128Kx32 SRAM/FLASH MODULE

FEATURES

- Access Times of 25ns (SRAM) and 70, 90 and 120ns (FLASH)
- Packaging:
 - 66-pin, PGA Type, 1.385 inch square HIP, Hermetic Ceramic HIP (Package 402)
- 128Kx32 SRAM
- 128Kx32 5V Flash
- Organized as 128Kx32 of SRAM and 128Kx32 of Flash Memory with common Data Bus
- Low Power CMOS
- Commercial, Industrial and Military Temperature Ranges
- TTL Compatible Inputs and Outputs
- Built-in Decoupling Caps and Multiple Ground Pins for Low Noise Operation
- Weight 13 grams typical

FLASH MEMORY FEATURES

- 10,000 Erase/Program Cycles
- Sector Architecture
 - 8 equal size sectors of 16K bytes each
 - Any combination of sectors can be concurrently erased. Also supports full chip erase
- 5 Volt Programming; 5V ± 10% Supply
- Embedded Erase and Program Algorithms
- Hardware Write Protection
- Page Program Operation and Internal Program Control Time.

Note: Programming information available upon request.

FIGURE 1 - PIN CONFIGURATION FOR WSF128K32-XH2X

White Electronic Designs Corp. reserves the right to change products or specifications without notice

^{*} This product is under development, not fully characterized, and is subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Operating Temperature	TA	-55	+125	°C
Storage Temperature	Tstg	-65	+150	°C
Signal Voltage Relative to GND	V _G	-0.5	7.0	V
Junction Temperature	TJ		150	°C
Supply Voltage	Vcc	-0.5	7.0	V

Parameter	
Flash Data Retention	10 years
Flash Endurance (write/erase cycles)	10,000

NOTE:

 Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	5.5	V
Input High Voltage	ViH	2.2	Vcc + 0.3	V
Input Low Voltage	VIL	-0.5	+0.8	V

SRAM TRUTH TABLE

SCS#	OE#	SWE#	Mode	Data I/O	Power
Н	Х	Х	Standby	High Z	Standby
L	L	Н	Read	Data Out	Active
L	Н	Н	Read	High Z	Active
L	Х	L	Write	Data In	Active

NOTE:

1. FCS# must remain high when SCS# is low.

CAPACITANCE

Ta = +25°C

Parameter	Symbol	Conditions	Max	Unit
OE# capacitance	COE	V _{IN} = 0 V, f = 1.0 MHz	80	pF
F/S WE ₁₋₄ # capacitance	CWE	V _{IN} = 0 V, f = 1.0 MHz	30	pF
F/S CS# capacitance	Ccs	$V_{IN} = 0 V, f = 1.0 MHz$	50	pF
D ₀₋₃₁ capacitance	Cı/o	V _{IN} = 0 V, f = 1.0 MHz	30	pF
A ₀₋₁₆ capacitance	CAD	V _{IN} = 0 V, f = 1.0 MHz	80	pF

This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS

 $V_{CC} = 5.0V$, $V_{SS} = 0V$, $-55^{\circ}C \le T_{A} \le +125^{\circ}C$

Parameter	Symbol	Conditions	Min	Max	Unit
Input Leakage Current	lu	V _{CC} = 5.5, V _{IN} = GND to V _{CC}		10	μA
Output Leakage Current	ILO	SCS# = Vih, OE# = Vih, Vout = GND to Vcc		10	μΑ
SRAM Operating Supply Current x 32 Mode	Iccx32	SCS# = VIL, OE# = FCS# = VIH, f = 5MHz, Vcc = 5.5		670	mA
Standby Current	Isb	FCS# = SCS# = ViH, OE# = ViH, f = 5MHz, Vcc = 5.5		80	mA
SRAM Output Low Voltage	Vol	IoL = 8mA, Vcc = 4.5		0.4	V
SRAM Output High Voltage	Vон	IoH = -4.0mA, Vcc = 4.5	2.4		V
Flash Vcc Active Current for Read (1)	Icc1	FCS# = V _{IL} , OE# = SCS# = V _{IH}		220	mA
Flash Vcc Active Current for Program or Erase (2)	Icc2	FCS# = V _{IL} , OE# = SCS# = V _{IH}		280	mA
Flash Output Low Voltage	Vol	IoL = 8.0mA, Vcc = 4.5		0.45	V
Flash Output High Voltage	Voн1	Iон = -2.5 mA, Vcc = 4.5	0.85 x Vcc		V
Flash Output High Voltage	Voн2	Ioн = -100 μA, Vcc = 4.5	Vcc -0.4		V
Flash Low Vcc Lock Out Voltage	VLKO		3.2		V

NOTES

- The lcc current listed includes both the DC operating current and the frequency dependent component (@ 5 MHz).
 The frequency component typically is less than 2 mA/MHz, with OE# at V_{IH}.
- 2. Icc active while Embedded Algorithm (program or erase) is in progress.
- 3. DC test conditions: V_{IL} = 0.3V, V_{IH} = V_{CC} 0.3V

SRAM AC CHARACTERISTICS

 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter Read Cycle	Symbol	Min	-25 Min Max	
Read Cycle Time	t _{RC}	25		ns
Address Access Time	taa		25	ns
Output Hold from Address Change	tон	0		ns
Chip Select Access Time	tacs		25	ns
Output Enable to Output Valid	toE		15	ns
Chip Select to Output in Low Z	tcLZ ¹	3		ns
Output Enable to Output in Low Z	toLz1	0		ns
Chip Disable to Output in High Z	tcHz1		12	ns
Output Disable to Output in High Z	tonz1		12	ns

^{1.} This parameter is guaranteed by design but not tested.

SRAM AC CHARACTERISTICS

 $V_{CC} = 5.0V, -55^{\circ}C \le T_{A} \le +125^{\circ}C$

Parameter Write Cycle	Symbol	-2 Min	25 Max	Units
Write Cycle Time	twc	25		ns
Chip Select to End of Write	tcw	20		ns
Address Valid to End of Write	taw	20		ns
Data Valid to End of Write	tow	15		ns
Write Pulse Width	twp	20		ns
Address Setup Time	tas	3		ns
Address Hold Time	tан	0		ns
Output Active from End of Write	tow1	3		ns
Write Enable to Output in High Z	twnz1		15	ns
Data Hold from Write Time	tон	0		ns

^{1.} This parameter is guaranteed by design but not tested.

FIGURE 2 - AC TEST CIRCUIT

AC Test Conditions

Parameter	Тур	Unit
Input Pulse Levels	VIL = 0, VIH = 3.0	V
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	V
Output Timing Reference Level	1.5	V

Notes:

Vz is programmable from -2V to +7V.

I_{OL} & I_{OH} programmable from 0 to 16mA.

Tester Impedance Z0 = 75 Ω .

 V_{Z} is typically the midpoint of V_{OH} and $V_{\text{OL}}.$

 $I_{\text{OL}}\,\&\,I_{\text{OH}}\,\text{are}$ adjusted to simulate a typical resistive load circuit.

ATE tester includes jig capacitance.

FIGURE 3 - SRAM TIMING WAVEFORM - READ CYCLE

FIGURE 4 - SRAM WRITE CYCLE - SWE# CONTROLLED

FIGURE 5 - SRAM WRITE CYCLE - SCS# CONTROLLED

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

FLASH AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS, FWE# CONTROLLED

 $V_{CC} = 5.0V, -55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter	Syn	Symbol		70		90		20	Unit
			Min	Max	Min	Max	Min	Max	
Write Cycle Time	tavav	twc	70		90		120		ns
Chip Select Setup Time	telwl	tcs	0		0		0		ns
Write Enable Pulse Width	twLwH	twp	45		45		50		ns
Address Setup Time	tavwl	tas	0		0		0		ns
Data Setup Time	tovwh	tos	45		45		50		ns
Data Hold Time	twndx	tон	0		0		0		ns
Address Hold Time	twlax	tан	45		45		50		ns
Chip Select Hold Time	twhen	tсн	0		0		0		ns
Write Enable Pulse Width High	twnwL	twph	20		20		20		ns
Duration of Byte Programming Operation (min)	twnwh1		14		14		14		μs
Chip and Sector Erase Time	twnwh2		2.2	60	2.2	60	2.2	60	sec
Read Recovery Time Before Write	tghwl		0		0		0		μs
V _{CC} Set-up Time		tvcs	50		50		50		μs
Chip Programming Time				12.5		12.5		12.5	sec
Output Enable Setup Time		toes	0		0		0		ns
Output Enable Hold Time (1)		tоен	10		10		10		ns

^{1.} For Toggle and Data# Polling.

FLASH AC CHARACTERISTICS - READ ONLY OPERATIONS

 $V_{CC} = 5.0V, -55^{\circ}C \le T_{A} \le +125^{\circ}C$

Parameter	Syn	nbol	-7 Min	70 Max	-9 Min	00 Max	-1 Min	20 Max	Unit
Read Cycle Time	tavav	t _{RC}	70		90		120		ns
Address Access Time	tavqv	tacc		70		90		120	ns
Chip Select Access Time	tELQV	tce		70		90		120	ns
OE# to Output Valid	tglqv	toE		35		40		50	ns
Chip Select to Output High Z (1)	tehqz	tor		20		25		30	ns
OE# High to Output High Z (1)	tgнаz	tor		20		25		30	ns
Output Hold from Address, FCS# or OE# Change, whichever is first	taxqx	tон	0		0		0		ns

^{1.} Guaranteed by design, not tested.

FLASH AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS, FCS# CONTROLLED

 $V_{CC} = 5.0V, -55^{\circ}C \le T_{A} \le +125^{\circ}C$

Parameter	Syn	nbol	Min	70 Max	-g Min	00 Max	-1 Min	20 Max	Unit
Write Cycle Time	tavav	twc	70		90		120		ns
FWE# Setup Time	twlel	tws	0		0		0		ns
FCS# Pulse Width	teleh	tcp	35		45		50		ns
Address Setup Time	tavel	tas	0		0		0		ns
Data Setup Time	toven	tos	30		45		50		ns
Data Hold Time	tehox	t _{DH}	0		0		0		ns
Address Hold Time	telax	tah	45		45		50		ns
FWE# Hold from FWE# High	tehwh	twн	0		0		0		ns
FCS# Pulse Width High	tehel	tсрн	20		20		20		ns
Duration of Programming Operation	twnwh1		14		14		14		μs
Duration of Erase Operation	twhwh2		2.2	60	2.2	60	2.2	60	sec
Read Recovery before Write	tghel		0		0		0		ns
Chip Programming Time				12.5		12.5		12.5	sec

FIGURE 6 - AC WAVEFORMS FOR FLASH MEMORY READ OPERATIONS

FIGURE 7 – WRITE/ERASE/PROGRAM OPERATION, FLASH MEMORY FWE# CONTROLLED

NOTES:

- 1. PA is the address of the memory location to be programmed.
- 2. PD is the data to be programmed at byte address.
- 3. D7# is the output of the complement of the data written to the device.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles of four bus cycle sequence.
- SCS# = VIH

FIGURE 8 – AC WAVEFORMS CHIP/SECTOR ERASE OPERATIONS FOR FLASH MEMORY

FIGURE 9 – AC WAVEFORMS FOR DATA# POLLING DURING EMBEDDED ALGORITHM OPERATIONS FOR FLASH MEMORY

FIGURE 10 – WRITE/ERASE/PROGRAM OPERATION FOR FLASH MEMORY, CS# CONTROLLED

NOTES:

- 1. PA represents the address of the memory location to be programmed.
- 2. PD represents the data to be programmed at byte address.
- 3. D7# is the output of the complement of the data written to the device.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates the last two bus cycles of a four bus cycle sequence.
- 6. SCS# = VIH

PACKAGE 402: 66 PIN, PGA TYPE, CERAMIC HEX-IN-LINE PACKAGE, HIP (H2)

ALL LINEAR DIMENSIONS ARE MILLIMETERS AND PARENTHETICALLY IN INCHES

ORDERING INFORMATION

White Electronic Designs Corp. reserves the right to change products or specifications without notice.