Panasonic

AN5101NSC

VIF/SIF IC for TV and VCR

■ Overview

The AN5101NSC is a VIF/SIF signal processing IC for TV and VCR. Reduction of sound noise and improvement of picture quality have been realized by adoption of the gated PLL detection system.

■ Features

- Reduction of buzz-beat (sound noise) when receiving for sound multiplex broadcasting service
- Improvement of video over-modulation characteristics
- Built-in equalizing amplifier which enables the correction of video frequency characteristics.
- Low power consumption (5 V, 46.5 mA)
- Respond to diversity antenna

Applications

• TV and VCR

■ Block Diagram

AN5101NSC ICs for TV

■ Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Supply pin V _{CC1} (AFC output use)	17	SIF input pin
2	AFC output pin	18	GND pin (for VCO)
3	VIF AGC filter pin	19	VCO coil pin
4	Supply pin V _{CC2} (for main)	20	VCO coil pin
5	RF AGC delay adjustment pin	21	Supply pin V _{CC3} (for VCO)
6	VIF input pin	22	QIF detection output pin
7	VIF input pin	23	APC detection output pin
8	GND pin (for main)	24	VCO control pin
9	QIF input pin	25	APC time-constant switchover pin
10	QIF input pin	26	Lock detection pin
11	N.C.	27	Video detection output pin
12	QIF AGC filter pin	28	Feed back pin
13	Audio output pin	29	Sync. signal separation use pin
14	SIF coil pin	30	AFC coil pin
15	SIF coil pin	31	AFC coil pin
16	RF AGC output pin	32	Vertical sync. signal separation use pin

■ Absolute Maximum Ratings

Parameter	Symbol		Rating	Unit
Supply voltage	V _{CC}	V_{CC2}, V_{CC3}	5.6	V
	dille	V _{CC1}	12.5	
Circuit voltage	V _{16-8, 18}		0 to 12.5	V
	V _{25-8, 18}		0 to 12.5	
Supply current	I _{CC}	$I_{CC2} + I_{CC3}$	63.0	mA
4000		I _{CC1}	1.8	
Power dissipation	P _D		376	mW
Operating ambient temperature*1	Topr		-30 to + 85	°C
Storage temperature *1	$T_{ m stg}$		-55 to + 150	°C

Note) Don't supply current and voltage from external for not described pins.

The circuit current show that (+) flows into the IC and (-) flows out from the IC.

^{*1:} All parameter values except for the power dissipation, the operating ambient temperature and the storage temperature are $T_a = 25$ °C.

ICs for TV AN5101NSC

■ Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	V_{CC2}, V_{CC3}	4.5 to 5.3	V
Supply voltage	V _{CC1}	V _{CC2} , V _{CC3} to 12.2	V
Circuit voltage	V _{2-8, 18}	0 to V _{1-8, 18}	V
Circuit voltage	V _{3-8, 18}	0 to V _{4, 21-8, 18}	V
Circuit voltage	V _{5-8, 18}	0 to V _{4, 21-8, 18}	V
Circuit voltage	V _{12-8, 18}	0 to V _{4, 21-8, 18}	V
Circuit voltage	V _{32-8, 18}	0 to V _{4, 21-8, 18}	V
Circuit current	I ₆ , I ₇	-1.0 to 0.05	mA
Circuit current	I ₉ , I ₁₀	-1.0 to 0.05	mA
Circuit current	I ₁₃	-5.0 to 0.3	mA
Circuit current	I ₁₄ , I ₁₅	-1.0 to 0.05	mA
Circuit current	I ₁₆	0 to 3	mA
Circuit current	I ₁₇	-1.0 to 0.3	mA
Circuit current	I_{22}	-5.0 to 5.0	mA
Circuit current	I ₂₃	- 0.2 to 0.2	mA
Circuit current	I ₂₅	0 to 1.0	mA
Circuit current	I ₂₇	-5.0 to 1.0	mA
Circuit current	I ₂₈	- 0.1 to 0.1	mA
Circuit current	I_{29}	-1.0 to 0	mA
Circuit current	I ₃₀ , I ₃₁	-1.0 to 0.05	mA

■ Electrical Characteristics at $V_{CC} = 5 \text{ V}$, $T_a = 25^{\circ}\text{C}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit			
VIF amp. det. block									
Video detection output	V _{O27}	Standard color signal (with white color) m= 87.5%, υ_{IN} = 80 dB μ	1.7	2.0	2.3	V[p-p]			
Video frequency characteristics	f_C	Attenuation amount at 8 MHz	-4.0	- 1.0	+0	dB			
Sync. peak voltage	V _P		1.1	1.3	1.5	V			
PLL block	PLL block								
APC pull-in range high	f _{PH}		1.0	_	_	MHz			
APC pull-in range low	f_{PL}		_	_	-1.0	MHz			
VCO control sensitivity	β	V ₂₄ = 2.3 V to 2.5 V	1.5	2.0	2.5	kHz/mV			

AN5101NSC ICs for TV

\blacksquare Electrical Characteristics at $V_{CC}=5$ V, $T_a=25^{\circ}C$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
AGC block						
RF AGC operation sensitivity	v_{RFAGC}		0	1.0	3.0	dB
RF AGC max. pull-in current	I _{16max}	By the DC characteristics measurement method	1.5	2.1	2.7	mA
RF AGC min. pull-in current	I _{16min}	By the DC characteristics measurement method	-3.0	0	3.0	μА
AFC block						
AFC discrimination sensitivity	μ_{AFC}	$R_L=150 \text{ k}\Omega/150 \text{ k}\Omega$	18	26	34	mV/kHz
AFC center voltage	I_2	By the DC characteristics measurement method	5.0	6.0	7.0	V
AFC max. output voltage	V _{2max}	$f = f_0 - 500 \text{ kHz}$	10.5	11.2	_	V
AFC min. output voltage	V_{2min}	$f = f_0 + 500 \text{ kHz}$		0.7	1.5	V
QIF amp. det.block	•			10		'
Q- det. output level	υ _{QDET}		95	100	105	dΒμ
SIF block			1/1/6			-
Audio detection output	V _{O13}	$f_{O} = 4.5 \text{ MHz}, v_{IN} = 100 \text{ dB}\mu,$ $\Delta f = \pm 25 \text{ kHz}, f_{M} = 400 \text{ Hz}, R_{D} = 6.8 \text{ k}\Omega$	327	385	443	mV[rms]
DC characteristics						
Circuit current 1 (pin 4, pin 21)	I ₄ + I ₂₁	By the DC characteristics measurement method	36.5	46.5	56.5	mA
Circuit current 2 (pin 1)	I ₁	By the DC characteristics measurement method	0.8	1.1	1.4	mA
VIF input pin voltage	V_6, V_7	By the DC characteristics measurement method	2.6	3.0	3.4	V
QIF input pin voltage	V ₉ , V ₁₀	By the DC characteristics measurement method	2.6	3.0	3.4	V
Audio output pin voltage	V ₁₃	By the DC characteristics measurement method	1.5	2.0	2.5	V
SIF coil pin voltage	V ₁₄ , V ₁₅	By the DC characteristics measurement method	4.0	4.2	4.5	V
SIF input pin voltage	V ₁₇	By the DC characteristics measurement method	1.2	1.5	1.8	V
VCO coil pin voltage	V ₁₉ , V ₂₀	By the DC characteristics measurement method	2.7	3.2	3.7	V
Q-det. output pin voltage	V ₂₂	By the DC characteristics measurement method	2.5	2.9	3.3	V
VCO control pin voltage	V ₂₄	By the DC characteristics measurement method	2.0	2.45	2.9	V
APC time-constant switchover pin	V ₂₅	By the DC characteristics measurement method	4.5	5.0	_	V
Video detection output pin voltage	V ₂₇	By the DC characteristics measurement method	3.2	3.7	4.2	V
AFC coil pin voltage	V ₃₀ , V ₃₁	By the DC characteristics measurement method	2.4	2.8	3.2	V
Mis		SIEBER HILL				

ICs for TV AN5101NSC

\blacksquare Electrical Characteristics at $V_{CC}=5$ V, $T_a=25^{\circ}C$ (continued)

• Design reference data

Note) The following values are typical and not guaranteed values.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
VIF amp. det. block							
Input sensitivity	υ_{SV}	$V_{O27} = -3 dB$	_	42	46	dΒμ	
Maximum allowable input	υ_{maxV}		97	102	_	dΒμ	
SN ratio	S/N		50	55	_	dB	
Differential gain	DG		_	2	5	%	
Differential phase	DP			2	5	deg	
Black noise detection level	ΔV_{BN}	$V_{BN}-V_{P}$		- 0.85	~ © .	V	
White noise clamp level	ΔV_{WNC}	V_{WNC} – V_{P}		-1.9	0	V	
Intermodulation	IM		45	50	_	dB	
Input resistance (pin 6)	R _{I6}		7.70	1.2	_	kΩ	
Input capacitance (pin 6)	C _{I6}		<u>Ç</u>	3.2	_	pF	
Output resistance (pin 27)	R _{O27}		<u> </u>	10	_	Ω	
PLL block		17.				•	
VCO max. variable range 1	Δf_{VU}	V ₂₄ =1.0 V	1.8	_	_	MHz	
VCO max. variable range 2	Δf_{VD}	$V_{24} = 4.0 \text{ V}$	_	_	-1.8	MHz	
VCO frequency SW on drift	Δf_{VON}	3 minutes after swich-on	- 0.1	0	+ 0.1	MHz	
VCO frequency temperature drift	$\Delta f_{ m VT}$	−20°C to +70°C	160	- 0.2	16 J	MHz	
VCO reference oscillation level	$v_{ m VCO}$	(62. 32. Styling 861.)	100	106	112	dΒμ	
VCO 2nd harmonics wave level	v_{VCO2}	I TO THE WAY THE TO THE	16	70	0-11	dΒμ	
AGC block		100 in 10	J.	dic	*		
RF AGC delay point temperature drift	$\Delta v_{ m RFDT}$	−20°C to +70°C	100	5+1		dB	
Noise canceller operation voltage (W)	$\Delta V_{NC(W)}$	$V_{NC(W)}$ – V_P	12	2.6	_	V	
Noise canceller operation voltage (B)	$\Delta V_{NC(B)}$	$V_{NC(B)}$ – V_P	_	- 0.85	_	V	
IF AGC filter charge current	I _{3C}	ist wh	-15.0	- 8.5	- 4.0	μΑ	
IF AGC filter discharge current	I _{3D}	25° 140'.	340	470	600	μΑ	
AFC block							
AFC defeat SW operation voltage	V _{AFC-SW}			0.9	_	V	

AN5101NSC ICs for TV

■ Electrical Characteristics at $T_a = 25$ °C (continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit			
QIF amp. det. block									
Input sensitivity	$v_{ m SQ}$	$v_{QDET} = -3 \text{ dB}$	_	46	50	dΒμ			
Max. allowable input	υ_{maxQ}		99	104	_	dΒμ			
Input resistance (pin 9)	R _{I9}	f = 54.25 MHz	_	1.2	_	kΩ			
Input capacitance (pin 9)	C _{I9}	f = 54.25 MHz	_	3.2	_	pF			
Output resistance (pin 22)	R _{O22}	f = 4.5 MHz	_	170	_	Ω			
SIF block									
Input limiting voltage	$\upsilon_{\mathrm{I(LIM)}}$	$V_{O13} = -3 \text{ dB}$	_	37		dΒμ			
AM rejection ratio	AMR	$v_{\rm IN} = 90 \text{ dB}\mu$	45	55	1000 C	dB			
Total harmonic distortion	THD		_	0.15	_	%			
Input resistance (pin 17)	R ₁₁₇	f = 4.5 MHz	_ (1.1	_	kΩ			
Input capacitance (pin 17)	C _{I17}	f = 4.5 MHz	146	8.0	_	pF			
Detector input resistance (pin 13)	R _{I13}	f = 4.5 MHz		10	_	kΩ			
Detector input capacitance (pin 13)	C _{I13}	f = 4.5 MHz	_	25	_	pF			
Output resistance (pin 12)	R _{O12}	f = 500 MHz	_	400	_	Ω			

■ Application Circuit Example

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.