## rfmd

## RFFM8250

### 2.4GHz to $2.5 \mathrm{GHz} 802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} \mathrm{WiFi}$ Switch + LNA Module

The RFFM8250 provides a complete integrated Switch + LNA solution in a single Front End Module (FEM) for WiFi 802.11b/g/n/ac and Bluetooth ${ }^{\circledR}$ systems. The ultra-small form factor and integrated matching greatly reduces the number of external components and layout area in the customer applications. This simplifies the total front end solution by reducing the bill of materials, system footprint, and manufacturing cost. The RFFM8250 integrates a Single Pole Three Throw (SP3T) Transmit/Receive (T/R) Switch and a 2.5 GHz Low Noise Amplifier (LNA) with bypass mode. The device is provided in a 1.75 mm $\times 1.75 \mathrm{~mm} \times 0.33 \mathrm{~mm} 10$-pin QFN package.


Functional Block Diagram


Package: QFN, 10-pin, $1.75 \mathrm{~mm} \times 1.75 \mathrm{~mm} \times 0.33 \mathrm{~mm}$

## Features

- SP3T T/R Switch with Bluetooth Support
- LNA with Bypass Mode
- Input and Output Matched to $50 \Omega$
- Wide Voltage Supply Range
- Supports WiFi chipsets with Integrated Power Amplifier (iPA)
- Low Profile Package for Module Designs


## Applications

- Cellular Handsets
- Mobile Devices
- Tablets
- Consumer Electronics
- Gaming
- Netbooks/Notebooks
- TV/Monitors/Video

Ordering Information

| RFFM8250SB | Standard 5-piece sample bag |
| :--- | :--- |
| RFFM8250SQ | Standard 25-piece sample bag |
| RFFM8250SR | Standard 100-piece reel |
| RFFM8250TR7 | Standard 2500-piece reel |
| RFFM8250PCK-410 | Fully assembled evaluation board w/ 5-piece bag |

## Absolute Maximum Ratings

| Parameter | Rating | Unit |
| :--- | :---: | :---: |
| DC Supply Voltage (No RF Applied) | -0.5 to 6 | V |
| DC Supply Current | 100 | mA |
| Operating Case Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Maximum TX Input Power into $50 \Omega$ Load for <br> 11b/g/n/ac (No Damage) | +30 | dBm |
| Maximum RX Input Power (No Damage) | +10 | dBm |
| Bypass Mode Maximum RX input power (No damage) | +23 | dBm |
| Moisture Sensitivity | MSL 2 |  |



Caution! ESD sensitive device.

Maximum Rating conditions may cause permanent Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

## Nominal Operating Parameters

| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Typ | Max |  |  |
| Compliance |  |  |  |  | 802.11b, 802.11g, 802.11n, 802.11ac |
| Operating Frequency | 2.412 |  | 2.484 | GHz |  |
| Operating Temperature | -40 | 25 | 85 | ${ }^{\circ} \mathrm{C}$ |  |
| Power Supply $\mathrm{V}_{\text {D }}$ | 3.0 | 3.6 | 5.0 | V |  |
| Control Voltage-High | 2.8 | 3.1 | $\mathrm{V}_{\mathrm{DD}}$ | V | VTX, VRX, LNAEN, and VBT Should not exceed V ${ }_{\text {cc }}$ voltage |
| Control Voltage-Low |  | 0 | 0.2 | V |  |
| Transmit (TX-ANT) |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ over frequency, unless otherwise noted |
| Insertion Loss |  | 0.6 | 1.2 | dB | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |
| TX Port Return Loss | 12 | 20 |  | dB |  |
| ANT Port Return Loss | 12 | 20 |  | dB |  |
| Input P1dB | 27 | 30 |  | dBm | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |
| ANT-Rx Isolation | 28 | 35 |  | dB | TX is enables and at Max power |
| Receive (ANT-RX)-LNA On |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$, over frequency, unless otherwise noted |
| Gain (S21) | 11 | 13 | 16 | dB | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |
|  | 10 | 13 | 17 | dB | $\mathrm{T}=-40$ to $+85 \mathrm{C}^{\circ}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 5 V |
| Gain Flatness over any 20 MHz BW | -0.25 |  | +0.25 | dB |  |
| Gain Flatness across band | -0.5 |  | +0.5 | dB |  |
| Noise Figure |  | 2.3 | 2.7 | dB | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |
| RX Port Return Loss |  | 15 | 10 | dB |  |
| ANT Port Return Loss |  | 5 | 3 | dB | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |
| Input P1dB | -7 | -5 |  | dBm |  |
| Current Consumption | 6 | 9 | 13 | mA |  |
| LNA_EN Control Current |  | 250 | 500 | $\mu \mathrm{A}$ |  |
| LNA Turn On Time |  | 200 | 500 | nS |  |


| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Typ | Max |  |  |
| Receive (ANT-RX)-Bypass Mode |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$, unless otherwise noted |
| Insertion Loss | 5 | 7 | 10 | dB | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |
| RX Port Return Loss |  | 10 | 8 | dB |  |
| ANT Port Return Loss |  | 10 | 8 | dB |  |
| Input P1dB | 17 | +21 |  | dBm |  |
| Bluetooth TXIRX |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=3.6$, unless otherwise noted |
| Input P1dB | 25 | +27 |  | dBm | $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$ |
| Insertion Loss |  | 0.6 | 1.3 | dB |  |
| BT Port Return Loss | 12 | 20 |  | dB |  |
| ANT Port Return Loss | 12 | 20 |  | dB |  |
| General Specifications |  |  |  |  |  |
| Control Line Impedance - VTX |  | 40 |  | $\mathrm{M} \Omega$ |  |
| Control Line Impedance - LNAEN |  | 65 |  | $\mathrm{K} \Omega$ |  |
| Control Line Impedance - VRX |  | 40 |  | $\mathrm{M} \Omega$ |  |
| Control Line Impedance - VBT |  | 40 |  | $\mathrm{M} \Omega$ |  |
| $V_{\text {DD }}$ Leakage Current |  | 1 | 10 | $\mu \mathrm{A}$ |  |
| Switch Control Current-High-Each Line |  | 1 | 10 | $\mu \mathrm{A}$ |  |
| Switch Control Current-Low-Each Line |  | 0.1 | 1 | $\mu \mathrm{A}$ |  |
| Switching Speed |  | 100 | 500 | ns |  |
| ESD-Human Body Model |  | 1000 |  | V |  |
| ESD-Charge Device Model |  | 1000 |  | V |  |

Switch Control Logic Truth Table

| Operating Mode | VTX | LNAEN | VRX | VBT |
| :--- | :---: | :---: | :---: | :---: |
| Standby | Low | Low | Low | Low |
| $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} \mathrm{TX} \mathrm{Mode}$ | High | Low | Low | Low |
| $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{h} / \mathrm{ac} \mathrm{RX} \mathrm{Gain}$ | Low | High | High | Low |
| $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} \mathrm{RX} \mathrm{Bypass}$ | Low | Low | High | Low |
| BT RX/TX | Low | Low | Low | High |

Notes:

- $\quad$ High $=2.8$ to $\mathrm{V}_{\mathrm{cc}}$. Low $=0 \mathrm{~V}$ to 0.2 V .


## Timing Diagram



## Applications Schematic



Pin Out


## Package Drawing



PCB Patterns


Note:
Thermal vias for center slug "C" should be incorporated into the PCB design. The number and size of thermal vias will depend on the application, power, dissipation and electrical requirements. Example of the number and size of vias can be found on the RFMD evaluation board layout (gerber files are available upon request)

Pin Names and Descriptions

| Pin | Name |  |
| :---: | :---: | :--- |
| 1 | VTX | Transmit switch control pin. See switch truth table for proper level. |
| 2 | TX | RF input port for the $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ PA. Input is matched to $50 \Omega$. An external DC block is required. |
| 3 | N/C | No connect. This pin is not connected internally and can be left floating or connected to ground. |
| 4 | RX | RF output port for the $802.11 \mathrm{~b} / \mathrm{g} / \mathrm{n}$ LNA. Port is matched to $50 \Omega$. This pin is DC blocked internally. |
| 5 | LNAEN | Control voltage for the LNA. When this pin is set to a LOW logic state, the bypass mode is enabled. |
| 6 | VDD | Supply voltage for the LNA. See applications schematic for biasing and bypassing components. |
| 7 | BT | RF bidirectional port for Bluetooth®. Input is matched to $50 \Omega$. An external DC block is required. |
| 8 | VBT | Bluetooth® switch control pin. See truth table for proper level. |
| 9 | VRX | Receive switch control pin. See switch truth table for proper level. |
| 10 | ANT | RF bidirectional antenna port matched to $50 \Omega$. An external DC block is required. |
| Pkg Base | GND | Ground connection. The backside of the package should be connected to the ground plane through a short <br> path, i.e., PCB vias under the device are recommended. |

