AN2512
 Application note

Three-phase meter based STPM01, VIPer12A

Introduction

This application note describes how to design a three-phase meter using STPM01 as the measuring device and a VIPer12A based SMPS (Switch Mode Power Supply).

STPM01 is a metering ASSP implemented in an advanced $0.35 \mu \mathrm{~m}$ BCD6 technology. It is designed for the effective measurement of active, reactive and apparent energies, Vrms, Irms, instantaneous voltage and current, frequency in power line systems that use the current transformer, Rogowski coil and/or shunt principle.

This device can be used as a standalone on-board metering device in single-phase energy meter applications or as a peripheral in a microprocessor based single- or three-phase meter.

In a standalone configuration STPM01 outputs a pulse train signal having a frequency proportional to the active power used, while in peripheral mode STPM01 is used in a microprocessor based application. In this case, measured data are read at a fixed time interval from the device internal registers by means of SPI interface processed by a microcontroller.

In the following paragraphs a circuit description is explained, with particular focus on the power supply section, the three-phase design, and the clock management network. Then, the power calculation algorithm is discussed and finally some layout hints and experimental results are shown.

This application note should be used in conjunction with the STPM01 and VIPer12A datasheet.

Three phase block diagram

Contents

1 Application description 4
1.1 Operating conditions 4
1.2 Circuit description 4
1.3 Power supply circuit 5
1.4 Phase circuit 8
1.4.1 Current sensing circuit 9
1.4.2 Anti-aliasing filter 9
1.4.3 Voltage sensing circuit 9
1.4.4 Crosstalk cancellation network 9
1.5 Clock management network 10
2 Communication with microprocessor 11
3 Power calculation algorithm 13
3.1 STPM01 SPI Interface 13
3.2 STPM01 Initialization (latching) and reading (shifting) 14
3.3 Data record structure 15
3.4 Data integrity checks 17
3.5 Unpacking of data records 17
3.6 Processing of phase energy values 19
3.7 Three-phase energy calculation 20
3.8 Pulse generation 20
4 Layout rules 21
5 Experimental results 22
5.1 Phase one results 22
5.2 Phase two results 23
5.3 Phase three results 23
5.4 Voltage and frequency influence on phase three 24
6 Revision history 37

List of figures

Figure 1. Top layer circuit schematic 5
Figure 2. SMPS circuit schematic 7
Figure 3. Phase circuit schematic 8
Figure 4. Clock management network schematic 10
Figure 5. Connectors schematic 11
Figure 6. Flow chart of phase reading 14
Figure 7. Timing for data records reading in 3 phase system 15
Figure 8. Data records reconstruction 16
Figure 9. STPM01 data register structure 16
Figure 10. Typical profile of output of an energy integrator 19
Figure 11. Graph of experimental results of phase n. 1 tests 22
Figure 12. Graph of experimental results of phase n. 2 tests 23
Figure 13. Graph of experimental results of phase n. 3 tests 24
Figure 14. Graph of voltage and frequency influence on phase n. 3 25
Figure 15. Instantaneous voltage (or current) in one voltage cycle of a three-phase system 25
Figure 16. Per-phase powers in (a) delta-connected load and (b) wye-connected load 26
Figure 17. Two-wattmeter method in star- or delta-connected load 27
Figure 18. The wattmeter connections in the three-phase four-wire loads 28

1
 Application description

Three-phase meters (which derive as particular cases from poly-phase systems), are most commonly used in practical industrial applications, and in a few cases also for domestic use.

This three-phase meter can be used as a reference board to build a Class 0,5 three-phase microprocessor based meter for power line systems 3-Wire DELTA service, 4-Wires DELTA and WYE service. It uses a multi-chip topology, in which each phase is monitored using a single-phase device.

In this way, three STPM01 have been used with a common clock network. The power supply is implemented in fly-back topology using a VIPer12A.

The meter cannot be used in standalone mode and a management/supervisory board must be used for energy integration and data displaying. Such a control board should be plugged in the connector J 2 (referring to board schematics below), while the connector J 1 is used for calibration purposes in association (or conjunction) with the STPMxx parallel programmer/reader released with the application.

1.1 Operating conditions

Table 1. Operating conditions

Value	Min	Max	Unit
$\mathrm{V}_{\text {NOM }}$	80	480	$\mathrm{~V}_{\text {RMS }}$
$\mathrm{I}_{\text {NOM }} / I_{\text {MAX }}$	5	30	$\mathrm{~A}_{\text {RMS }}$
$\mathrm{f}_{\text {LIN }}$	45	65	Hz
$\mathrm{~T}_{\text {AMB }}$	-40	+85	${ }^{\circ} \mathrm{C}$

1.2 Circuit description

The meter consists of one board divided into the following sections:

- Power supply management circuit
- Phase circuit
- Clock management network
- Connectors.

The schematic of the board is shown in Figure 1.

Figure 1. Top layer circuit schematic

1.3 Power supply circuit

A 3-phase 4-wire bridge is used for mains rectification because the neutral rectification is needed to ensure proper operation in case of missing neutral connection or neutral misswiring.

A varistor is connected between each line and neutral to guarantee pulse voltage test immunity according to the EN62052-11 standard.

The input EMI filter is a simple, undamped LC-filter for both differential and common mode noise suppression.

The circuit for input voltage limiting is connected between the input EMI filter and the bulk capacitor C4. Such a circuitry includes a Power MOSFET and a self driven control section. The MOSFET Q1 is a standard N-Channel $500 \mathrm{~V} 3.3 \Omega$ in D-PAK package, mounted on a small copper area to improve thermal performance. The self driven control section consists of a voltage divider and zener diodes. The resistors R1, R2 and R3 ensure the gate-source charge for the switch, while the zener diodes D3 and D4 set the maximum voltage value (360 V) across the bulk capacitor.

An NTC limits the inrush current and ensures Q1 operation inside its safe operating area.
The Flyback converter is based on VIPer12A, a product in the VIPerX2A family, which combines a dedicated current mode off-line PWM controller with a high voltage power MOSFET on the same silicon chip. The switching frequency is fixed at 60 kHz by the IC internal oscillator in order to optimize the transformer size and cost. The transformer reflected voltage has been set to 60 V , providing enough margin for the leakage inductance voltage spike and no snubber circuit is needed which allows consequent cost savings.

As soon as the voltage is applied on the input of the converter, the high voltage start-up current source connected to the drain pin is activated and starts to charge the V_{dd} capacitor C8 through a constant current of 1 mA . When the voltage across this capacitor reaches the V_{dd} on threshold (about 14 V), the VIPer12A starts to switch. During normal operation the
smart power IC is powered by the auxiliary winding of the transformer via the diode D7. No spike killer for the auxiliary voltage fluctuations is needed thanks to the wide range of the V_{dd} pin ($9-38 \mathrm{~V}$). The primary current is measured using the integrated current sensing for current mode operation.

The output rectifier D6 has been chosen in accordance with the maximum reverse voltage and power dissipation. In particular a 0.5A-80 V Schottky diode, type TMBAT49, has been selected.

The output voltage regulation is performed by secondary feedback on the 5 V output dedicated to the display, while the 3.3 V output, dedicated to the logic part and the microcontroller, is linearly post-regulated from the 5 V output. This operation is performed by a very low drop voltage regulator, L4931ABD33, in SO-8 package. The voltage regulator delivers up to 100 mA , ensuring good reliability with no heat sink. The feedback network ensures the required insulation between the primary and secondary sections. The optotransistor directly drives the VIPer12A feedback pin which controls the IC operation.

A small LC filter has been added to the 5 V output in order reduce the high frequency ripple with reasonable output capacitors value.

The Flyback transformer is a layer type based on E13 core and N27 ferrite, manufactured by Pulse Eldor, and ensures safety insulation in accordance with the EN60950.

For more info on the power supply, please refer to AN2264, "Three-Phase SMPS for low power applications with VIPer12A". The schematic of the power supply section is shown in Figure 2.

Figure 2. SMPS circuit schematic

1.4 Phase circuit

This paragraph explains the implementation of the phase network which performs the power calculation.

The three phases are identical. Figure 3 shows the implementation of the STPM01 used for energy calculation of each phase.
The schematic can be divided into the following subsets:

- Current sensing circuit (1)
- Anti-aliasing Filter (2)
- Voltage Sensing Circuit (3)
- Crosstalk Cancellation Network (4).

Figure 3. Phase circuit schematic

1.4.1 Current sensing circuit

The STPM01 has two external current sensing circuits, primary and secondary current channels.

Normally, the second current circuit is used in single-phase meter implementation when the anti-tamper feature is required. In this way it is possible to read also the current flowing into the neutral wire to have a comparison with the current flowing into the line wire and detect possible tampers.

In this application only the primary channel has been used. As a consequence, the configuration of STPM01 is:

- $\mathrm{PST}=2$ if a current transformer is used (this is the case of this meter);
- $\mathrm{PST}=0$ (or 1) if a Rogowski coil is used
in the latter case ADDG bit can be used to have a further gain of $x 8$.
The current channel uses a current transformer to sense mains current. The burden resistor is used to produce a voltage between VIN1 and VIP1 proportional to the current measured.

1.4.2 Anti-aliasing filter

The anti-aliasing filter is a low-pass filter. It has a negligible influence on the voltage drop between IIN1 and IIP1. Its aim is to reduce the distortion caused by the sampling, also called aliasing, by removing the out-of-band frequencies of the input signal before sampling it with the analog-to-digital converter.

Filtering is easily implemented with a resistor-capacitor (RC) single-pole circuit which obtains an attenuation of $-20 \mathrm{~dB} / \mathrm{dec}$.

1.4.3 Voltage sensing circuit

A resistor divider is used as voltage sensor.
The $740 \mathrm{k} \Omega$ resistor is separated into three, $2 \times 270 \mathrm{k} \Omega$ and $1 \times 200 \mathrm{k} \Omega$ in-series resistors, which ensure that a high voltage transient does not bypass the resistor. This also reduces the potential across the resistors, thereby decreasing the possibility of arcing. The following resistors are used to implement resistor divider:

- $\mathrm{R}=\mathrm{R} 14+\mathrm{R} 15+\mathrm{R} 16=740 \mathrm{~K} \Omega$
- $\mathrm{R} 5=470 \Omega$

Capacitor C11 and resistance (R19+ R15) create a filter which prevents Electromagnetic Interference (EMI).

1.4.4 Crosstalk cancellation network

The voltage front-end handles voltages of considerable amplitude, which makes it a potential source of noise. Disturbances are readily emitted into current measurement circuitry where they interfere with the actual signal to be measured. Typically, this produces a non-linear error at small signal amplitudes and non-unity power factors. At unity power factor, voltage and current signals are in phase and crosstalk between voltage and current channels merely appears as a gain error, which can be calibrated. When voltage and current are not in phase, crosstalk has a non-linear effect on the measurements, which cannot be calibrated.

Crosstalk is minimized by means of good PCB planning and the proper use of filter components in the crosstalk network. Recommended filter components are shown in Figure 3. The network subtracts a signal proportional to the voltage input from the current input. This prevents cross talking within the STPM01.

1.5 Clock management network

4.194 MHz quartz is used to supply the clock to the three STPM01 devices. Figure 4 shows the schematic of the enhanced clock network which prevents EMI influences.

A discrete inverter network is used to change the impedance of the common node of the three blocks. The output of the inverter prevents the second order antenna effect of the node.

The CLKOUT pins are grounded to guarantee the current loop.
To select the measurement frequency range, MDIV must be set to 0 in the configuration register of STPM01. If an 8 MHz quartz is used, this bit must be changed to 1 .

Figure 4. Clock management network schematic

2 Communication with microprocessor

A control board with embedded microprocessor should be connected to connector J2 of module using 20-wire flat cable. Table 2 below describes the pin-out of the connector.

Each STPM01 has an SPI communication port implemented by four multi-purpose pins. Through the J2 connector, the control board can read data records or it can access the mode or configuration signals of each metering device by means of dedicated protocol.

Each pin can draw up to 4 mA at +3.0 V from the control module. The selection of the device to be read is done acting on one of the three SCSLx (STPM01 device select) pins.

By default, the STPM01 is configured in peripheral mode by setting configuration bits $A P L=0$.

This implies also the following output settings:

- watchdog reset signal on MON pin;
- zero-crossing (ZCR) on MOP pin;
- a pulse train with frequency proportional to the power consumption on LED pin.

To display the information on the power consumption, it is either possible to feed three LEDs, each one showing the information on one phase, from the LED pins of the three measurement devices, or the control board can generate an LED signal to show the global power consumption by reading and manipulating energy information from the three STPM01 registers. In this case, the control board may also recalibrate any result read from the module through appropriate software.

Figure 5. Connectors schematic

Table 2. J2 connector pin description

Pin No.	Pin name	Functional description
1.	5 V	Power out of +5.0 V Up to 25 mA can be drawn from this pin
2.	SCL	SPI Interface Pin
3.	SDA	SPI Interface Data Pin
4.	SYN	SPI Interface Pin
5.	SCSL1	Phase n. 1 SPI enable signal
6.	SCSL2	Phase n. 2 SPI enable signal
7.	SCSL3	Phase n. 3 SPI enable signal
8.	LEDL1	LED output of Phase n. 1
9.	LEDL2	LED output of Phase n. 2
10.	LEDL3	LED output of Phase n. 3
11.	GND	Signal reference level 0 V and power supply return
12.	VDD	Power out of +3.3 V Up to 100 mA can be drawn from this pin
13.	---	NC
14.	---	NC
15.	---	NC
16.	---	NC
17.	---	NC
18.	---	NC
19.	---	NC
20.	---	NC

A host system can communicate with each measurement module (actually, with the STPM01) using SPI interface, through connector J2. The STPM01 always acts as an SPI slave while the host system acts as an SPI master. An application control board or an external system can be considered as host.

Connector J 1 is used in the evaluation phase to connect the measurement module to a PC through the STPM01 parallel Programmer/Reader hardware interface.
This allows the user to set temporarily or permanently the internal STPM01 registers using a dedicated GUI. Jumpers J13 and J14 select which of the three devices will be accessed.

The VOTP pin on the connector J 1 is used when a host wants to permanently write some configuration bits in the metering device. In this case, $\mathrm{a}+15 \mathrm{~V}$ power level must be present on the VOTP. This level must be delivered from the host itself because the module does not have an on-board charge pump.

Table 3 shows the pin description of the connector J1.

Table 3. J1 connector pin description

Pin no.	Pin name	Functional description
1.	VOTP	Power supply Input of +15.0 V during permanent write to OTP
2.	---	NC
3.	GND	Signal reference level OV and power supply return
4.	SDA	SPI Interface Data Signal
5.	SCS	SPI Enable Signal
6.	SCL	SPI Interface Clock Signal
7.	---	NC
8.	SYN	SPI Interface Signal
9.	---	NC
10.	VDD	Power Out of +3.3 V Up to 100 mA can be drawn from this pin

3 Power calculation algorithm

3.1 STPM01 SPI Interface

The STPM01 SPI interface supports a simple serial protocol, which is implemented in order to enable communication between a host system (microcontroller or PC) and the device. Three tasks can be performed with this interface:

- Remote resetting the device
- Reading data records
- Writing the Mode bits and the configuration bits (temporarily or permanently).

Four pins of the device are dedicated to this purpose: SCS, SYN, SCL, and SDA. SCS, SYN and SCL are all input pins while SDA can be input or output according to whether the SPI is in write or read mode.

The condition under which SCS, SYN and SCL inputs are set to high level determines the idle state of the SPI interface and no data transfer occurs.

- SCS: enables SPI operation when low. The microcontroller uses this pin to multiplex the reading of the three devices.
- SYN: when SCS is low, the SYN pin status selects whether the SPI is in read (SYN=1) or write mode ($S Y N=0$). When SCS is high and SYN is also high, the results of the input or output data are transferred to the transmission latches.
- SCL: is the clock pin of the SPI interface. This pin function is also controlled by the SCS status. If SCS is low, SCL is the input of serial bit synchronization clock signal. When SCS is high, SCL is also high determining the idle state of the SPI.
- SDA: is the Data pin. If SCS is low, the operation of SDA is dependent on the status of SYN pin. If SYN is high, SDA is the output of serial bit data (read mode). If SYN is low, SDA is the input of serial bit data signal (write mode). If SCS is high, SDA is idle.

In this chapter the readings of data records will be treated in case of 3 phase usage of STPM01, in particular we will refer to the flow chart in Figure 6.

Figure 6. Flow chart of phase reading

3.2 STPM01 Initialization (latching) and reading (shifting)

There are two phases of reading the STPM01 data called latching and shifting.
Latching is used to sample results into transmission latches by initiating an active pulse on SYN while SCS is idle. The pulse length of SYN must be longer than 2 periods of the measurement clock (that is, $\mathrm{t}_{2}-\mathrm{t}_{1}$ more than 500 ns).
The latching phase has to be done at the same time for all the STPM01 devices keeping the SCSLx lines in idle state in order to read the information coming from each phase at the same moment.

Shifting starts when SCS becomes active (low). At the beginning of this phase, another, much shorter pulse ($\mathrm{t}_{5}-\mathrm{t}_{4}=30 \mathrm{~ns}$) should be applied to SYN. An alternative way to read shifted data is to extend the pulse on SYN into the second phase of reading (from t_{1} to t_{5}).
Latching and shifting finish at the last rise of SYN (shown by the t_{5} line in Figure 7). After these readings are completed, the STPM01 is reset.

It is possible to read data, by applying 32 serial clocks per data record. Up to 8 data records can be read this way from each device. Switching to another device is possible enabling the corresponding SCS line. Note that, enabling multiple SCS lines corrupts the information received causing parity error. So, in any case, two or more devices cannot be enabled at the same time.

In order to maximize the reliability of the readings, each data structure can be read twice and compared. This is possible just by restarting the shifting procedure, then applying the clock signal on the SCL pin one more time, keeping the corresponding SCS pin in active state (low).

Figure 7. Timing for data records reading in 3 phase system

- $\mathrm{t}_{1} \rightarrow \mathrm{t}_{2}$: Latching Phase. Interval value $>2 / \mathrm{f}_{\mathrm{CLK}}$
- $t_{2} \rightarrow t_{3}$: Data latched, SPI idle. Interval value $>30 \mathrm{~ns}$
- $t_{3} \rightarrow t_{4}$: Enable SPI for read operation. Interval value $>30 \mathrm{~ns}$
- $t_{4} \rightarrow t_{5}$: Serial clock counter is reset. Interval value $>30 \mathrm{~ns}$
- $t_{5} \rightarrow t_{6}$: SPI reset and enabled for read operation. Interval value $>30 \mathrm{~ns}$
- $\quad t_{7}$: Internal data transferred to SDA
- t_{8} : SDA data is stable and can be read
- t_{9} : End of phase 1 reading, begin of Phase 2 reading
- t_{10} : End of phase 2 reading, begin of Phase 3 reading
- t_{11} : End of phase 3 reading, stop of STPM01 shifting

3.3 Data record structure

Every data record is 4 bytes long. The 1st readout byte of data record is the Least Significant Byte (LSB). Each byte can be further divided into a most and least significant nibble (msn , Isn). The msn of the 4th byte of data value holds the parity code rather than useful data. In fact, every data record consists of 4-bit parity code and 28-bit data value where the parity code is computed from the data value which makes total of 32 bits or 4 bytes.

The Figure 8 below shows top down how bytes of data record are output from the SDA and how they should be re-organized by the host to retrieve useful information.

Figure 8. Data records reconstruction

The data records have a fixed position of reading and no addressing of records is needed. It is up to the host to decide how many records should be read out from the device.

Figure 9 shows the records position within the default sequence of reading, their name and information contained.

Figure 9. STPM01 data register structure

3.4 Data integrity checks

Each bit of parity nibble is defined as odd parity of all seven corresponding bits of data nibbles. In order to check the data record integrity, the application might execute the following C code, given as an example:

```
int BadParity (unsigned char *bp)
{
register unsigned char prty; /* temporary register */
prty = *bp,
prty ^= *(bp+1), /* XOR it with the 2nd byte*/
prty ^= *(bp+2), /*and with the 3rd byte */
prty ^= *(bp+3), /*and with the 4th byte */
prty ^= prty<<4, prty &= 0xF0; /* combine and remove the lower nibble */
return (prty != 0xF0);
/*returns 1, if bad parity */
}
if (BadParity(dap) || BadParity(drp) || /* DAP and DRP. data record*/
BadParity(dsp) || BadParity(dfp) || /* DSP and DFP data record */
BadParity(dev) || BadParity(dmv) || /* DEV and DMV data record */
BadParity(cfl) || BadParity(cfh)) /* CFL and CFH data record */
/* code for repeat of reading sequence should be entered here */ ;
```

If the parity nibble check fails, the reading task should be repeated but, this time, without request of latching, otherwise a new data is latched and the previous reading is incorrectly lost. In a very harsh EMI environment, it would be good practice to read the data records twice and then compare both readings. This way the probability of detecting bad readings is significantly improved. A single bad data reading can be discarded because no meaningful information is lost as long the reading frequency is about 30 ms .

3.5 Unpacking of data records

After each data record is read correctly, its parity nibble and possible padding bits should be masked out and then it should be unpacked to retrieve each information as indicated in Figure 9. The momentary values of current and voltage should be considered as signed integers, while all the other values as unsigned integers.

Below an example of readings and unpacking of the data is given (MSBF is cleared, that is, the device reads most significant bit first).

- DAP 65 7A 7C 82: parity $=8$, type0 energy=27C7A, status $=65$
- DRP 52 7A 0C 90: parity $=9$, reactive energy=00C7A, frequency high byte $=52$
- DSP 2500 8C E2: parity = E, apparent energy=28C00, frequency low byte $=25$
- DFP 0006 6E 22: parity $=2$, type1 energy $=26 E 06$, mode signals $=00$
- DEV BB B3 07 DD: parity $=\mathrm{D}, \mathrm{i}_{\mathrm{RMS}}=1 \mathrm{~B} 3 \mathrm{BB}, \mathrm{u}_{\mathrm{RMS}}=638$
- DMV 3F AF AA CA: parity $=\mathrm{C}, \mathrm{I}_{\mathrm{MOM}}=\mathrm{AF} 3 \mathrm{~F}, \mathrm{u}_{\mathrm{MOM}}=\mathrm{AAA}$
- CFL 010000 E0: parity = E, configuration bits low part = 0000001
- CFH 000000 FO: parity $=$ F, configuration bits high part $=0000000$

The metering device computes wide-band active energy which is type0 by default and fundamental harmonic active energy which is type1 by default. The configuration bit FUND can be used to select which becomes type0 or type1, by default FUND $=0$.
Table 4 shows the meaning of "status" byte in the DAP data record.

Table 4. STPM01 status bit description

Bit no.	Bit name	Functional description	Condition
0.	BIL	No load condition	BIL $=0$: No load condition not detected
			BIL = 1: No load detected
1.	BCF	$\Sigma \Delta$ Signal status	$B C F=0: \Sigma \Delta$ signals alive
			$B C F=1$: one or both $\Sigma \Delta$ signals are stacked
2.	BFR	Line frequency range	$B F R=0$: Line frequency inside the $45 \mathrm{~Hz}-65 \mathrm{~Hz}$ range
			$B F R=1$: Line frequency out of range
3.	BIT	Tamper condition	BIT $=0$: Tamper not detected
			BIT $=1$: Tamper detected
4.	MUX	Current channel selection	MUX $=0$: Primary current channels selected by the tamper module
			MUX $=1$: Secondary current channels selected by the tamper module
5.	LIN	Trend of the line voltage	LIN $=0$: line voltage is going from the minimum to the maximum value $(\Delta v / \Delta t>0)$
			LIN = 1: line voltage is going from the maximum to the minimum value $(\Delta v / \Delta t<0)$
6.	PIN	Output pin check	PIN $=0$: the output pins are consistent with the data
			PIN = 1: the output pins are different with the data, this means some output pin is forced to 1 or 0
7.	HLT	Data validity	HLT $=0$: the data records reading are valid
			HLT = 1: the data records are not valid. A reset occurred and a restart is in progress.

Normally, a host reads the DAP data record first but, if a "Precharge" command is sent to the module before the beginning of the reading task, the DEV data record is read first. This way, faster reading of RMS and momentary values is possible.

3.6 Processing of phase energy values

Within each STPM01 metering device the sources of energy values are implemented as 20bit up/down counters. The value of such counters eventually rolls over if the direction of power is not changing too often, which is normally the case. For example, if the maximal possible positive power (360 V * $33 \mathrm{~A}=12 \mathrm{~kW}$) is measured by one of the phases, the internal counter would count up and reach its maximal value (0xFFFFF) in about 1.2 seconds then the value rolls over to zero (0×00000) at once and starts to count up again. A sawtooth shape of values is produced, see Figure 10. For the negative power, the counter counts down, showing the same behavior. The slope of the shape is proportional to measured power which may change its value and direction at any moment. Also, if power is absolutely less than No-Load Condition limit, selected by LTCH, the counter stops. For the calculation of the value of the least significant bit of counters, please refer to the STPM01 datasheet.

An application should recognize rollovers. A rollover from high to low should be recognized. If the msn of the energy value of two consecutive readings changes from $0 x F$ to $0 x 0$ or, if change from $0 x 0$ to $0 x F$ is detected, a low to high rollover is recognized. To ensure detection of change, an application should successfully read the energy values at least every 0.1 second but, for security reasons, at least 30 readings per second should be performed.

Figure 10. Typical profile of output of an energy integrator

Using an msn of energy value as a rollover code is convenient because it is stored in the MSB of data record accompanied with the parity code. Therefore it is easily unpacked and checked for the characteristic values. When rollover is detected, a 0x00100000 should be added to the energy reading with rollover code 0×0.

To compute a single phase energy it is recommended to use the following procedure.
The software should implement a 32-bit integrator. The integrator is divided into two stages:

- frac 32-bit signed integer variable;
- integ 32-bit signed integer variable.

The other variables to be used are:

- old 32-bit signed integer variable;
- new 32-bit signed integer variable;
- quot 16-bit unsigned integer variable;
- quant 16-bit signed integer variable.

Each time the host receives a new reading, the 20-bit energy value is stored in the new variable, and the difference between the new and old energy values is stored in the quant variable. The value of frac is derived by adding to itself the quant value. Before the next
reading, the old variable should be updated with the new value for the next quant computation.

When frac collects a preset amount of energy (that is, 10 Wh , absolute, with the corresponding integer value stored as a threshold variable), the integ value should be changed by 1 bit and the frac value changed according to the threshold value. The preset threshold value must be set according to the value of the least significant bit of the internal energy counter (for more detail, please refer to the STPM01 datasheet).

If the time difference of two consecutive readings is known, an applied power can be computed easily as: $p=$ quant/ $\Delta \mathrm{t}$.

This procedure should be repeated for each energy type (active, reactive, apparent and fundamental active).

If an LED output from MCU is required, the resolution of the energy count must be increased by dividing the value of quant by 16 and adding it in 16 times to frac. A reminder of such division can be added to the frac value immediately, while the quotient quot (quant/16) can be added later 16 times but faster. A timer interrupt service routine is the best place to implement these calls. This way, output pulse generation of signal LEDs, which is used for meter accuracy check, with 2 ms resolution is possible (given that 2 consecutive readings occur every 32 ms).

This calculation should be done for each type of energy (Active wide band, Reactive, Apparent and active fundamental). For more details on single phase energy calculation, please refer to AN2159 "SPI Communication for comprehensive energy reading of the STPM01".

3.7 Three-phase energy calculation

The above procedure refers to one of the phases of a three-phase meter.
To calculate the global amount of energy in a three-phase system, it is necessary to define an array of the above variables structure, where the number of elements is four, one for each phase energy and one for the total energy, which is given by the sum of the three-phase energies.

In Appendix A an example of the definition of the variables used in a practical application is shown.

$3.8 \quad$ Pulse generation

From the first stage of integration of total active energy counter (referred to as frac), and according to the number of pulses per kWh desired as output, a pulse train is generated to feed an LED.

Three more LEDs are fed from the LED pins of STPM01 devices to display power consumption of the respective phase.

4 Layout rules

Noise rejection is the main issue to work on when a three-phase multi-chip approach has been chosen. In this case layout plays a crucial role.

Here some rules to follow in layout phase:

- Components positioning

The components of measuring section (STPM01, Current Transformers, passive components) are placed using the same layout for each phase. The phases are placed in a symmetrical scheme. In this way reduction of the cross talking can be achieved.

The Current transformer is placed very close to the correspondent STPM01 to minimize the captured noise.

- Components routing

The passive components belonging to the analogue input channels must be placed between the sensor and the STPM01 always respecting a symmetrical scheme.

Particular care should be given for the voltage channel path because the voltage inputs are normally relatively further from the corresponding STPM01.

- Quartz

The crystal network has been placed in the middle of the board ensuring a completely symmetrical path between the devices. A copper plate has been used under the Crystal both on the TOP and on the BOTTOM side of PCB.

- Copper plate

The copper plate area should be extended under the entire digital section and under the crystal oscillator which provides the clock for the three STPM01.

5 Experimental results

The tests have been conducted considering $\mathrm{In}=10 \mathrm{~A}, \mathrm{Vn}=220 \mathrm{~V}, \mathrm{f}=52 \mathrm{~Hz}$, where In is the nominal current and Vn is the nominal voltage.

5.1 Phase one results

Table 5. Experimental results of phase n .1 tests

$\mathbf{I}(\mathbf{A})$	$\mathbf{e \% m i n}$	$\mathbf{e \% a v}$	$\mathbf{e \% m a x}$	PF 0,5C	PF 0,5L	Stmin	Stmax
0,05	$-1,841$	$-1,257$	$-0,724$				
0,1	$-0,259$	$-0,119$	0,123			-1	1
0,25	0,277	0,282	0,336			-1	1
0,5	0,114	0,152	0,177			$-0,5$	0,5
5	0,038	0,047	0,052	0,04	0,03	$-0,5$	0,5
10	0,032	0,036	0,041			$-0,5$	0,5
20	0,016	0,019	0,022			$-0,5$	0,5
30		0,045				$-0,5$	0,5
45		0,06				$-0,5$	0,5

Figure 11. Graph of experimental results of phase $n .1$ tests

5.2 Phase two results

Table 6. Experimental results of phase n .2 tests

$\mathbf{I}(\mathbf{A})$	$\mathbf{e \% m i n}$	$\mathbf{e \% a v}$	$\mathbf{e \% m a x}$	PF 0,5C	PF 0,5L	Stmin	Stmax
0,05	$-1,841$	$-1,257$	$-0,724$				
0,1	$-0,259$	$-0,119$	0,123			-1	1
0,25	0,277	0,282	0,336			-1	1
0,5	0,114	0,152	0,177			$-0,5$	0,5
5	0,038	0,047	0,052	0,04	0,03	$-0,5$	0,5
10	0,032	0,036	0,041			$-0,5$	0,5
20	0,016	0,019	0,022			$-0,5$	0,5
30		0,045				$-0,5$	0,5
45		0,06				$-0,5$	0,5

Figure 12. Graph of experimental results of phase n. 2 tests

5.3 Phase three results

Table 7. Experimental results of phase n .3 tests

$\mathbf{I}(\mathbf{A})$	$\mathbf{e \% m i n}$	$\mathbf{e \% a v}$	$\mathbf{e \% m a x}$	PF 0,5C	PF 0,5L	Stmin	Stmax
0,05		2,14					
0,1		$-0,45$				-1	1
0,25		$-0,04$				-1	1
0,5		0,09				$-0,5$	0,5
5		0		0,03	0,04	$-0,5$	0,5
10						$-0,5$	0,5
20						$-0,5$	0,5

Table 7. Experimental results of phase n .3 tests (continued)

$\mathbf{I}(\mathbf{A})$	$\mathbf{e \% m i n}$	$\mathbf{e \% a v}$	e\%max	PF 0,5C	PF 0,5L	Stmin	Stmax
30						$-0,5$	0,5
45						$-0,5$	0,5

Figure 13. Graph of experimental results of phase n. 3 tests

5.4 Voltage and frequency influence on phase three

Table 8. Voltage influence on phase n. 3

$\mathbf{I =} \mathbf{0 , \mathbf { 1 } \mathbf { A }}$	$\mathbf{f =} \mathbf{5 \mathbf { 2 } \mathbf { H z }}$	
V	$\mathrm{e} \%$	Stmin
240	$-0,22$	$-0,65$
220	$-0,45$	$-0,65$
180	$-0,47$	$-0,65$
120	$-0,58$	$-0,65$

Table 9. Frequency influence on phase n .3

$\mathbf{I}=\mathbf{5} \mathbf{A}$	$\mathbf{V}=\mathbf{2 2 0} \mathbf{V}$	
\mathbf{f}	$\mathrm{e} \%$	Stmin
45	$-0,41$	$-0,4$
52	0	$-0,4$
65	$-0,41$	$-0,4$
$\mathrm{I}=5 \mathrm{~A}$	$\mathrm{~V}=220 \mathrm{~V}$	

Figure 14. Graph of voltage and frequency influence on phase n. 3

Appendix A Three-phase systems

Three-phase is a common method of electric power transmission. It is a type of polyphase system used to power motors and many other devices.

The currents are sinusoidal functions of time, all at the same frequency but with different phases. In a three-phase system the phases are spaced equally, giving a phase separation of 120°. The frequency is typically 50 Hz in Europe and 60 Hz in the US and Canada.

Figure 15. Instantaneous voltage (or current) in one voltage cycle of a three-phase system

The three phases could be supplied over six wires, with two wires reserved for the exclusive use of each phase. However, they are generally supplied over three or four wires:

- Three phases, 3-Wire DELTA service which has no neutral and 220 V between phases
- Three phases, 4-Wires DELTA and WYE service which has 220 V between phaseneutral and 380 V phase-phase.

A. 1 Power in three-phase AC circuits

Let's assume that the angle between the phase voltage and the phase current is θ, which is equal to the angle of the load impedance. Considering the load configurations given in Figure 16, the phase power and the total power can be estimated easily.

Figure 16. Per-phase powers in (a) delta-connected load and (b) wye-connected load

(a)

(b)

In the case of Figure 16 (a), the total active power is equal to three times the power of one phase:

Equation 1

$$
P_{1}=P_{2}=P_{3}=P=V_{\text {line }} \bullet I_{\text {phase }} \cdot \cos \theta
$$

Equation 2

$$
P_{\text {Total }}=3 P=3 V_{\text {line }} \bullet I_{\text {phase }} \bullet \cos \theta
$$

Since the line current in the balanced delta-connected loads is:

Equation 3

$$
\mathrm{I}_{\text {line }}=\sqrt{3} \cdot \mathrm{I}_{\text {phase }}
$$

If this equation is substituted into Equation 2, the total active load becomes:

Equation 4

$$
\mathrm{P}_{\text {Total }}=\sqrt{3} \bullet \mathrm{~V}_{\text {line }} \bullet \mathrm{I}_{\text {line }} \bullet \cos \theta
$$

In Figure 16 (b), however, the impedances contain the line currents $I_{\text {line }}$ (equal to the phase current, $I_{\text {phase }}$) and the phase voltages.

Equation 5

$$
V_{\text {phase }}=\frac{V_{\text {line }}}{\sqrt{3}}
$$

Therefore, the phase active power and the total active power are:

Equation 6

$$
P_{1}=P_{2}=P_{3}=P=V_{\text {phase }} \cdot I_{\text {line }} \cdot \cos \theta
$$

Equation 7

$$
\mathrm{P}_{\text {Total }}=3 \mathrm{P}=3 \mathrm{~V}_{\text {phase }} \bullet \mathrm{I}_{\text {line }} \bullet \cos \theta
$$

If the relationship between the phase voltage and the line voltage is used, the total active power becomes identical to the Equation 4 developed. This means that the total power in any balanced three-phase load (Δ - or Y-connected) is given by Equation 4. Similarly, the total reactive and the total apparent power in the three-phase balanced ac circuits can be given by:

Equation 8

$$
Q_{\text {Total }}=\sqrt{3} V_{\text {line }} \bullet I_{\text {line }} \bullet \sin \theta
$$

Equation 9

$$
\mathrm{S}_{\text {Total }}=\sqrt{3} \mathrm{~V}_{\text {line }} \bullet \mathrm{I}_{\text {line }}
$$

A. 2 Power measurement techniques

In the three-phase power systems, one, two, or three wattmeters can be used to measure the total power. A wattmeter may be considered to be a voltmeter and an ammeter combined in the same box, which has a deflection proportional to $\mathrm{V}_{\text {rms }} I_{\mathrm{rms}} \cos \theta$, where θ is the angle between the voltage and current. A wattmeter has two voltage and two current terminals, which have + or - polarity signs. Three power measurement methods utilizing the wattmeters are described next, and are applied to the balanced three-phase ac load.

A.2.1 Two-Wattmeter method

This method can be used in a three-phase three-wire balanced or unbalanced load system that may be connected Δ or Y. To perform the measurement, two wattmeters are connected as shown in Figure 17.

Figure 17. Two-wattmeter method in star- or delta-connected load

In the balanced loads, the sum of the two wattmeter readings gives the total power. This can be proven in a star-connected load mathematically using the power reading of each meter as:

Equation 10

$$
P_{1}=V_{12} \cdot I_{1} \cdot \cos \left(30^{\circ}-\theta\right)=V_{\text {line }} \bullet I_{\text {line }} \cdot \cos \left(30^{\circ}-\theta\right)
$$

Equation 11

$$
\mathrm{P}_{2}=\mathrm{V}_{32} \cdot \mathrm{I}_{3} \cdot \cos \left(30^{\circ}-\theta\right)=\mathrm{V}_{\text {line }} \cdot \mathrm{I}_{\text {line }} \cdot \cos \left(30^{\circ}-\theta\right)
$$

Equation 12

$$
P_{\text {Total }}=P_{1}+P_{2}=\sqrt{3} V_{\text {line }} \bullet I_{\text {line }} \bullet \cos \theta
$$

If the difference of the readings is computed,

Equation 13

$$
\mathrm{P}_{2}-\mathrm{P}_{1}=\mathrm{V}_{\text {line }} \bullet \mathrm{I}_{\text {line }} \bullet \cos \left(30^{\circ}-\theta\right)-\mathrm{V}_{\text {line }} \bullet \mathrm{I}_{\text {line }} \cdot \cos \left(30^{\circ}-\theta\right)=\mathrm{V}_{\text {line }} \bullet \mathrm{I}_{\text {line }} \sin \theta
$$

which is $1 / B$ times the total three-phase reactive power. This means that the two-wattmeter method can also indicate the total reactive power in the three-phase loads and also the power factor.

A. 3 Three-Wattmeter method

This method is used in a three-phase four-wire balanced or unbalanced load. The connections are made with one meter in each line as shown in Figure 18. In this configuration, the total active power supplied to the load is equal to the sum of the three wattmeter readings.

Equation 14

$$
P_{\text {Total }}=P_{1}-P_{2}-P_{3}
$$

Figure 18. The wattmeter connections in the three-phase four-wire loads

A. 4 One-Wattmeter method

This method is suitable only in three-phase four-wire balanced loads. The connection of the wattmeter is similar to the drawing given in Figure 18. The total power is equal to three times the reading of only one wattmeter that is connected between one phase and the neutral.

Appendix B Example of source code

The C code below shows an example of handling energy value (either active type 0, type1, reactive or apparent) after it has been read, unpacked and stored into register new. For signed wide-band Active energy as an example, a pointer named e should be loaded with \&ActWB then, EnergyQuant() should be called. This function checks for rollover and computes a quant of energy. Later, EnergyUpdate() is called. This function updates the fractional part of integrator first (frac). If the fractional part reaches a certain limit, it is subtracted from the fractional part and the integer part (integ) of integrator increments. The value of the limit and the direction of subtraction and increment depends on the sign of quant.

Some applications may have positive and negative energy integrators or quadrant integrators for Apparent energy. All this influences an implementation of both functions. With a proper limit value for the fractional part, one can prescribe a suitable bit weight of the integer part of the integrator.

For example if the limit is set to 0x00140000 (with a device calibrated to provide 128000 pulses/kWh) then the Isb of the integer part represents exactly 0.01 kWh .
Below is an example of source code.

```
/* definition of STPM01 registers structure */
typedef struct STPM {
    long int DAP[3];
    long int DRP[3];
    long int DSP[3];
    long int DFP[3];
    long int DEV[3];
    long int DMV[3];
    long int CFL[3];
    long int CFH[3];
} STPM_Struct;
/* definition of energy integrator structure */
typedef struct energ {
long int old[4]; /* previous energy value */
int quot[4]; /* quant/16 */
int quant[4]; /* new - old, measure of power */
```

```
long int frac[4]; /* fraction part of energy integrator */
long int integ[4]; /* integer part of energy integrator */
} ENERG;
/* definition of variables for internal registers values */
char status[3];
char mode[3];
int freq[3];
int uRMS[3];
int iRMS[3];
int uMOM[3];
int iMOM[3];
long int active0[4];
long int active1[4];
long int reactive[4];
long int apparent[4];
/* allocation for all types of energies */
long int new; /* energy value to be handled */
ENERG *e; /* -> energy integrator */
ENERG ActWB; /* Active wide band energy */
ENERG Reactive; /* Reactive energy */
ENERG ActFund; /* Active fundamental energy */
ENERG Apparent; /* Apparent energy */
/* definition of constant */
#define ELIMIT 0x140000 /* produces 0.01 kWh resolution in case of 128000 pulses per
kWh */
```

ROUTINE NAME : EnergyQuant
INPUT/OUTPUT : None/None
DESCRIPTION : Energy quant computing function (version for signed energy
integration). Checks for rollovers and compute quant as difference between new and
old value. Returns a negative sign of quant.

```
int EnergyQuant(Long int *new)
{
long int NewTemp;
char i,Temp;
```

```
if (ReadSTPM01Falg == 0){
for (i = 0; i < 3; i ++){
    NewTemp = * new;
    e->old[i] = NewTemp;// save the value for the first time reading
new ++; //next data
}
e->quot[0] = 0;
e->quot[1] = 0;
    e->quot[2] = 0;
}
else{
e->quant[3] = 0;
for (i = 0; i <3; i++ ){
NewTemp = *new; // Rollover high to low occurs when MSB goes from F to 0
if (NewTemp >= e->old[i]){
    if ((NewTemp - e->old[i]) >= 0x80000){ //roll over, negative energy
                                    e->quant[i] = 0x100000 + e->old[i] -NewTemp;
                                    e->quant[3] -= e->quant[i];//total ernergy minus the negative energy
}
        else{
                e->quant[i] = NewTemp - e->old[i]; //positive energy
                e->quant[3] += e->quant[i]; //add the positive energy to the total energy
            }
        }
            else{
                if ((e->old[i] - NewTemp) >= 0x80000) { //roll over, positive energy
                    e->quant[i] = 0x100000 + NewTemp - e->old[i];
                        e->quant[3] += e->quant[i]; //total ernergy plus the positive energy
                    }
                else{
                        e->quant[i] = e->old[i] - NewTemp; //negative energy
                        e->quant[3] -= e->quant[i]; //total energy minus the negative energy
            }
        }
        e->old[i] = NewTemp;// save the value for next time
        new ++; //next data
    }
}
```

```
if (e->quant[3] > 0xf0000000) //for test purpose
    e->quant[3] = 0;
e->quot[3] = e->quant[3] >> 4;
Temp = e->quant[3] & 0x0f;//save the residue
e->frac[3] += Temp;
Accuracy_Error_Count ++;
if (Accuracy_Error_Count == 3){
    Accuracy_Error_Count = 0;
    if (e->quant[0] >= 2)
        e->quant[0] -= 2;
}
led_frac += e->quant[0] & 0x0f;
e->quot[2] = e->quot[1];
e->quot[1] = e->quot[0];
e->quot[0] = e->quant[0] >> 4;
}
```


ROUTINE NAME : EnergyUpdate
INPUT/OUTPUT : None/None
DESCRIPTION : Energy update function (version for signed energy integration)If quant
is negative, subtract otherwise add its value from the integrator. Returns true when
frac reaches ELIMIT
int EnergyUpdate(void)
\{
PM_u8 i;
e = \&ActWB; // active WB energy calculation
for (i = 0; $i<3$; $i++$)
e->frac[i] += (Long int)e->quot[i];// add quot to frac
if (e->quant[i] < 0) \{ // is quant negative?
if (e->frac[i] > (-ELIMIT))
return (0); // yes, is within the limit?
else \{
e->frac[i] += ELIMIT;
(e->integ[i])--; // no, subtract it and increment

```
            }
    }
        else {
            if (e->frac[i] < ELIMIT)
                return(0); // no, is within the limit?
            else {
            e->frac[i] -= ELIMIT;
            (e->integ[i])++; // no, subtract it and increment
            }
        }
    }
    e->frac[3] += (long int)e->quot[3]; // add quot to frac
    led_frac += (Long int)e->quot[0];
    if (led_frac >= MeterConstant) { //MeterConstant = 0x1f400 //128000 0x4000)
        GPIO0->PD ^= 0x1000; //GPIO0.12 Active engergy output
        led_frac -= MeterConstant; //0x4000;
    }
    if (e->frac[3] >= ELIMIT) {
        e->frac[3] -= ELIMIT;
        (e->integ[3])++; // no, subtract it and increment
        lTotal[0] ++;
}
/*caculate the 3 phase total energy, and generate the output pulse*/
return(1); // return limit has been reached
}
```


Appendix C BOM list

Table 10. BOM list

Index	Qty	Ref.	Value / generic part number	Package	Manufacture's ordering code/ orderable part number	Supplier	Supplier's ordering code
1	2	C1,C2	SMT COG ceramic capacitor, 15 pF 50 V	0805			
2	12	C3, C4, C6, C7, C13, C14, C16, C17, C23, C24, C26, C27	SMT X7R ceramic capacitor, 1000 pF 50 V	0805			
3	6	$\begin{gathered} \text { C5, C8, C15, C18, } \\ \text { C25, C28 } \end{gathered}$	X7R SMT ceramic capacitor, $1 \mu \mathrm{~F} 16 \mathrm{Vdc}$	0805			
4	6	$\begin{gathered} \text { C9, C12, C19, C22, } \\ \text { C29, C32 } \end{gathered}$	SMT X7R ceramic capacitor, 10 nF 50 V	0805			
5	3	C11, C21, C31	$4.7 \mu \mathrm{~F}$	No mounted			
6	1	C34	Rubycon aluminium radial Lead Electrolytic Capacitor ZL Series $56 \mathrm{mR} \quad 995 \mathrm{~mA} 20 \%$ $330 \mu \mathrm{~F} 25 \mathrm{~V}$		Rubycon		
7	1	C35	Rubycon aluminium radial Lead Electrolytic Capacitor ZA Series 270 mR 350 mA 20\% 22UF 16 V		Rubycon		
8	2	C36, C39	SMD ceramic capacitor $220 \mathrm{nF} 630 \mathrm{~V} 20 \%$ 220NF 630 V	2220	TDK		
9	2	C37, C43	SMT X7R ceramic capacitor, 100 nF 50 V	0805			
10	1	C38	Radyal Electrolytic capacitor $2.2 \mu \mathrm{~F} 400 \mathrm{~V}$	Diameter: 10 mm Lead spacing: 5 mm			
11	1	C40	Radyal Electrolytic capacitor $1000 \mu \mathrm{~F} 25 \mathrm{~V}$	Diameter: 13 mm Lead spacing: 5 mm			
12	1	C41	Radyal Electrolytic capacitor $10 \mu \mathrm{~F} 50 \mathrm{~V}$	Diameter:4 mm Lead spacing: 2.5 mm			
13	1	C42	Y1 suppression ceramic cap, 2.2 nF 250 Vac		CERAMITE	RS	214-5903

Table 10. BOM list (continued)

Index	Qty	Ref.	Value / generic part number	Package	Manufacture's ordering code/ orderable part number	Supplier	Sup- plier's order- ing code
14	1	C44	SMT X7R ceramic capacitor 47NF 50 V	0805			
15	3	D1,D3,D5	SMD LED low current superred	P-LCC-2	OSRAM	Distrelec	631039
16	4	D2,D4,D6,D14	Small signal SMD diode LL4148	1206			
17	2	D7,D12	SMT Diode Bridge 1000 V 1 A		General semiconductor	RS	269-344
18	1	D8	Mini-Melf Zener diode 15 V 0.5 W 5\%	SMD Mini- Melf 1206			
19	1	D9	Small Signal Schottky Diode 80 V 0.5 A TMBAT49	MELF Glass	STMicroelectronics		
20	2	D11,D13	$\begin{gathered} \text { DO-41 Zener diode } \\ 180 \mathrm{~V} 2 \mathrm{~W} 5 \% \end{gathered}$	DO41			
21	1	J1	5 way 2 row header, 0.1 in pitch 7 mm pin (10 PIN connector)	THT			
22	1	J2	10 way 2 row header, 0.1 in pitch 7 mm pin (20 PIN connector)	THT			
23	7	$\begin{gathered} \hline \mathrm{J} 5, \mathrm{~J} 7, \mathrm{~J} 8, \mathrm{~J} 9, \mathrm{~J} 10, \mathrm{~J} 11, \\ \mathrm{~J} 2 \end{gathered}$	1 way header, 7 mm pin (1 PIN connector)	THT			
24	2	J13, J14	3 way 2 row header, 0.1 in pitch 7 mm pin (6 PIN connector for jumper)	THT			
25	3	L1,L2,L3	Current transformer for indirect connection withoutdc-tolerance CT 1:2000	THT	VAC www.vacuumschm elze.de		
26	1	L4	Axial BC inductor, $1000 \mu \mathrm{H} 130 \mathrm{~mA}$	THT axial	Epcos	RS	191-0712
27	1	L5	Signal-Use SMD Inductor $10 \mu \mathrm{H} 125 \mathrm{~mA}$	0805	TDK		
28	1	NTC1	NTC inrush current suppressor, 50 R 2 A	THT		RS	210-673
29	1	Q1	N-CHANNEL 500 V - 2.8 Ω - 2.3 A Zener- Protected SuperMESH ${ }^{\text {TM }}$ Power MOSFET STD3NK50Z	DPAK	STMicroelectronics		

Table 10. BOM list (continued)

Index	Qty	Ref.	Value / generic part number	Package	Manufacture's ordering code/ orderable part number	Supplier	Sup- plier's order- ing code
30	3	RV1,RV2,RV3	SO5K275/275 V		Epcos	Distrelec	730096
31	1	R1	SMT chip resistor 1 MOhm 1\% 0.125 W	0805			
32	3	R2,R18,R34	SMT chip resistor, 750 Ohm 1\% 0.125 W	0805			
33	7	R5,R8,R21,R24,R37, R40,R54	SMT chip resistor 1 Kohm 1\% 0.125 W	0805			
34	3	R6,R22,R38	MMA 0204 Professional MELF resistors 3.3 Ohm 1%	1206	Beyschlag	Distrelec	713014
35	3	R7,R23,R39	SMT chip resistor 150 KOhm 1\% 0.125 W	0805			
36	3	R9,R25,R41	MMA 0204 Professional MELF resistors 2.2 MOhm 1\%	1206	Beyschlag	Distrelec	713154
37	3	R10,R26,R42	SMT chip resistor 2,2 Kohm 1\% 0.125 W	0805			
38	3	R13,R29,R45	SMT chip resistor, 0 Ohm 0.125 W	0805			
39	6	$\begin{gathered} \text { R14,R15,R30,R31,R } \\ 46, R 47 \end{gathered}$	MMA 0204 Professional MELF resistors 270 KOhm 1\% SMD	1206	Beyschlag	Distrelec	713132
40	3	R16,R32,R48	MMA 0204 Professional MELF resistors 200 KOhm 1\% SMD	1206	Beyschlag	Distrelec	713129
41	3	R17,R33,R49	MMA 0204 Professional MELF resistors 470 Ohm 1% SMD	1206	Beyschlag	Distrelec	713066
42	1	R52	SMT chip resistor 10 Ohm 1\% 0.125 W	0805			
43	1	R53	SMT chip resistor 220 Ohm 1\% 0.125 W	0805			
44	2	R55,R57	SMT chip resistor 4.7 KOhm 1\% 0.125 W	0805			
45	1	R56	SMT chip resistor 5.6 Kohm 1\% 0.125 W	0805			
46	3	R58,R59,R60	SMT chip resistor $330 \mathrm{kOhm} 5 \% 0.25 \mathrm{~W}$	1206			
47	4	R61,R62,R63,R64	ROX1S metal oxide film resistor 22 Ohm 1 W	axial	Neohm	RS	214-0920

Table 10. BOM list (continued)

Index	Qty	Ref.	Value / generic part number	Package	Manufacture's ordering code/ orderable part number	Supplier	Sup- plier's order- ing code
48	1	T1	E13 TIW Switch mode transformer	THT	Pulse (www.pulseeng. com)		
49	3	U1,U2,U3	Programmable single phase energy metering IC with tamper detection STPM01FTR_TSSOP20	TSSOP20	STMicroelectronics		
50	1	U4	Very low drop voltage regulators 3.3 V WITH INHIBIT 300 mA 1\% L4931ABD33	SO-8	STMicroelectronics		
51	1	U5	U6Opto-isolator PC817	DIP6			
52	1	1	U7	Programmable shunt voltage reference 1\% TS2431	SOT23-3	STMicroelectronics	
53	1	U8	Low power OFF-Line SMPS Primary Switcher VIPer12AS-E	SO-8	STMicroelectronics		
55	1	Y1	HEX SCHMITT inverter M74HC14	SOP	STMicroelectronics		

6 Revision history

Table 11. Revision history

Date	Revision	Changes
17-Apr-2007	1	First issue

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

