High Power 2×4 Antenna Switch MMIC with Integrated Control Logic

Description

The CXG1090EN is a high power antenna switch MMIC. This IC is suited to connect $T x / R x$ to one of 4 antennas in cellular handset such as PDC.
The CXG1090EN has the integrated control logic and can be operated with CMOS input.
This IC is designed using the Sony's GaAs J-FET process which enable the CXG1090EN to be operated with low voltage.

Features

- Low insertion loss: 0.30 dB (Typ.)@900MHz, 0.40 dB (Typ.)@1.5GHz
- Small package: 16-pin VSON
- High power handling: PI dB: 37dBm
- CMOS compatible input control
- Low bias voltage: VDD $=3.0 \mathrm{~V}$

Applications

2×4 antenna switch for digital cellular telephones such as PDC handsets

Structure

GaAs J-FET MMIC

Absolute Maximum Ratings

- Bias voltage	Vdd	7	V @Ta $=25^{\circ} \mathrm{C}$
- Control voltage	VctL	5	V @Ta $=25^{\circ} \mathrm{C}$
- Operating temperature	Topr	-35 to +85	${ }^{\circ} \mathrm{C}$
- Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$

Note on Handling

GaAs MMICs are ESD sensitive devices. Special handling precautions are required. operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram

Pin Configuration

Recommended Circuit

* DC blocking capacitors (CRF) are needed.
* Recommended to use bypass capacitors (Cbypass).
* Recommended to use control resistors (RCTL), when it is necessary to improve the electrostatic discharge strength (ESD).

Truth Table

Control			ON	F1	F2	F3	F4	F5	F6	F7	F8
CTLA	CTLB	CTLC									
H	L	L	RF3 \rightarrow RF2	OFF	ON	OFF	ON	OFF	OFF	ON	ON
H	L	H	RF3 \rightarrow RF4	ON	OFF	ON	OFF	OFF	OFF	ON	ON
L	L	L	RF5 \rightarrow RF2	ON	OFF	ON	OFF	OFF	OFF	ON	ON
L	L	H	RF5 \rightarrow RF4	OFF	ON	OFF	ON	OFF	OFF	ON	ON
L	H	L	RF5 \rightarrow RF6	OFF	OFF	OFF	OFF	ON	OFF	OFF	ON
L	H	H	RF5 \rightarrow RF1	OFF	OFF	OFF	OFF	OFF	ON	ON	OFF

DC Bias Condition
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Min.	Typ.	Max.	Unit
VстL (H) A to C	2.4		3.6	V
VctL (L) A to C	0		0.8	V
VdD	2.8		3.2	V

Electrical Characteristics 1
$\left(\mathrm{VctL}(\mathrm{L})=0 \mathrm{~V}, \operatorname{VctL}(\mathrm{H})=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item		Frequency	Condition	Min.	Typ.	Max.	Unit
Insertion loss	RF3-RF2	889 to 960 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{V} D \mathrm{D}=2.8$ to 3.0 V		0.32	0.55	dB
	RF3-RF4	889 to 960 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V		0.30	0.55	dB
	RF5-RF2	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{Vdd}=2.8$ to 3.0 V		0.55	0.85	dB
	RF5-RF4	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V		0.55	0.85	dB
	RF5-RF1	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V		0.5	0.8	dB
	RF5-RF6	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{Vdd}=2.8$ to 3.0 V		0.5	0.8	dB
Isolation	RF3-RF2	889 to 960 MHz	Pin $=29.5 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	17	19		dB
	RF3-RF4	889 to 960 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{Vdd}=2.8$ to 3.0 V	17	21		dB
	RF5-RF2	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	17	21		dB
	RF5-RF4	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	17	19		dB
	RF5-RF1	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	31	38		dB
	RF5-RF6	810 to 885 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	24	29		dB
VSWR	Each ON Port	810 to 960 MHz				1.4	
ACP ($\pm 50 \mathrm{kHz}$)	RF3-RF2	889 to 960 MHz	Pin $=29.5 \mathrm{dBm}, \mathrm{VDD}=3.0 \mathrm{~V}^{* 1}$		-67	-57	dBc
	RF3-RF4		Pin $=29.5 \mathrm{dBm}, \mathrm{VDD}=2.8 \mathrm{~V}^{* 1}$		-67	-55	dBc
ACP $(\pm 100 \mathrm{kHz})$	RF3-RF2	889 to 960 MHz	Pin $=29.5 \mathrm{dBm}, \mathrm{VdD}=3.0 \mathrm{~V}^{* 1}$		-75	-65	dBc
	RF3-RF4		Pin $=29.5 \mathrm{dBm}, \mathrm{VdD}=2.8 \mathrm{~V}^{* 1}$		-75	-62	dBc
2nd harmonics	RF3-RF2	889 to 960 MHz	Pin $=29.5 \mathrm{dBm}, \mathrm{VDD}=3.0 \mathrm{~V}^{* 1}$		-67	-60	dBc
	RF3-RF4		Pin $=29.5 \mathrm{dBm}, \mathrm{VdD}=2.8 \mathrm{~V}^{* 1}$		-67	-57	dBc
3nd harmonics	RF3-RF2	889 to 960 MHz	Pin $=29.5 \mathrm{dBm}, \mathrm{VdD}=3.0 \mathrm{~V}^{* 1}$		-67	-60	dBc
	RF3-RF4		Pin $=29.5 \mathrm{dBm}, \mathrm{VDD}=2.8 \mathrm{~V}^{* 1}$		-67	-57	dBc
Control current					85	150	$\mu \mathrm{A}$
Bias current			V dD $=3.0 \mathrm{~V}$		0.45	1	mA
			$\mathrm{V} D \mathrm{D}=2.8 \mathrm{~V}$		0.4	0.9	mA
Switching speed					1.0	5.0	$\mu \mathrm{s}$

*1 Input signal: ACP $(\pm 50 \mathrm{kHz})<-65 \mathrm{dBc}, \mathrm{ACP}(\pm 100 \mathrm{kHz})<-75 \mathrm{dBc}$,
2nd harmonics $<-65 \mathrm{dBc}$, 3rd harmonics $<-65 \mathrm{dBc}$

Electrical Characteristics 2
$\left(\mathrm{VctL}(\mathrm{L})=0 \mathrm{~V}, \mathrm{VctL}(\mathrm{H})=3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item		Frequency	Condition	Min.	Typ.	Max.	Unit
Insertion loss	RF3-RF2	1429 to 1453 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V		0.40	0.70	dB
	RF3-RF4	1429 to 1453 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{Vdd}=2.8$ to 3.0 V		0.40	0.70	dB
	RF5-RF2	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{Vdd}=2.8$ to 3.0 V		0.65	0.95	dB
	RF5-RF4	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V		0.65	0.95	dB
	RF5-RF1	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{Vdd}=2.8$ to 3.0 V		0.60	0.90	dB
	RF5-RF6	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V		0.60	0.90	dB
Isolation	RF3-RF2	1429 to 1453 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	12	15		dB
	RF3-RF4	1429 to 1453 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{Vdd}=2.8$ to 3.0 V	15	18		dB
	RF5-RF2	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	15	18		dB
	RF5-RF4	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	13	16		dB
	RF5-RF1	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	35	40		dB
	RF5-RF6	1477 to 1501 MHz	Pin $=7 \mathrm{dBm}, \mathrm{VdD}=2.8$ to 3.0 V	20	25		dB
VSWR	$\begin{array}{\|l} \hline \text { Each ON } \\ \text { Port } \end{array}$	1429 to 1501 MHz				1.4	
ACP ($\pm 50 \mathrm{kHz}$)	RF3-RF2	1429 to 1453 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VDD}=3.0 \mathrm{~V}^{* 1}$		-67	-55	dBc
	RF3-RF4		$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VDD}=2.8 \mathrm{~V}^{* 1}$		-67	-53	dBc
ACP $(\pm 100 \mathrm{kHz})$	RF3-RF2	1429 to 1453 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VDD}=3.0 \mathrm{~V}^{* 1}$		-75	-65	dBc
	RF3-RF4		Pin $=29.5 \mathrm{dBm}, \mathrm{VDD}=2.8 \mathrm{~V}^{* 1}$		-75	-62	dBc
2nd harmonics	RF3-RF2	1429 to 1453 MHz	$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VdD}=3.0 \mathrm{~V}^{* 1}$		-67	-60	dBc
	RF3-RF4		$\mathrm{Pin}=29.5 \mathrm{dBm}, \mathrm{VDD}=2.8 \mathrm{~V}^{* 1}$		-67	-57	dBc
3nd harmonics	RF3-RF2	1429 to 1453MHz	Pin $=29.5 \mathrm{dBm}, \mathrm{VdD}=3.0 \mathrm{~V}^{* 1}$		-67	-57	dBc
	RF3-RF4		Pin $=29.5 \mathrm{dBm}, \mathrm{V} D \mathrm{D}=2.8 \mathrm{~V}{ }^{* 1}$		-67	-55	dBc
Control current					85	150	$\mu \mathrm{A}$
Bias current			$\mathrm{VdD}=3.0 \mathrm{~V}$		0.45	1	mA
			$\mathrm{V} D \mathrm{D}=2.8 \mathrm{~V}$		0.4	0.9	mA
Switching speed					1.0	5.0	$\mu \mathrm{s}$

*1 Input signal: ACP $(\pm 50 \mathrm{kHz})<-65 \mathrm{dBc}, \mathrm{ACP}(\pm 100 \mathrm{kHz})<-75 \mathrm{dBc}$,
2nd harmonics $<-65 \mathrm{dBc}$, 3rd harmonics $<-65 \mathrm{dBc}$

Package Outline
Unit: mm

16PIN VSON(PLASTIC)

-

Kokubu Ass'y

