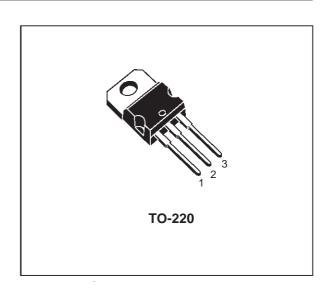
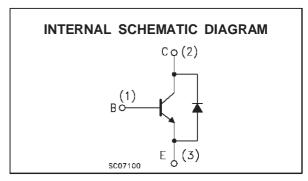


BUL85D

MEDIUM VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- HIGH RUGGEDNESS


APPLICATIONS


- 110V AC ELECTRONIC TRANSFORMERS FOR HALOGEN LAMPS UP TO 100 W
- SWITCH MODE POWER SUPPLIES

DESCRIPTION

The BUL85D is manufactured using Multi Epitaxial Planar technology for high switching speeds and medium voltage capability.

The BUL85D is designed for use in 110V AC electronic transformers for halogen lamps.

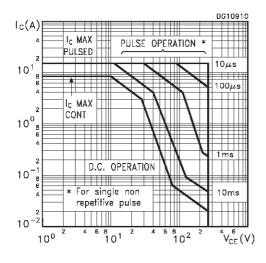
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	500	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	250	V
V _{EBO}	Emitter-Base Voltage ($I_C = 0$, $I_B < 2.5$ A, $I_p < 10 \mu s$, $I_J < 150 ^{\circ}C$)		
Ic	Collector Current	8	A
I _{CM}	Collector Peak Current (t _p < 5 ms)	15	А
I _B	Base Current	4	А
I _{BM}	Base Peak Current (t _p < 5 ms)	8	A
P _{tot}	Total Dissipation at Tc = 25 °C	80	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

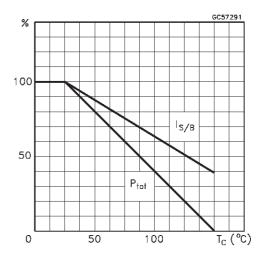
January 2002 1/7

THERMAL DATA

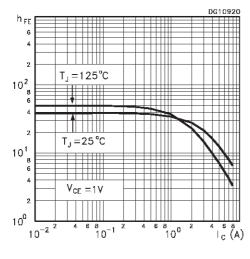
R _{thj-case}	Thermal Resistance Junction-Case	Max	1.56	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

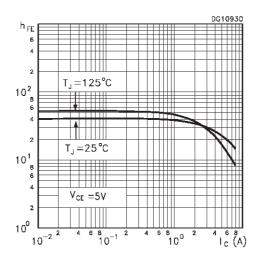

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified)

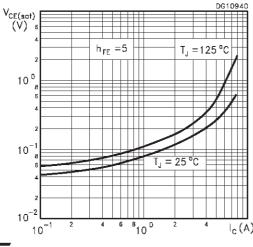
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 500 V V _{CE} = 500 V	T _j = 125 °C			100 500	μA μA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 9 V				100	μА
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 10mA		10		18	V
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 10 mA	L = 25 mH	250			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 2 A I _C = 4 A I _C = 8 A	$I_B = 0.4 A$ $I_B = 0.8 A$ $I_B = 1.6 A$		0.1	0.3 0.6 1.2	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 2 A I _C = 8 A	I _B = 0.4 A I _B = 1.6 A			1.1 1.5	V
h _{FE} *	DC Current Gain	I _C = 10 mA I _C = 0.5 A I _C = 14 A	V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 10 V	10 4		60 10	
t _s	RESISTIVE LOAD Storage Time Fall Time	$I_{C} = 4 \text{ A}$ $I_{B(on)} = -I_{B(off)} = 0$ $t_{p} \ge 30 \mu\text{s}$	V _{CC} = 150 V 0.8 A (see figure 2)	1.2	1.8	2.4 250	μs ns
ts t _f	INDUCTIVE LOAD Storage Time Fall Time	_ ~	$\begin{array}{l} V_{CL} = 200 \text{ V} \\ V_{BE(off)} = -3 \text{ V} \\ t_p \geq 30 \mu s \end{array}$		0.7 50		μs ns
V _f	Diode Forward Voltage	I _C = 5 A				1.5	V

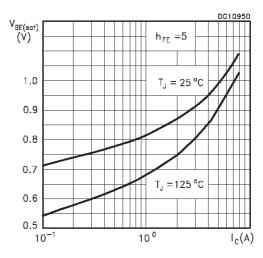

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

2/7

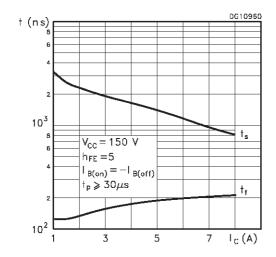

Safe Operating Area


Derating Curve

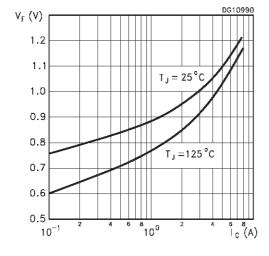

DC Current Gain


DC Current Gain

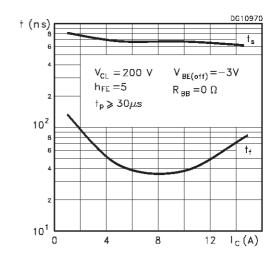
Collector Emitter Saturation Voltage

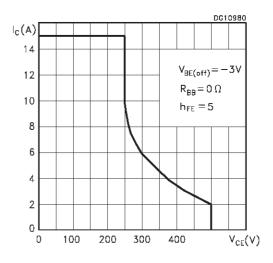


Base Emitter Saturation Voltage



4


Switching Time Resistive Load


Diode Forward Voltage

Switching Time Inductive Load

Reverse Biased SOA

4/7

Figure 1: Inductive Load Switching Test Circuit.

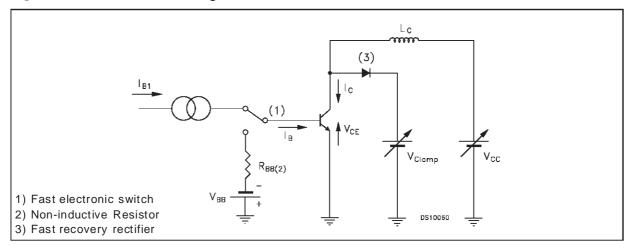
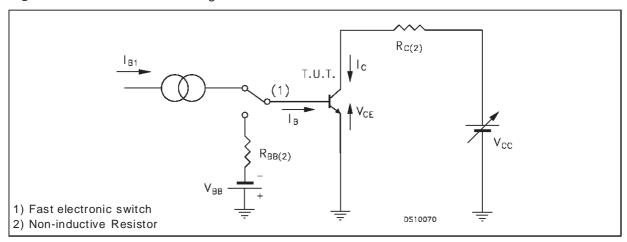
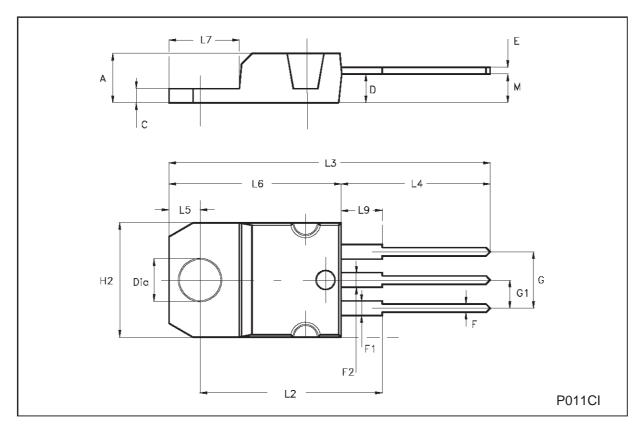




Figure 2: Resistive Load Switching Test Circuit.

TO-220 MECHANICAL DATA

DIM.	mm			inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.052	
D	2.40		2.72	0.094		0.107	
Е	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.202	
G1	2.40		2.70	0.094		0.106	
H2	10.00		10.40	0.394		0.409	
L2		16.40			0.645		
L4	13.00		14.00	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.20		6.60	0.244		0.260	
L9	3.50		3.93	0.137		0.154	
М		2.60			0.102		
DIA.	3.75		3.85	0.147		0.151	

577

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

