V_{DS} = Max Rating$<br>$V_{DS} = Max Rating$ $T_c = 125 °C$ |      |      | 1<br>10 | μΑ<br>μΑ |
| I <sub>GSS</sub> | Gate-body Leakage<br>Current (V <sub>DS</sub> = 0)       | $V_{GS} = \pm 20 V$                                           |      |      | ± 100   | nA       |

#### ON (\*)

| Symbol              | Parameter                            | Test Conditions                                              | Min. | Тур. | Max. | Unit |
|---------------------|--------------------------------------|--------------------------------------------------------------|------|------|------|------|
| $V_{GS(th)}$        | Gate Threshold<br>Voltage            | $V_{DS} = V_{GS}$ $I_D = 250 \ \mu A$                        | 2    | 3    | 4    | V    |
| R <sub>DS(on)</sub> | Static Drain-source On<br>Resistance | $V_{GS} = 10 V I_D = 6A$                                     |      | 0.12 | 0.15 | Ω    |
| I <sub>D(on)</sub>  | On State Drain Current               | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$<br>$V_{GS} = 10 V$ | 2    |      |      | A    |

#### DYNAMIC

| Symbol                                                   | Parameter                                                                  | Test Conditions                                                                | Min. | Тур.             | Max. | Unit           |
|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|------------------|------|----------------|
| g <sub>fs</sub> (*)                                      | Forward<br>Transconductance                                                | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 1 A$                        | 1    | 3                |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input Capacitance<br>Output Capacitance<br>Reverse Transfer<br>Capacitance | $V_{DS} = 25 \text{ V} \text{ f} = 1 \text{ MHz} \text{ V}_{GS} = 0 \text{ V}$ |      | 760<br>100<br>30 |      | pF<br>pF<br>pF |

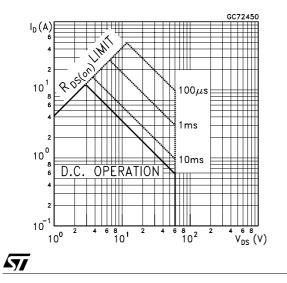
**A7/** 

#### ELECTRICAL CHARACTERISTICS (continued)

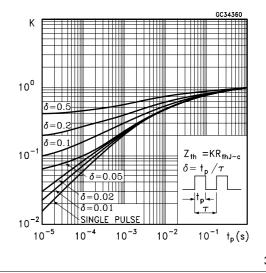
#### SWITCHING ON

| Symbol                                               | Parameter                                                    | Test Conditions                                                            | Min. | Тур.         | Max. | Unit           |
|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|------|--------------|------|----------------|
| t <sub>d(on)</sub><br>t <sub>r</sub>                 | Turn-on Time<br>Rise Time                                    |                                                                            |      | 10<br>35     |      | ns<br>ns       |
| (di/dt) <sub>on</sub>                                | Turn-on Current Slope                                        |                                                                            |      | 200          |      | A/μs           |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub> | Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge | $V_{DD} = 40 \text{ V}$ $I_D = 12 \text{ A} \text{ V}_{GS} = 10 \text{ V}$ |      | 20<br>5<br>7 |      | nC<br>nC<br>nC |

#### SWITCHING OFF

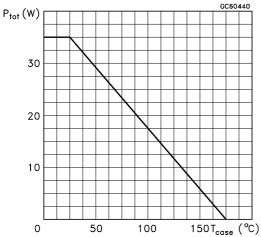

| Symbol                                                   | Parameter | Test Conditions | Min. | Тур.          | Max. | Unit           |
|----------------------------------------------------------|-----------|-----------------|------|---------------|------|----------------|
| t <sub>r(Voff)</sub><br>t <sub>f</sub><br>t <sub>c</sub> |           |                 |      | 7<br>18<br>30 |      | ns<br>ns<br>ns |

#### SOURCE DRAIN DIODE

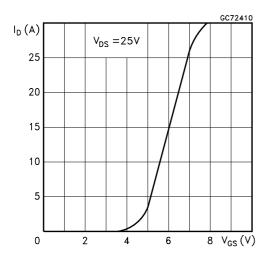

| Symbol                     | Parameter                                                | Test Conditions                                                                           | Min. | Тур. | Max.   | Unit   |
|----------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------|------|------|--------|--------|
| I <sub>SD</sub><br>Isdm(∙) | Source-drain Current<br>Source-drain Current<br>(pulsed) |                                                                                           |      |      | 2<br>8 | A<br>A |
| V <sub>SD</sub> (*)        | Forward On Voltage                                       | $I_{SD} = 2 A  V_{GS} = 0$                                                                |      |      | 1.5    | V      |
| t <sub>rr</sub>            | Reverse Recovery<br>Time                                 | $I_{SD} = 12 \text{ A}$ di/dt = 100 A/µs<br>V <sub>DD</sub> = 30 V $T_i = 150 \text{ °C}$ |      | 65   |        | ns     |
| Qrr                        | Reverse Recovery<br>Charge                               |                                                                                           |      | 0.18 |        | μC     |
| I <sub>RRM</sub>           | Reverse Recovery<br>Current                              |                                                                                           |      | 5.5  |        | A      |

(\*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area

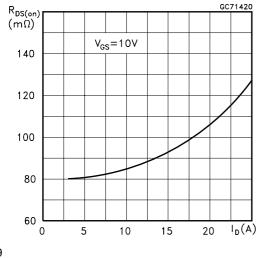
#### Safe Operating Area



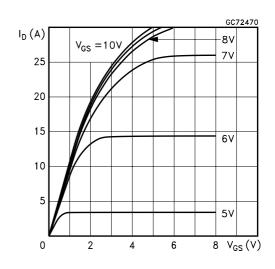

Thermal Impedance



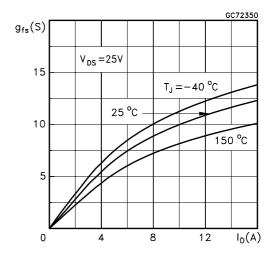

#### STN2NF06


#### **Derating Curve**

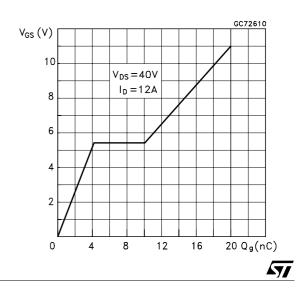



#### **Transfer Characteristics**

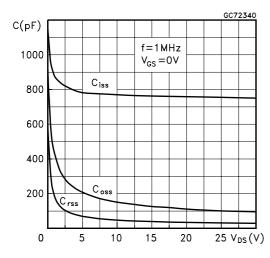



#### Static Drain-source On Resistance

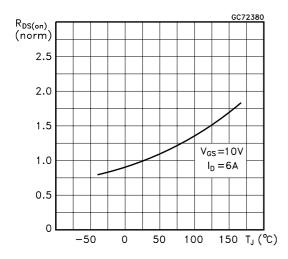



#### **Output Characteristics**

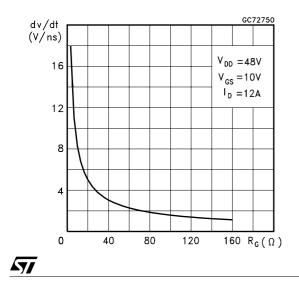


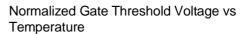

#### Transconductance

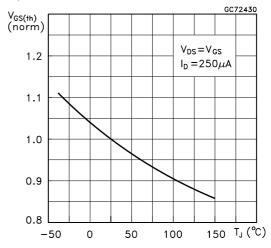




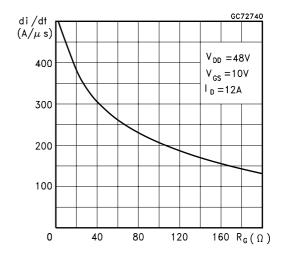


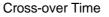


#### **Capacitance Variations**

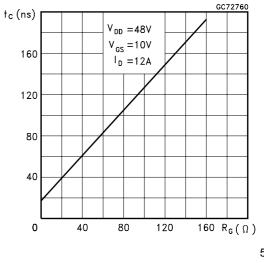




#### Normalized On Resistance vs Temperature

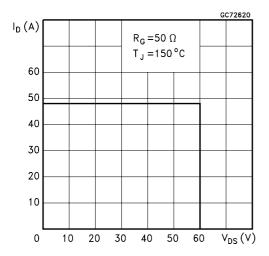



Turn-off Drain-source Voltage Slope







#### Turn-on Current Slope







#### Switching Safe Operating Area



#### Source-drain Diode Forward Characteristics

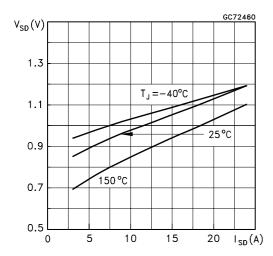
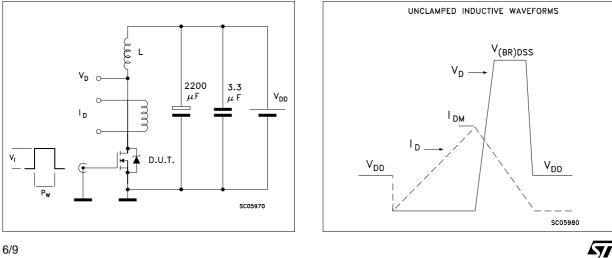




Fig. 1: Unclamped Inductive Load Test Circuit



#### Accidental Overload Area

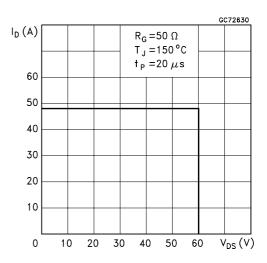
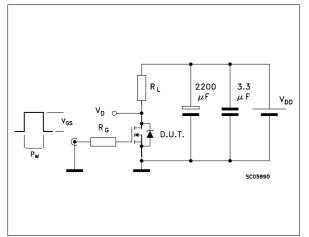




Fig. 2: Unclamped Inductive Waveform

# **Fig. 3:** Switching Times Test Circuits For Resistive Load



**Fig. 5:** Test Circuit For Inductive Load Switching And Dlode Recovery Times

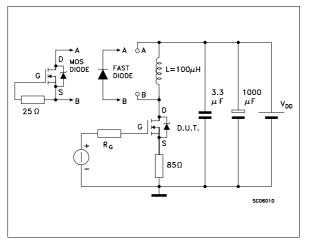
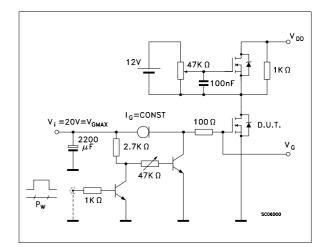
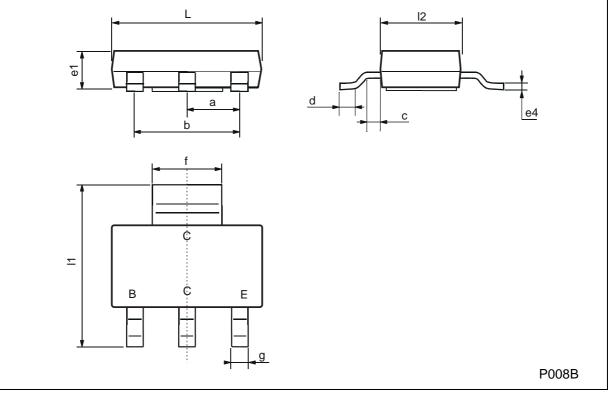




Fig. 4: Gate Charge test Circuit




57

### STN2NF06

| SUI-223 MECHANICAL DATA |      |      |      |       |       |       |  |
|-------------------------|------|------|------|-------|-------|-------|--|
| DIM.                    |      | mm   |      |       | mils  |       |  |
|                         | MIN. | TYP. | MAX. | MIN.  | TYP.  | MAX.  |  |
| а                       | 2.27 | 2.3  | 2.33 | 89.4  | 90.6  | 91.7  |  |
| b                       | 4.57 | 4.6  | 4.63 | 179.9 | 181.1 | 182.3 |  |
| С                       | 0.2  | 0.4  | 0.6  | 7.9   | 15.7  | 23.6  |  |
| d                       | 0.63 | 0.65 | 0.67 | 24.8  | 25.6  | 26.4  |  |
| e1                      | 1.5  | 1.6  | 1.7  | 59.1  | 63    | 66.9  |  |
| e4                      |      |      | 0.32 |       |       | 12.6  |  |
| f                       | 2.9  | 3    | 3.1  | 114.2 | 118.1 | 122.1 |  |
| g                       | 0.67 | 0.7  | 0.73 | 26.4  | 27.6  | 28.7  |  |
| l1                      | 6.7  | 7    | 7.3  | 263.8 | 275.6 | 287.4 |  |
| 12                      | 3.5  | 3.5  | 3.7  | 137.8 | 137.8 | 145.7 |  |
| L                       | 6.3  | 6.5  | 6.7  | 248   | 255.9 | 263.8 |  |





57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Mata - Mexico - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

57