

LS5912C MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix & National 2N5912C

The LS5912C are monolithic dual JFETs. The monolithic dual chip design reduces parasitics and gives better performance at very high frequencies while ensuring extremely tight matching. These devices are an excellent choice for use as wideband differential amplifiers in demanding test and measurement applications. The LS5912C is a direct replacement for discontinued Siliconix and National LS5912C.

The hermetically sealed TO-71 is well suited for military and harsh environment applications. (See Packaging Information).

LS5912C Applications:

- Wideband Differential Amps
- High-Speed,Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors.

FEATURES								
Improved Direct Replacement for SILICONIX & NATIONAL 2N5912C								
LOW NOISE (10KHz)	e _n ~ 4nV/√Hz							
HIGH TRANSCONDUCTANCE (100MHz)	g _{fs} ≥ 4000μS							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25°C (unless otherwise noted)								
Maximum Temperatures								
Storage Temperature	-65°C to +150°C							
Operating Junction Temperature	-55°C to +135°C							
Maximum Power Dissipation								
Continuous Power Dissipation (Total)	500mW							
Maximum Currents								
Gate Current	50mA							
Maximum Voltages								
Gate to Drain	-25V							
Gate to Source	-25V							

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

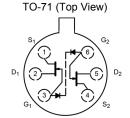
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{GS1} - V _{GS2}	Differential Gate to Source Cutoff Voltage			40	mV	$V_{DG} = 10V, I_D = 5mA$
$\Delta V_{GS1} - V_{GS2} / \Delta T$	Differential Gate to Source Cutoff			40	μV/°C	$V_{DG} = 10V, I_{D} = 5mA$
	Voltage Change with Temperature					$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$
I _{DSS1} / I _{DSS2}	Gate to Source Saturation Current Ratio	<mark>0</mark> .95		_1	%	$V_{DS} = 10V, V_{GS} = 0V$
I _{G1} – I _{G2}	Differential Gate Current	1	ï	20	nA	$V_{DG} = 10V, I_D = 5mA$ $T_A = +125^{\circ}C$
g _{fs1} / g _{fs2}	Forward Transconductance Ratio ²	0.95		1	%	$V_{DS} = 10V, I_{D} = 5 \text{mA}, f = 1 \text{kHz}$
CMRR	Common Mode Rejection Ratio		85		dB	$V_{DG} = 5V \text{ to } 10V, I_D = 5\text{mA}$
						_

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

ELECTRICAL CITATION CO C LO C (AMICOS OLICI MISC MOLCA)									
SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS			
BV_GSS	Gate to Source Breakdown Voltage	-25				$I_G = -1\mu A$, $V_{DS} = 0V$			
V _{GS(off)}	Gate to Source Cutoff Voltage	-1		-5	V	$V_{DS} = 10V, I_{D} = 1nA$			
$V_{GS(F)}$	Gate to Source Forward Voltage		0.7			$I_G = 1mA, V_{DS} = 0V$			
V_{GS}	Gate to Source Voltage	-0.3		-4		$V_{DG} = 10V, I_{G} = 5mA$			
I _{DSS}	Gate to Source Saturation Current ³	7		40	mA	$V_{DS} = 10V, V_{GS} = 0V$			
I _{GSS}	Gate Leakage Current ³		-1	-50		$V_{GS} = -15V, V_{DS} = 0V$			
I _G	Gate Operating Current		-1	-50	pA	$V_{DG} = 10V$, $I_D = 5mA$			
g fs	Forward Transconductance	4000		10000					
		4000		10000	μS	$V_{DG} = 10V, I_{D} = 5mA$			
g _{os}	Output Conductance			100					
				150					
C _{ISS}	Input Capacitance			5	pF	$V_{DG} = 10V, I_D = 5mA, f = 1MHz$			
C _{RSS}	Reverse Transfer Capacitance			1.2					
NF	Noise Figure			1	dB	$V_{DG} = 10V$, $I_D = 5mA$, $f = 10kHz$, $R_G = 100K\Omega$			
e _n	Equivalent Input Noise Voltage		7	20	nV/√Hz	$V_{DG} = 10V$, $I_D = 5mA$, $f = 100Hz$			
			4	10		$V_{DG} = 10V$, $I_D = 5mA$, $f = 10kHz$			

Notes: 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired 2. Pulse Test: PW ≤ 300µs Duty Cycle ≤ 3%

3. Assumes smaller value in numerator



Available Packages:

LS5912C in TO-71 LS5912C available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com Web: www.micross.com/distribution.aspx

