

Die Datasheet

GA01PNS150-CAU

Silicon Carbide PiN Diode Chip

 V_{RRM} = 15000 V $I_F @ 25 °C$ = 1 A

Features

- 15 kV blocking
- 210 °C operating temperature
- Fast turn off characteristics
- Soft reverse recovery characteristics
- Ultra-Fast high temperature switching

Die Size = 2.4 mm x 2.4 mm

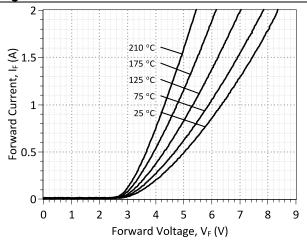
REACH

Advantages

- Highest voltage rectifier commercially available
- Reduced stacking
- Reduced system complexity/Increased reliability

Applications

- Voltage Multiplier
- Ignition/Trigger Circuits
- Oil/Downhole
- Lighting
- Defense


Maximum Ratings at T_j = 210 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		15	kV
Continuous forward current	I _F		1	Α
RMS forward current	I _{F(RMS)}		0.5	Α
Operating and storage temperature	T_{j} , T_{stg}		-55 to 210	°C

Electrical Characteristics at T_j = 210 °C, unless otherwise specified

Symbol	Conditions		Values		Unit
Syllibol	Conditions	min.	typ.	max.	Unit
V-	$I_F = 1 \text{ A}, T_j = 25 ^{\circ}\text{C}$		6.4		V
VF	I _F = 1 A, T _j = 210 °C		4.3		V
1	$V_R = 15 \text{ kV}, T_j = 25 \text{ °C}$		1	20	^
IR	$V_R = 15 \text{ kV}, T_j = 210 ^{\circ}\text{C}$			100	μΑ
O _{rr}		V	558		nC
S 11	$dI_{-}/dt = 70 \text{ A/us}$.,			
t_s	$T_{\rm c} = 210 {\rm °C}$ $V_{\rm R} = 1000$	V	< 236		ns
			22		
С			4		pF
			3		
Q_{C}	V _R = 1000 V, f = 1 MHz, T _i = 25 °	С	4.5		nC
	С	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{min.} \\ V_F & I_F = 1 \text{ A, } T_j = 25 \text{ °C} \\ I_F = 1 \text{ A, } T_j = 210 \text{ °C} \\ \end{array}$ $\begin{array}{c} I_R & V_R = 15 \text{ kV, } T_j = 25 \text{ °C} \\ V_R = 15 \text{ kV, } T_j = 25 \text{ °C} \\ \end{array}$ $\begin{array}{c} Q_{rr} & I_F \leq I_{F,MAX} \\ dI_F/dt = 70 \text{ A/µs} \\ T_j = 210 \text{ °C} & I_F = 1.5 \text{ A} \\ \end{array}$ $\begin{array}{c} V_R = 1000 \text{ V} \\ I_F = 1.5 \text{ A} \\ \end{array}$ $\begin{array}{c} V_R = 1 \text{ V, } f = 1 \text{ MHz, } T_j = 25 \text{ °C} \\ \end{array}$ $\begin{array}{c} V_R = 1000 \text{ V, } f = 1 \text{ MHz, } T_j = 25 \text{ °C} \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figures:

Figure 1: Typical Forward Characteristics

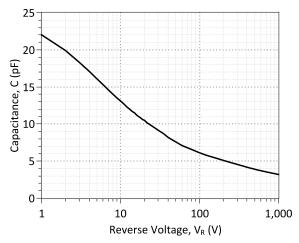


Figure 3: Typical Junction Capacitance vs Reverse Voltage Characteristics

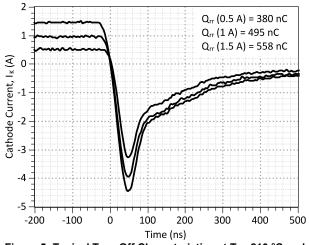


Figure 5: Typical Turn Off Characteristics at T_{j} = 210 $^{\circ}\text{C}$ and V_{R} = 1000 V

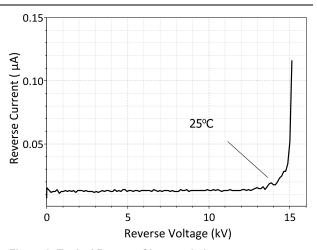


Figure 2: Typical Reverse Characteristics

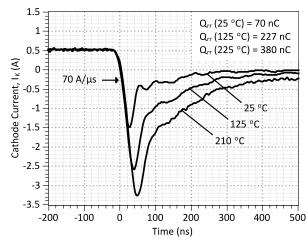


Figure 4: Typical Turn Off Characteristics at $\rm I_k$ = 0.5 A and $\rm V_R$ = 1000 V

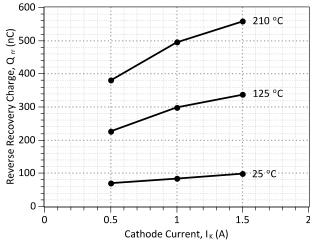
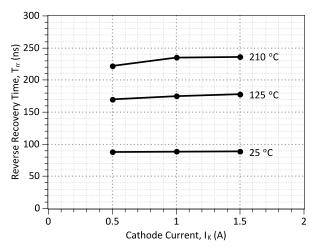
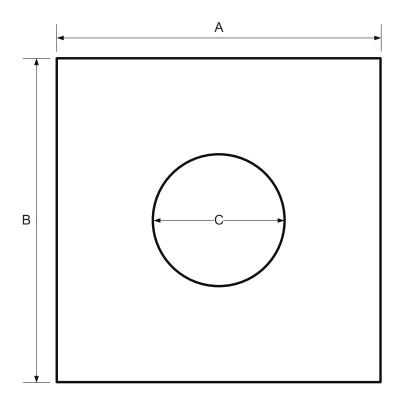


Figure 6: Reverse Recovery Charge vs Cathode Current




Figure 7: Reverse Recovery Time vs Cathode Current

Mechanical Parameters

Die Dimensions	2.4 x 2.4	mm ²		
Anode pad size	Ф 0.98	mm		
Area total / active	5.76/0.75	mm ²		
Die Thickness	450	μm		
Wafer Size	100	mm		
Flat Position	0	deg		
Die Frontside Passivation	Polyimide	Polyimide		
Anode Pad Metallization	400 nm Ni + 200 nm Au	400 nm Ni + 200 nm Au		
Backside Cathode Metallization	400 nm Ni + 200 nm Au	400 nm Ni + 200 nm Au		
Die Attach	Electrically conductive glue or solde	Electrically conductive glue or solder		
Wire Bond	Au ≤ 26 μm	Au ≤ 26 μm		
Reject ink dot size	Φ ≥ 0.3 mm	Φ ≥ 0.3 mm		
December ded starage environment	Store in original container, in dry nitro	Store in original container, in dry nitrogen,		
Recommended storage environment	< 6 months at an ambient temperature of	23 °C		

Chip Dimensions:

DIE	A [mm]	2.4
	B [mm]	2.4
METAL	C [mm]	0.98

Die Datasheet

GA01PNS150-CAU

Revision History				
Date	Revision	Comments	Supersedes	
2015/04/30	2	Updated Electrical Characteristics		
2015/02/25	1	Inserted Mechanical Parameters		
2014/08/26	0	Initial release		

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

This is a secure document. Please copy this code from the SPICE model PDF file on our website (http://www.genesicsemi.com/images/hit_sic/baredie/pin/GA01PNS150-CAU_SPICE.pdf) into LTSPICE (version 4) software for simulation of the GA01PNS150-CAU device.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.1
                                 $
     $Date: 30-APR-2015
                                 $
     GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
     Dulles, VA 20166
     COPYRIGHT (C) 2014 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
 Start of GA01PNS150-CAU SPICE Model
.MODEL GA01PNS150 D
+ IS
          9.71E-12
+ RS
          2.24770
          5.7869
+ N
          0.039646
+ IKF
+ EG
          3.23
+ XTI
          58
+ TRS1
          -0.0034
+ CJO
          2.28E-11
          2.304
+ VJ
          0.376
+ M
+ FC
          0.5
+ BV
          16000
+ IBV
          1.00E-03
+ VPK
          15000
+ IAVE
+ TYPE
          SiC PiN
+ MFG
          GeneSiC Semi
```

* End of GA01PNS150-CAU SPICE Model