Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M61041FP

4-Battery Version, No Reset Pin

REJ03F0063-0100Z Rev.1.0 Sep.19.2003

This product is currently under development, and its specifications, pin assignments, etc., are subject to change.

Description

The M61041FP is an semiconductor IC device developed for smart battery packs. It incorporates all the analog circuitry required by smart batteries in a single chip. When used in conjunction with a microprocessor, it allows the implementation of a variety of functions, such as battery capacity detection, through the addition of minimal peripheral devices and is ideal for smart battery system (SBS) battery packs.

The M61041FP also has an on-chip overcurrent detect circuit so that the FET for controlling battery charging and discharging is protected regardless of the processing speed of the microprocessor.

The microprocessor can change the amplifier gain of the charge/discharge current detect circuit, so battery capacity detection accuracy is increased. In addition, the M61041FP incorporates a linear regulator that allows it to function as the power supply for the microprocessor, thereby simplifying power supply block design.

Features

- On-chip high-gain op-amp for monitoring charge and discharge current.
- On-chip overcurrent detect circuit to protect FET.
- Charge/discharge FET can be controlled from microprocessor.
- Power-save function for reducing current consumption.
- 5.2 V operation to reduce microprocessor current consumption.
- High-voltage device (absolute maximum rating: 33 V).

Application

• Smart battery system (SBS) battery packs

This product is currently under development, and its specifications, pin assignments, etc., are subject to change.

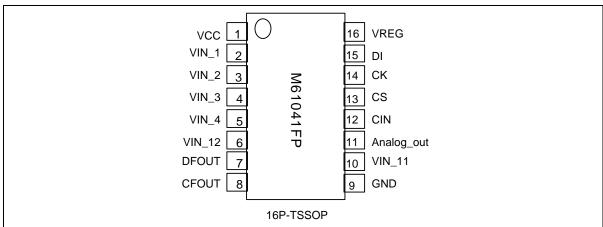


Figure 1 Pin Connection Diagram (Top View)

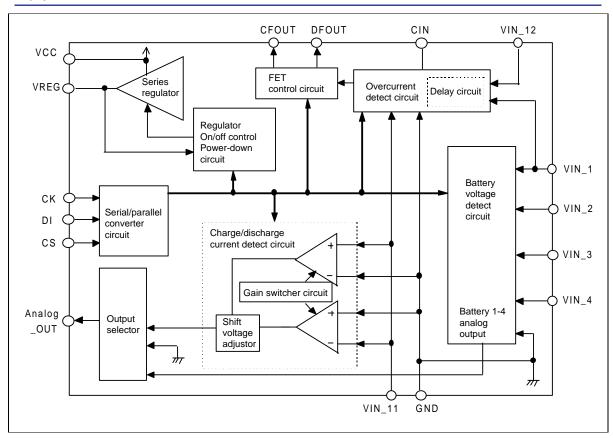


Figure 2 Block Diagram

Pin Function Description

Table 1

Pin No.	Symbol	Function
1	Vcc	The chip's power supply pin. Power is supplied by the charger or the battery.
2	VIN_1	Positive input pin for lithium ion battery 1.
3	VIN_2	Negative input pin for lithium ion battery 1. Positive input pin for lithium ion battery 2.
4	VIN_3	Negative input pin for lithium ion battery 2. Positive input pin for lithium ion battery 3.
5	VIN_4	Negative input pin for lithium ion battery 3. Positive input pin for lithium ion battery 4.
6	VIN_12	Charger connect monitor pin. Detects changes from power-down status.
7	DFOUT	Output pin for discharge FET on/off signals. Also turns off when overcurrent detected.
8	CFOUT	Output pin for charge FET on/off signals.
9	GND	Ground pin. Negative input pin for lithium ion battery 4. Connected to charge/discharge
		current sensor resistor.
10	VIN_11	Charge/discharge current monitor pin. Connected to charge/discharge current sensor
:		resistor.
11	Analog_OUT	Output pin for analog signals.
12	CIN	Capacity connection pin for setting overcurrent prevention delay time.
13	CS	When this pin is low level, data input is accepted and data can be stored in a 6-bit shift
		register. At the rising edge from low to high the value in the 6-bit shift register is
		latched.
14	CK	Shift clock input pin. At the rising edge to high the input signal from the DI pin is input to
		the 6-bit shift register.
15	DI	Shift data input pin. Serial data with a data length of 6 bits may be input via this pin.
16	Vreg	Power supply pin for microprocessor. Power can be shut off using a signal from the
		microprocessor.

Operation

The M61041FP is an semiconductor IC device developed for smart battery packs. It is ideal for smart battery system (SBS) battery packs that consist of four lithium ion batteries connected in series. A high-voltage device, it is suitable for use with a wide variety of charger systems.

It incorporates all the analog circuitry required by smart batteries in a single chip. When used in conjunction with a microprocessor, it allows the implementation of a variety of functions, such as battery capacity detection, through the addition of minimal peripheral devices. The functions of the M61041FP are described below.

1. Battery Voltage Detect Circuit

The M61041FP can output the voltage levels of the batteries connected in series via the Analog_out pin. An on-chip buffer amplifier monitors the pin voltages of the batteries. Offset voltage correction using adjustment by the microprocessor is also supported. The M61041FP is configured to detect the battery voltage using a microprocessor driven using a power supply voltage of 5.2 V.

2. Charge/Discharge Current Detect Circuit

SBS requires a function for monitoring the battery capacity. The M61041FP uses an on-chip amplifier to monitor battery capacity based on a drop in the voltage of an external sensor resistor. In this way, the charge/discharge current is converted into a voltage.

The voltage amplification ratio can be adjusted from the microprocessor. In addition, the current output shift voltage can be adjusted from the microprocessor, widening the allowable dynamic range of the A/D converter.

3. Overcurrent Detect Circuit

The M61041FP has an on-chip overcurrent detect circuit. If an excessive current flows from the lithium ion batteries, the discharge control FET is shut off after a set delay time, halting discharge. This makes the battery pack safer. The delay time can be set using an external capacitor. It is possible to determine the overcurrent detect status by monitoring the CIN pin. The overcurrent detect circuit provides protection regardless of the processing speed of the microprocessor.

4. Series Regulator

The M61041FP has an on-chip low-dropout series regulator. It can be used as the power supply for the microprocessor, thereby simplifying power supply block design.

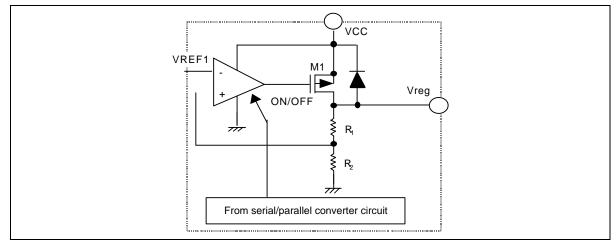


Figure 3 Series Regulator

5. Power-Save Function

The M61041FP is equipped with a power-save function.

When the battery voltage is being monitored a portion of the charge/discharge current monitor circuit automatically stops operating, and when the charge/discharge current is being monitored the battery voltage monitor circuit automatically stops operating. This helps prevent unnecessary power consumption. In addition, current consumption is further reduced by setting the analog output selector to ground potential output when in the standby mode.

Transition to Power-Down Mode

When the microprocessor determines that the battery voltage has dropped it sends a power-down instruction via the interface circuit. When it receives the instruction, the M61041FP's DFOUT pin switches to high voltage. In addition, the VIN_12 pin is pulled down to low level by an internal resistor. When the VIN_12 pin goes to low potential after reception of the power-down instruction, output from the series regulator stops, switching the M61041FP into power-down mode.

At this point the operation of the circuitry is completely halted. In this status CFOUT is high level and DFOUT is high level (external charge/discharge prohibited status). The maximum current consumption of the M61041FP is $1.0 \, \mu A$ in order to prevent any further drop in the battery voltage.

Cancellation of Power-Down Mode

If the battery pack is connected to a charger when the M61041FP is in the power-down mode (VIN_12 becomes high level), the series regulator immediately begins to operate. The power-down mode is canceled, and once again the M61041FP is ready to receive instructions from the microprocessor.

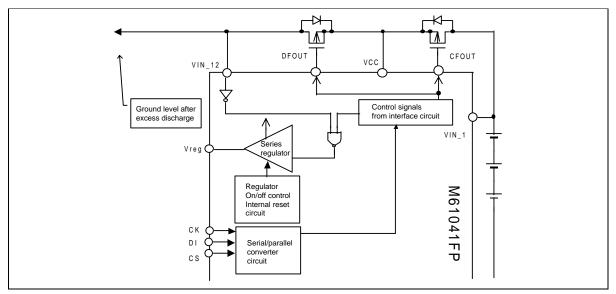
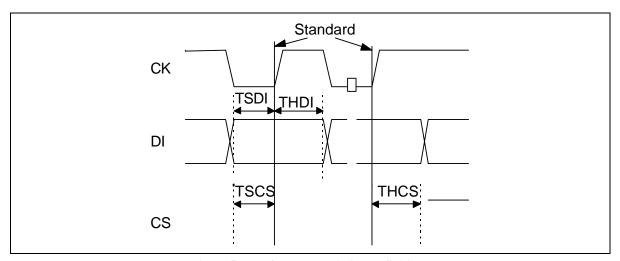



Figure 4 Operation After Excess Discharge Detection

Absolute Maximum Ratings

Table 2

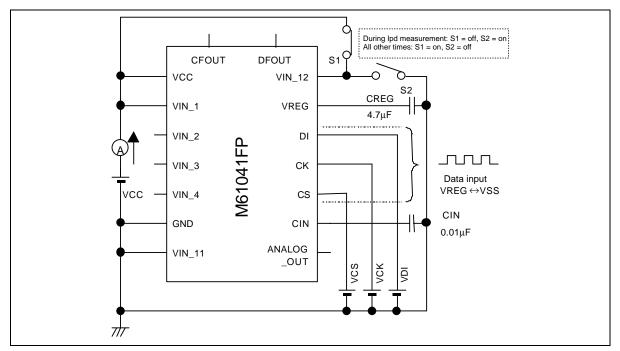
Item	Symbol	Rated Value	Unit	Conditions
Absolute maximum rating	Vabs	33	V	
Power supply voltage	Vcc	30	V	
Allowable loss	PD	500	mW	
Ambient operating temperature	Topr1	-20 to +85	°C	
Storage temperature	Tstg	-40 to +125	°C	

Figure 5 Interface Block Timing Definitions

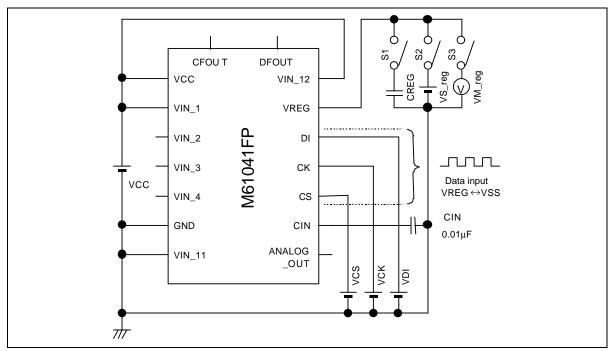
Electrical Characteristics

Table 3

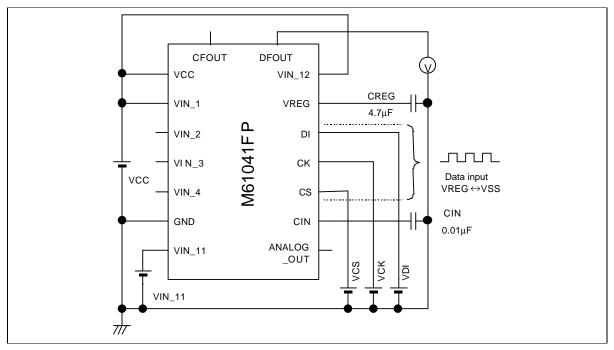
 $(Ta = 25^{\circ}C, Vcc = 14 \text{ V unless otherwise specified})$

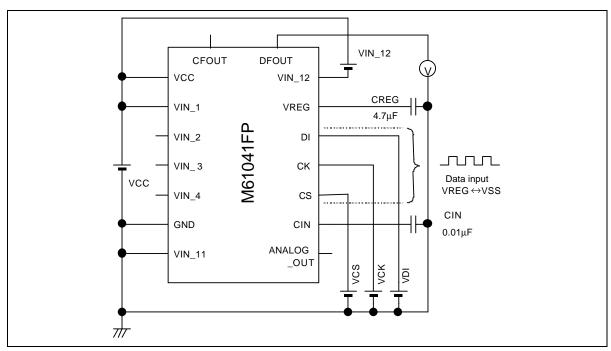

			Rated Value						
Block	Item	Symbol	Min.	Тур.	Max.	Unit	Circuit	Command	Conditions
All	Power supply voltage	Vsup	_	_	30	V	1	_	
	Circuit current	Isup1	60	150	215	μΑ	1	1	During charge/discharge current monitoring
	Circuit current	Isup2	55	140	200	μА	1	2	During battery voltage monitoring
	Circuit current	Isup3	25	80	115	μΑ	1	3	During ground output (initial status)
	Circuit current (power-down mode)	lpd	_	_	0.5	μА	1	4	All circuits halted, VIN_12 = GND
Regulator	Output voltage	Vreg	5.075	5.2	5.325	V	2	_	Vcc = 14V, lout = 20mA
	Input stability	∆Vout10	_	60	100	mV	2	_	Vcc = 6.2V to 24V, $lout = 20mA$
	Load stability	ΔVout20	_	30	50	mV	2	_	Vcc = 6.2V, lout = 0.1mA to 20mA
	Input voltage (VCC pin)	VIN0	6.2	_	30	V	2	_	
Overcurrent detect	Overcurrent prevention voltage 1	Vd1	0.18	0.2	0.22	V	3	5	
	Overcurrent prevention voltage 2	Vd2	Vcc/3×0.6	Vcc/3	Vcc/3×1.4	V	4	5	Load short detected
	Overcurrent prevention delay time 1	Tvd1	7	10	15	ms	3	5	CICT = 0.01μF
	Overcurrent prevention delay time 2	Tvd2	150	250	350	μѕ	4	5	
Battery voltage	Input offset voltage 1	Voff1	31	206	385	mV	5	6	
detect	Voltage amplification ratio 1	Gamp1	0.99	1.0	1.01	_	5	7	
	Output source current capacity	Isource1	150	_	_	μА	6	8	
	Output sink current capacity	Isink1	150	_	_	μА	6	9	
	Maximum detect battery voltage	Vmo_max	4.64	_	_	V	5	_	(Vreg-Voff1)/Gamp 1

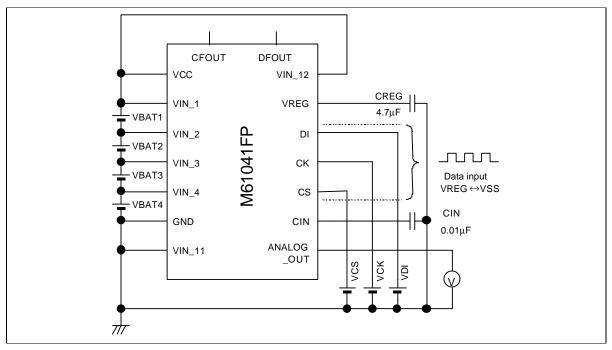
			Rated Value						
Block	Item	Symbol	Min.	Тур.	Max.	Unit	Circuit	Command	Conditions
Charge/ discharge	Input offset voltage	Voff2	1.0	2.4	3.8	V	7	10*	Gain = 200
current detect	Voltage amplification ratio 21	Gain21	38.4	40	41.6		7	11*	
	Voltage amplification ratio 22	Gain22	96	100	104		7	12*	
	Voltage amplification ratio 23	Gain23	192	200	208		7	13*	
	Current output shift voltage 1	Vios1	0.96	1.04	1.12	V	7	14*	
	Current output shift voltage 2	Vios2	1.93	2.08	2.23	V	7	15*	
	Current output shift voltage 3	Vios3	2.91	3.12	3.33	V	7	16*	
	Current output shift voltage 4	Vios4	3.49	3.74	3.99	V	7	17*	
	Output source current capacity	Isource2	150	_	_	μΑ	8	18*	
	Output sink current capacity	Isink2	150	_	_	μΑ	8	18*	
Interface	DI input H voltage	VDIH	Vreg-0.5	_	Vreg	V	9	_	
	DI input L voltage	VDIL	0	_	0.5	V	9	_	
	CS input H voltage	VCSH	Vreg-0.5	_	Vreg	V	9	_	
	CS input L voltage	VCSL	0	_	0.5	V	9	_	
	CK input H voltage	VCKH	Vreg-0.5	_	Vreg	V	9	_	
	CK input L voltage	VCKL	0	_	0.5	V	9	_	
	DI setup time	TSDI	600		_	ns	9	_	
	DI hold time	THDI	600	_	_	ns	9	_	
	CS setup time	TSCS	600	_	_	ns	9	_	
	CS hold time	THCS	600	_	_	ns	9	_	

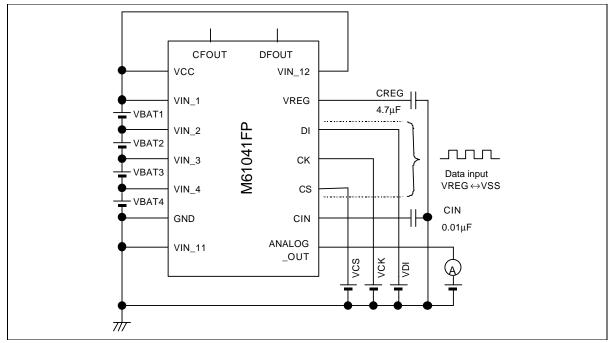

Refer to figures 1 to 9 for the circuits and to table 4 for the command sequences used for measurement.

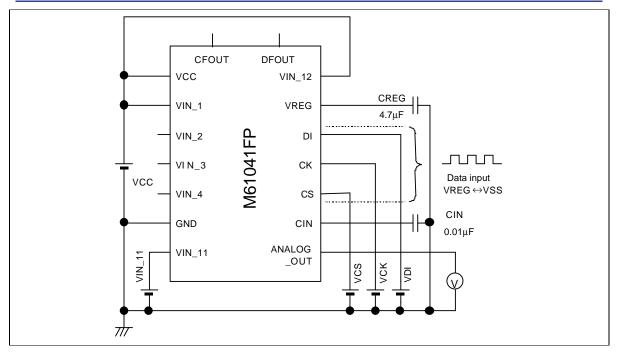
^{*} For the charge/discharge current detect block, different command sequences are used during charging and discharging.

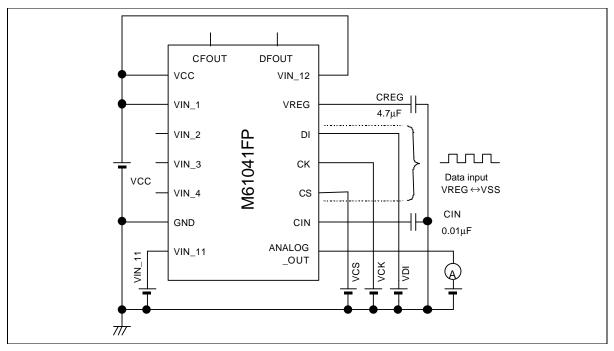

Measurement Circuit Diagrams

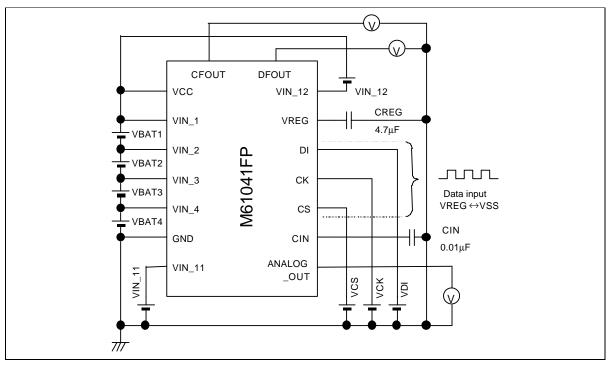

Circuit 1


Circuit 2


Circuit 3


Circuit 4


Circuit 5


Circuit 6

Circuit 7

Circuit 8

Circuit 9

Table 4 Command Sequences Used for Measuring Rated Values

No	Command Sequence	VIN_11 Input	
1	$(00)_8 \rightarrow (24)_8 \rightarrow (31)_8 \rightarrow (43)_8 \rightarrow (52)_8$	90mV	
2	$(00)_8 \rightarrow (13)_8 \rightarrow (43)_8 \rightarrow (51)_8$	0mV	
3	(00) ₈	0mV	
4	$(00)_8 \rightarrow (71)_8$	0mV	
5	$(00)_8 \rightarrow (43)_8$	0mV	
6	$(00)_8 \rightarrow (51)_8 \rightarrow (14)_8 \rightarrow (15)_8 \rightarrow (16)_8 \rightarrow (17)_8$	0mV	
7	$(00)_8 \rightarrow (51)_8 \rightarrow (10)_8 \rightarrow (11)_8 \rightarrow (12)_8 \rightarrow (13)_8$	0mV	
8	$(00)_8 \to (51)_8 \to (13)_8$	0mV	
9	$(00)_8 \to (51)_8 \to (17)_8$	0mV	
10	$(00)_8 \rightarrow (43)_8 \rightarrow (52)_8 \rightarrow (37)_8$	0mV	
11	$(00)_{_8} \rightarrow (43)_{_8} \rightarrow (52)_{_8} \rightarrow (31)_{_8} \rightarrow (35)_{_8}$	90mV	
12	$(00)_8 \rightarrow (43)_8 \rightarrow (52)_8 \rightarrow (32)_8 \rightarrow (36)_8$	25mV	
13	$(00)_8 \rightarrow (43)_8 \rightarrow (52)_8 \rightarrow (33)_8 \rightarrow (37)_8$	3mV	
14	$(00)_8 \rightarrow (43)_8 \rightarrow (52)_8 \rightarrow (31)_8 \rightarrow (24)_8$	90mV	
15	$(00)_{_8} \rightarrow (43)_{_8} \rightarrow (52)_{_8} \rightarrow (31)_{_8} \rightarrow (25)_{_8}$	90mV	
16	$(00)_{_8} \rightarrow (43)_{_8} \rightarrow (52)_{_8} \rightarrow (31)_{_8} \rightarrow (26)_{_8}$	90mV	
17	$(00)_8 \rightarrow (43)_8 \rightarrow (52)_8 \rightarrow (31)_8 \rightarrow (27)_8$	90mV	
18	$(00)_{_8} \rightarrow (43)_{_8} \rightarrow (52)_{_8} \rightarrow (31)_{_8}$	45mV	

Notes: 1. Indications such as (00)₈ show the address and data, in that order, of the serial data from the microprocessor in octal notation.

- 2. Numbers 10 to 17 are command sequences used during charging. For the commands used during discharging, substitute (53), for (52),
- 3. During measurement, the voltage listed in table 4 should be input to VIN_11. When measuring during charging, the specified voltage should be input to VIN_11 as a negative voltage. The specified voltage should be input to VIN_11 as a positive voltage during discharging.

Description of Circuit Blocks

(1) Battery Voltage Detect Circuit

As shown in figure 6, the battery voltage detect circuit block of the M61041FP consists of switches, a buffer amplifier, a reference voltage circuit, and a logic circuit.

When the voltage to be detected is selected, based on serial data from the microprocessor, the appropriate switch connections are determined by the logic circuit. The voltages Vbat1, Vbat2, Vbat3, and Vbat4 from the batteries connected to the M61041FP, multiplied by Gamp1 (1.0), are output from the Analog_out pin. It is also possible to output an offset voltage.

In the power-save mode all the switches are turned off, so the current consumption of this circuit block is zero.

Note: The settling time of this circuit block after voltage changes is about $50 \mu s$.

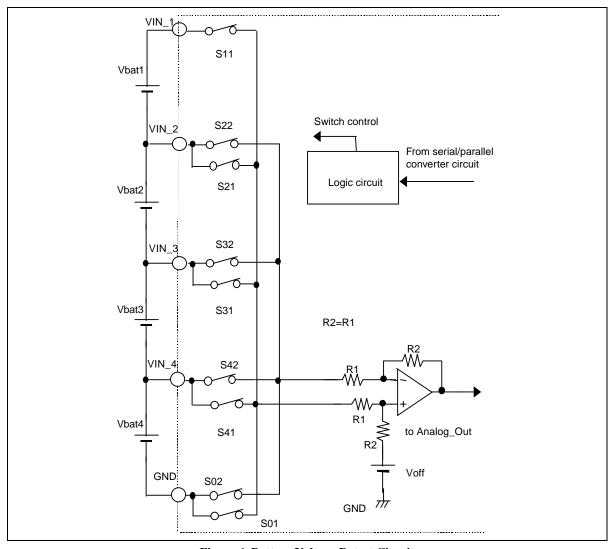


Figure 6 Battery Voltage Detect Circuit

Battery Voltage Monitoring Method

To select battery voltage detection, serial data $(51)_8$ is sent from reset status $(00)_8$. The V1 battery voltage (Vin1) is output from the analog output pin by sending $(10)_8$. Next, $(14)_8$ is sent to switch the analog output pin from the V1 battery voltage to the V1 offset voltage (Voff1). The actual voltage (Vbat1) can be obtained by the microprocessor by calculating $\underline{\text{Vbat1}} = \underline{(\text{Vin1} - \text{Voff1}) / \text{Gamp}}$. The same method can be used for Vbat2 to Vbat4 in order to monitor the battery voltage with a high degree of accuracy.

(2) Charge/Discharge Current Detect Block

As shown in figure 7, the charge/discharge current detect block of the M61041FP consists of a preamplifier current output shift voltage adjustment circuit, a buffer amplifier, and dividing resistors.

The voltage difference indicated by the sensor resistor is amplified to the ground reference voltage by the preamplifier. The gain can be switched using serial signals from the microprocessor. The output is impedance converted by the buffer amplifier.

It is also possible to switch the current detect shift voltage using the microprocessor.

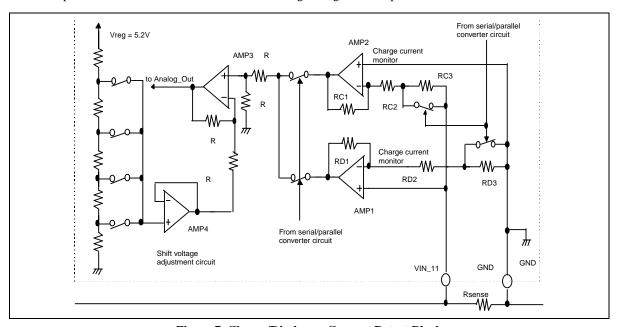


Figure 7 Charge/Discharge Current Detect Block

Figure 8 illustrates the circuit block's operation during discharge current detection. The discharge current flows into Rsense, and any voltage drop that occurs is applied to the positive terminal of the amplifier (AMP1). The amplifier's gain can be increased by an instruction from the microprocessor, making it possible to monitor even minute discharge currents with high accuracy.

To allow monitoring of the charge current, the voltage generated by VIN_11 is inverted and amplified before being output. The other aspects use the same operating principle as that described above.

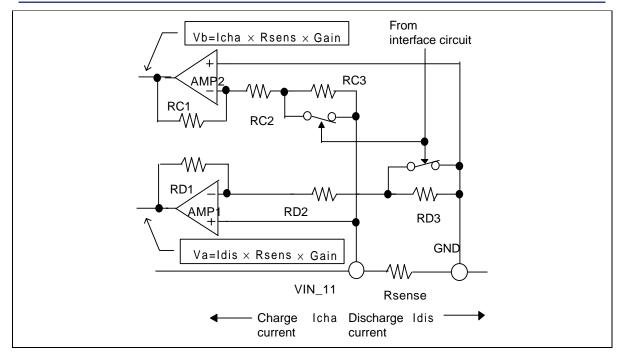


Figure 8 Charge/Discharge Current Detect Explanation Diagram

(3) Overcurrent Detect Circuit Block

As shown in figure 9, the overcurrent detect circuit block of the M61041FP consists of a comparator, a reference voltage circuit, and a delay circuit.

The detection voltage can be adjusted by trimming, making possible highly accurate voltage detection in conjunction with a sensor resistor. In addition, it is possible to determine when the M61041FP is in overcurrent detect status by monitoring the CIN pin using the microprocessor.

The M61041FP is also equipped with a simplified load detect circuit. Based on the status of the Vin12 pin it is possible to provide protection with a shorter delay time than when using overcurrent detection.

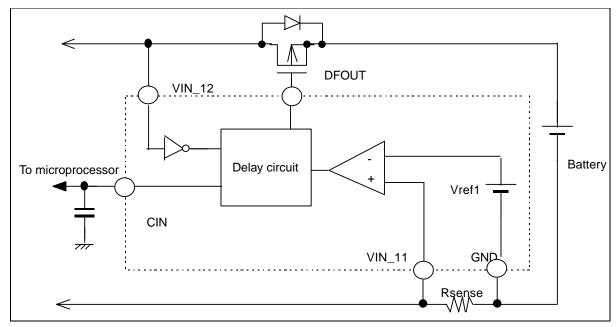


Figure 9 Overcurrent Detect Circuit Block

(4) Series Regulator

The series regulator circuit is shown in figure 10. A Pch MOS transistor is used as the output control transistor. The output voltage is adjusted by the M61041FP internally, so no external devices, such as resistors, are required.

Note: Due to the structure of the control transistor a parasite diode is formed between VCC and Vreg. This means that the M61041FP can be destroyed by reverse current if the Vreg potential exceeds VCC. Consequently, Vreg should be limited to VCC + 0.3 V or less.

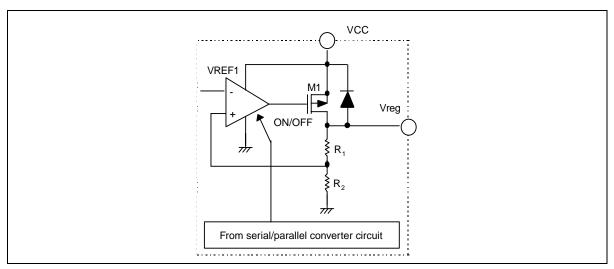


Figure 10 Series Regulator

Digital Data Format

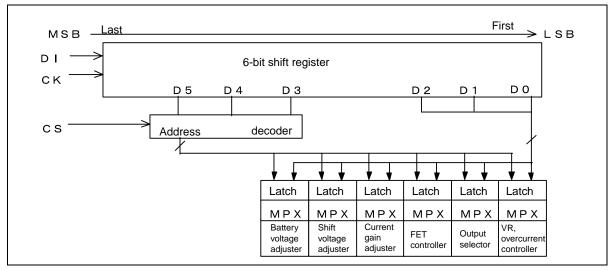


Figure 11 Serial/Parallel Converter Circuit Block Diagram

Data Timing Diagram (Model)



Figure 12 Serial/Parallel Converter Circuit Timing Chart

Data Content

Table 5

	Addre	ess	Data				
Setting Data	D5	D4	D3	D2	D1	D0	Content
Reset	0	0	0	_	_	_	
Battery voltage selector	0	0	1	_	_	_	See table 8
Current output shift voltage adjuster	0	1	0	_		_	See table 9
Current monitor gain adjuster	0	1	1	_		_	See table 10
FET controller	1	0	0	_	_	_	See table 11
Output selector	1	0	1	_		_	See table 12
Regulator	1	1	1	_	_	_	See table 13
Overcurrent detection controller							

Data Content

Table 6 Battery Voltage Selector

D5 to D3	D2	D1	D0	Output Voltage	Note
001	0	0	0	V1 voltage	Selected after reset
001	0	0	1	V2 voltage	
001	0	1	0	V3 voltage	
001	0	1	1	V4 voltage	
001	1	0	0	V1 offset voltage	
001	1	0	1	V2 offset voltage	
001	1	1	0	V3 offset voltage	
001	1	1	1	V4 offset voltage	

[•] V1 voltage is selected after reset.

Table 7 Current Output Shift Voltage Adjuster

D5 to D3	D2	D1	D0	Current Output Shift Voltage Value	Note
010	0	0	0	0 V (no shift voltage)	Selected after reset
010	0	0	1	0 V (no shift voltage)	
010	0	1	0	0 V (no shift voltage)	
010	0	1	1	0 V (no shift voltage)	
010	1	0	0	1V	Vreg/25×5
010	1	0	1	2V	Vreg/25×10
010	1	1	0	3V	Vreg/25×15
010	1	1	1	3.6V	Vreg/25×18

[•] No current output shift voltage after reset.

Table 8 Charge/Discharge Current Detector

D5 to D3	D2	D1	D0	Output Gain Switch	Note
011	0	0	0	Amplifier off	Selected after reset
011	0	0	1	40x (current value output)	
011	0	1	0	100× (current value output)	
011	0	1	1	200× (current value output)	
011	1	0	0	Amplifier off	Same as after reset
011	1	0	1	40x (offset output)	
011	1	1	0	100× (offset output)	
011	1	1	1	200× (offset output)	

[•] Amplifier off after reset.

Table 9 FET Controller

D5 to D3	D2	D1	D0	CFOUT	DFOUT	Note
100	0	0	0	High	High	Selected after reset
100	0	0	1	Low	High	
100	0	1	0	High	Low	
100	0	1	1	Low	Low	
100	1	0	0	Don't care	Don't care	
100	1	0	1	Don't care	Don't care	
100	1	1	0	Don't care	Don't care	
100	1	1	1	Don't care	Don't care	

[•] DFOUT and CFOUT pins set to off after reset. (Current control FET is off when output is high level.)

Table 10 Output Selector

D5 to D3	D2	D1	D0	Output Selection	Note		
101	0	0	0	Ground output	Selected after reset		
101	0	0	1	Battery voltage value output			
101	0	1	0	Charge current value output			
101	0	1	1	Discharge current value output			
101	1	0	0	Don't care			
101	1	0	1	Don't care			
101	1	1	0	Don't care			
101	1	1	1	Don't care			

[•] Ground potential output after reset.

Table 11 Regulator, Overcurrent Detection Controller

D5 to D3	D2	D1	D0	Voltage Regulator Output	Overcurrent Detect Circuit	Note
111	0	0	0	ON	ON	Selected after reset
111	0	0	1	OFF	OFF	Both circuits off
111	0	1	0	ON	CIN pin fixed low	Overcurrent circuit off
111	0	1	1	ON	CIN pin fixed high	Overcurrent circuit off
111	1	0	0	Don't care	Don't care	_
111	1	0	1	Don't care	Don't care	_
111	1	1	0	Don't care	Don't care	
111	1	1	1	Don't care	Don't care	

[•] Regulator output and overcurrent circuit both on after reset.

Note: A setting of 111001 caused the M61041FP to transition to the power-down mode. However, transition to the power-down mode does not occur when connected to a charger (VIN_12 is high level).

Timing Charts

Charging Sequence

Figure 13 Charging Sequence

Discharge Sequence

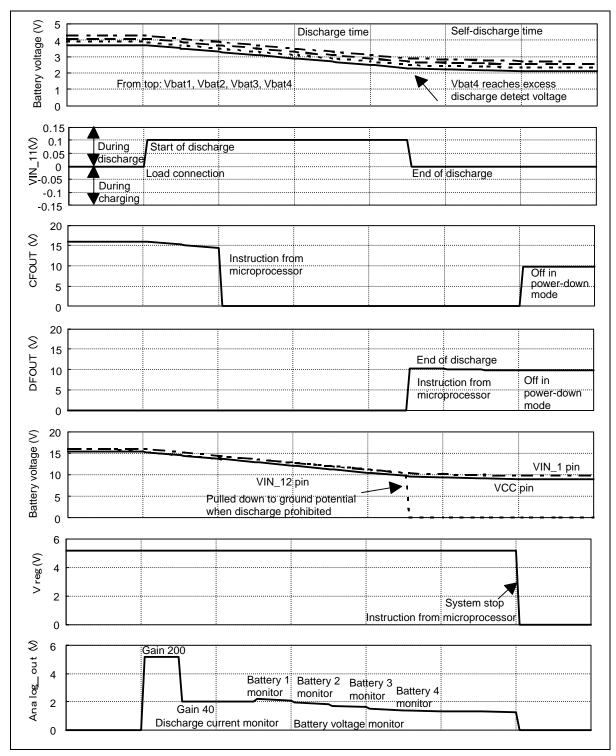
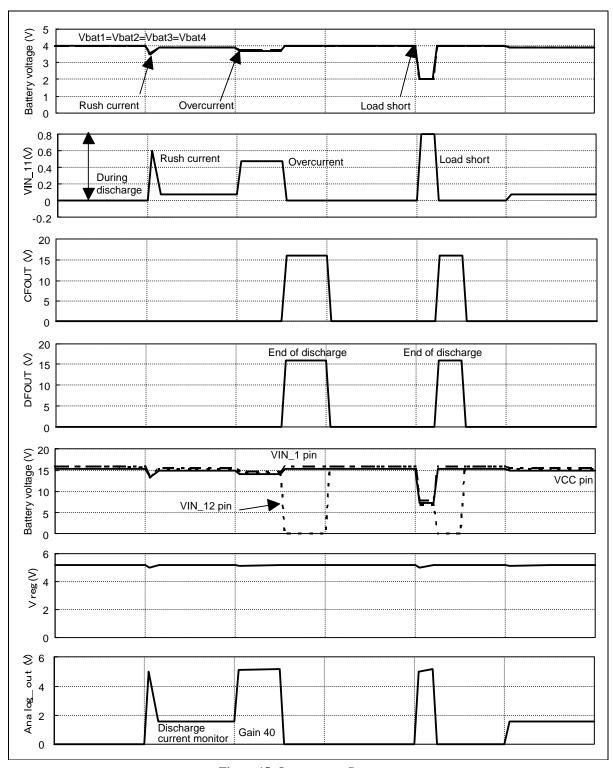
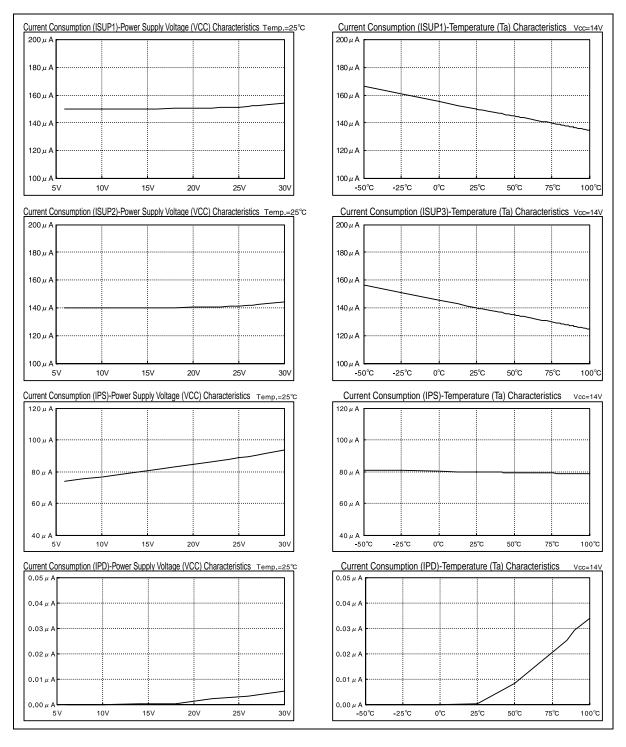
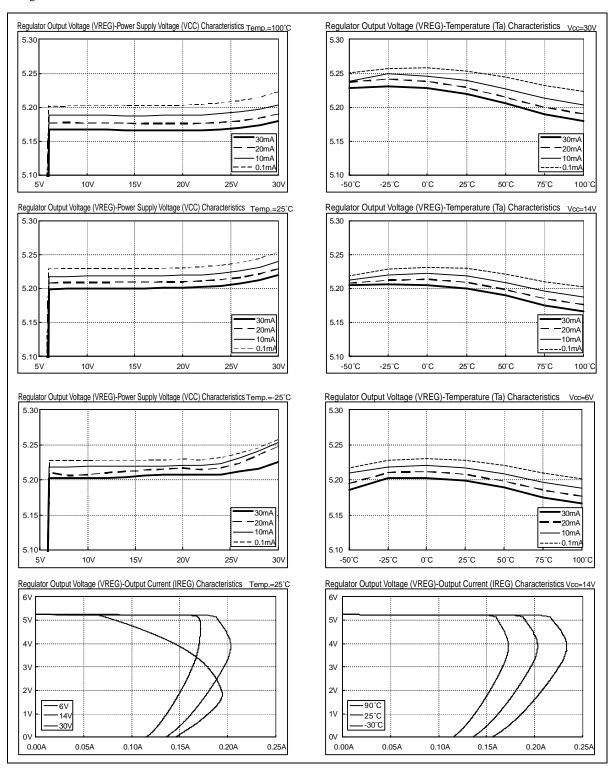


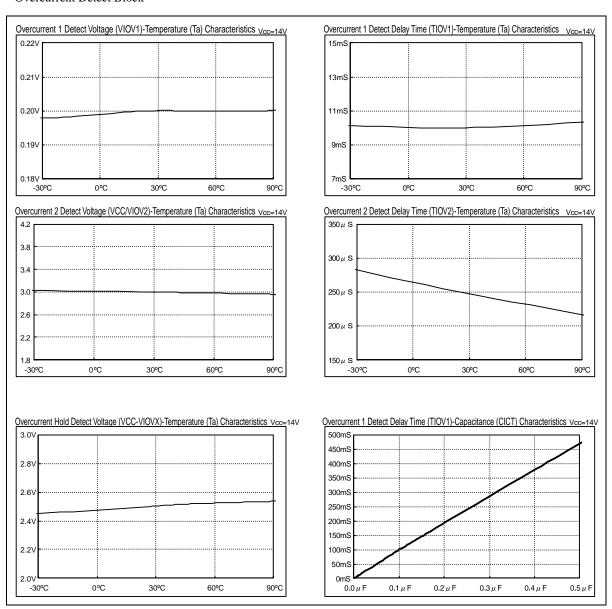
Figure 14 Discharge Sequence

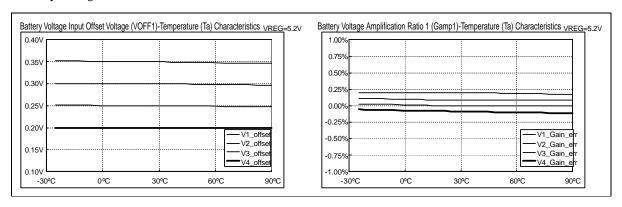
Overcurrent Sequence

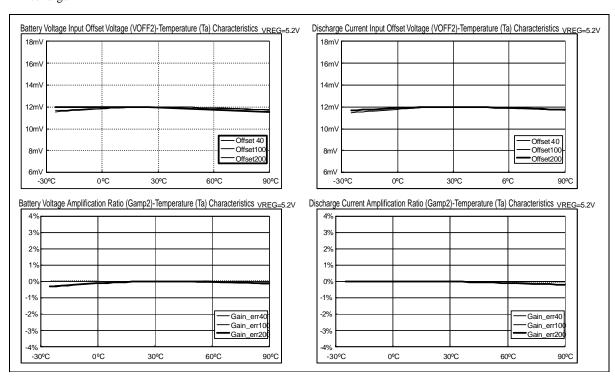




Figure 15 Overcurrent Sequence

Principal Item Characteristics


Overall


Regulator Block


Overcurrent Detect Block

Battery Voltage Detect Block

Discharge XXXXX

Sample Application Circuit

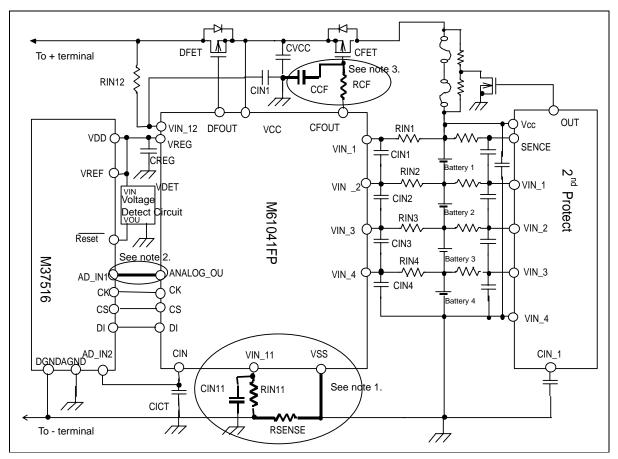


Figure 16 Sample Application Circuit

Notes on Circuit Board Design

- The current sensor resistor (RSENSE) should be located adjacent to the VSS and VIN_11 pins of the M61041FP. In addition, no circuitry other than that recommended above should be added between the M61041FP and RSENSE. Any extraneous current flow in this channel could result in errors when measuring the charge and discharge currents.
- 2. The load capacitance of the ANALOG_OUT pin, including parasite capacitance, should be no more than 10 pF. If a capacitor of more than 10 pF is connected, the output from ANALOG_OUT may begin to oscillate.
- 3. Power supply fluctuations during overcurrent detection and when connected to a charger may cause the M61041FP to reset. It is possible to prevent incorrect operation by connecting a CR filter to the control signal of the charge control FET.

Table 12 External Device Constants

Device	Symbol	Purpose	Recommen ded Value	Min.	Max.	Notes
Pch MOSFET	DFET	Discharge control	_	_	_	_
Pch MOSFET	CFET	Charge control	_	_	_	_
Resistor	RIN1	ESD countermeasure	10Ω	_	1kΩ	1) Values differ among RIN2 to RIN4.
Capacitor	CIN1	Power supply fluctuation countermeasure	0.22μF	_	1.0μF	-
Resistor	RIN2	ESD countermeasure	1kΩ	_	1ΜΩ	_
Capacitor	CIN2	Power supply fluctuation countermeasure	0.22μF	_	1.0μF	
Resistor	RIN3	ESD countermeasure	1kΩ	_	1ΜΩ	2) RIN2 and CIN2 should be set to the
Capacitor	CIN3	Power supply fluctuation countermeasure	0.22μF	_	1.0μF	same value.
Resistor	RIN4	ESD countermeasure	1kΩ	_	1ΜΩ	2) RIN2 and CIN2 should be set to the
Capacitor	CIN4	Power supply fluctuation countermeasure	0.22μF	_	1.0μF	same value.
Resistor	RIN11	Power supply fluctuation countermeasure	100Ω	_	200Ω	The upper value for confirmation of overcurrent operation should be adjusted as necessary.
Capacitor	CIN11	Power supply fluctuation countermeasure	0.1μF	_	1.0μF	
Resistor	RIN12	Charger reverse connection countermeasure	10kΩ	300Ω	100kΩ	The upper value for confirmation of overcurrent operation should be adjusted as necessary.
Capacitor	CIN12	Power supply fluctuation countermeasure	0.01μF	_	0.1μF	-
Capacitor	CVCC	Power supply fluctuation countermeasure	0.22μF	_	_	_
Sensor resistor	RSENSE	Charge/discharge current monitoring	20mΩ	_	_	_
Capacitor	CICT	Delay time setting	0.01μF	_	0.47μF	_
Capacitor	CREG	Output voltage fluctuation countermeasure	4.7μF	0.47μF	_	_
Resistor	RCF	Power supply fluctuation countermeasure	1kΩ	500Ω	_	 The upper value for confirmation of overcurrent operation should be adjusted as necessary.
Capacitor	CCF	Power supply fluctuation countermeasure	0.1μF	0.047μF	_	-

Note: When designing applications, due consideration should be given to safety.

Package Dimensions

16P2X

Note: Please contact Renesas Technology Corporation for further details.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

The pastery in a survival circula designs; and the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss resident product product of the responsibility of the information of the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances i

- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com