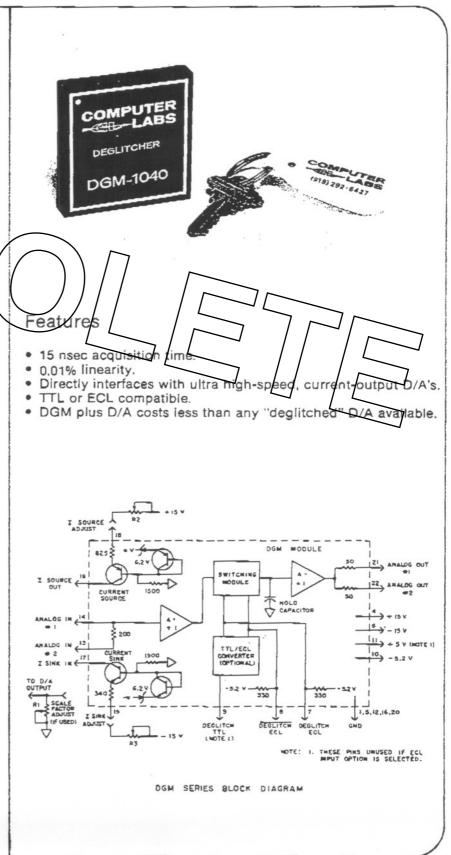
ANALOG DEVICES

DGM-1040 and -1080 D/A Deglitchers

General

Deglitchers are normally used to eliminate the non-linear effects of "glitches" from the output of D/A converters. The Computer Labs DGM Series of Deglitchers may be used with almost any type of D/A converter to generate an output signal with extremely high spectral purity. These Deglitchers have been used for television signal reproduction, CRT displays, waveform generation and automatic test equipment to name a few.

The Problem


In most instances, hast-settling D/A converters are current-switching types, rather than voltage types. In this type of converter, any input bit changing causes a change in the output current of the converter.

The input circuits for currentswitching D/A's, and their TTL or DTL driving logic, are subject to the characteristic of saturated logic which causes propogation delay for negative-going inputs to be different from the delay for positivegoing inputs.

As a result of this phenomenon, time skew of the individual current switches within the D/A converter is worst when one or more input bits are out of phase with the others. This is true even for ideal inputs in which the digital input bits arrive simultaneously; if there is time skew among the bit inputs, the problem becomes even more pronounced.

These differences among the internal switches cause a discontinuity or "glitch" in the output current of the D/A converter. The true "worst case" glitch always occurs at the switching point of the Most Significant Bit (MSB) or the center point of the output range, because nearly equal and opposite currents are being switched.

In addition to this inescapable switching transient in the output,

ANALOG DEVICES

6.3

most current-output D/A converters also have a maximum output voltage limitation.

Part of this limitation may be the result of high output capacitance and/or resistance; this characteristic can be "masked" in data sheets if settling time is specified with an impractically-low impedance load.

Even D/A converters which have low output capacitance and/ or resistance will have a maximum output voltage limitation which is established by saturation of the internal switching transistors.

This internal saturation, in turn, generally precludes operating the current-switching D/A conerter as effectively in a unipolar node as it car be operated in a bipolar output mode NOTE: Additional details on the character switching, fast-settling Dra Converters "Notes on Fast-settling D/A Converters", the date sheet on the Computer Labo rrent tics of re included in Converters a high are part o AD Scries D/A's

The Solution

When first exposed to the undesirable effect of analog discontinuities in the outputs of current-switching D/A converters. many users erroneously assume two straight-forward approaches will solve the problem. At the input, minimizing time skew among the data bit inputs will be a useful technique. At the output, the use of a filter may also appear to be a neat "solution" to the problem.

Unfortunately, no amount of time alignment on the input bits will overcome the physical laws associated with the propogation delays of saturated logic discussed earlier. In addition, a filter designed for eliminating the "glitch" at the major carry point will not be optimized for transients at other points of the output, nor will it change the relationship of transient amplitudes; this is because the glitch is a function of signal dynamics. As a result, a multitude of intermodulation products are formed; some of these IM products appear in the video pass-band as spurious signals, and increased noise level.

Besides these considerations, no amount of minimizing time skew

AC CHARACTERISTICS

Acquisition Time

Sample Rate (max)

Sample Delay TTL

DGM-1040 15 nsec 30 MHz 10 лзес 6 nsec

DGM-1080

See Fig. 283 75 nsec 11 MHz 10 nsec See Fig. 2 6 nsec

Droop Rate Harmonic Distortion Feedthru Rejection Pedestal Residual Glitch Output Noise Level

DC CHARACTERISTICS

ECL

8 mV/usec >60 dB >60 dB 10 mV 30 mV 0.2 mV (RMS)

1 mV/usec >60 dB >70 dB 2 mV See Fig. 1 20 mV See Fig. 1 0.1 mV (RMS)

DGM-1040 & DGM-1080

Gain .975 Offset Adjustable to zero Offset Drift 100 ppm/°C ±0.01% Linearth urrent Source Current 7.5 mA max Current Sink Current 19 mA max ANALOG PI IN CH TIC AC RIS Input Voltage ±2 1 meg¢hm Input Impedance Input Bias Current 0.05 nA ANALOG OUTPUT CHARACTER Output Voltage (no load) ±2 V ±50 mA Output Current Output Impedance 50 ohms DEGLITCH STROBE CHARACTERISTICS

Optionally either of the following: TTL single line input "0" = track 0 to +0.4 V

"1" = hold ECL 2 line complementary "0" = track "1" = hold

2 standard TTL loads +2.4 to +4 V

These inputs are -1.7 V each terminated with a 330 ohm pull--0.8 V down resistor to -5.2 V.

POWER REQUIREMENTS

+15 V @ 100 mA w/o current source connected -15 V @ 100 mA w/o current source connected +5 V @ 20 mA

-5.2 V @ 80 mA -5.2 V @ 24 mA

TTL input option

ECL input option

PHYSICAL CHARACTERISTICS

2.3" by 2.3" by 0.43" Package Size 58 mm by 58 mm by 11 mm Weight 85 grams 3oz 0.040 diameter gold plated Case

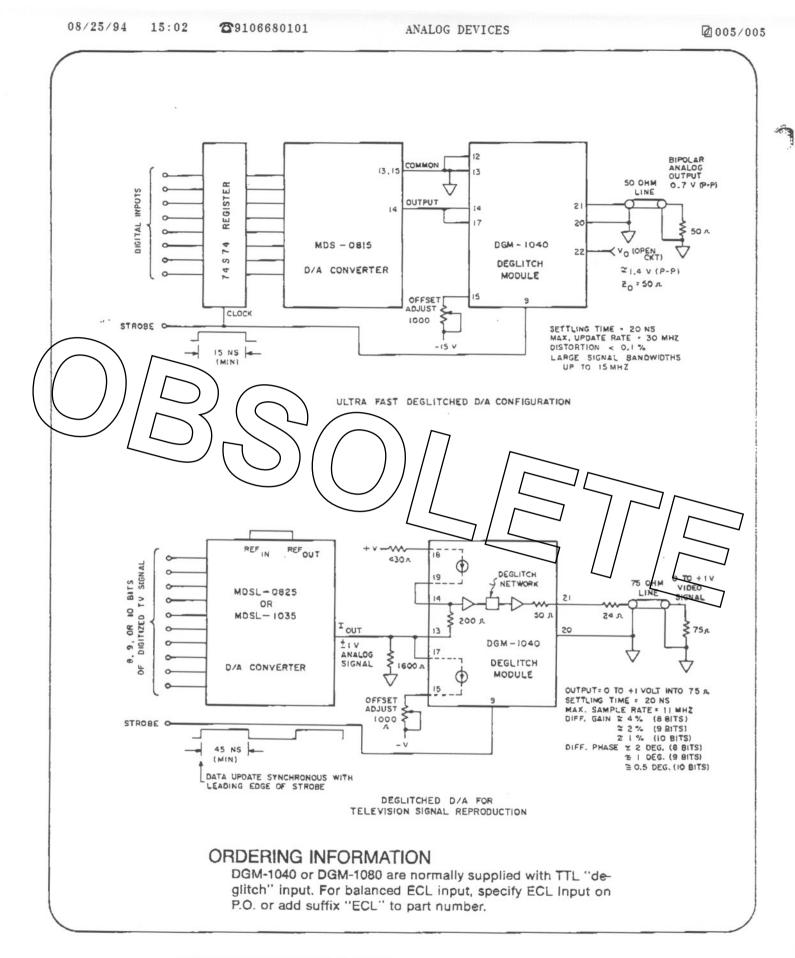
diallyl phthalate per MIL-M-14 type SDG-F

Pins

and/or filtering the output will overcome the output voltage limitations imposed by internal switching transistor saturation.

An optimum solution to the problem of glitches would cause the glitch to remain constant, regardless of the transition points on the input data. As an example, it should remain the same for the transition from 0 000 000 001 to 1 000 000 000; as it is for the transition from 1 000 000 000 to 1 000 000 001; or any other two input words.

Ideally, an optimum solution to the glitch problem would also permit using the full current drive capabilities of the current-switching D/A converter in both bipolar and unipolar modes of operation.


The purpose of the Computer Labs DGM modules is to reduce the amplitude of the glitch to an acceptable level, and more importantly, to provide aconstant-amplitude glitch. This with hold the area under the curve at a constant value: the modules are not interded to get rid of all glitches per se.

When the area under the transient curve is held constant, the frequency spectrum of the glitch is a fine line, i.e., a single-line spectrum at the sample rate frequencies, and harmonics of the sample frequency.

The deglitcher circuits effectively eliminate the intermodulation products discussed earlier. When they do, the S/N ratio approaches that of an ideally-quantized signal, where the rms noise is $q/\sqrt{12}$, when frequencies above Nyquist are filtered out.

The DGM modules also incorporate an internal adjustable current sink, to adjust the D/A output for bipolar operation. In addition, an internal voltage shifter consisting of a current source and a precision resistor allows using the bipolar output drive capabilities of the D/A converter for unipolar positive applications. These features permit 0V to +2V unipolar outputs. An internal buffer amplifier buffers output loading from the D/A module, permitting a constant 50-ohm output impedance.

NOTE: Additional information and pictures on deglitching are included in Notes on 'Deglitching'' which are part of the data sheet on the Computer Labs TVDA Series D A's.

COMPUTER LABS

COMPUTER LABS, A DIVISION OF ANALOG DEVICES 505 EDWARDIA DRIVE • GREENSBORO, N.C. 27409 • (919) 292-6427 • TWX 510-922-7954 ANALOG DEVICES • ROUTE 1 INDUSTRIAL PARK • NORWOOD, MA 02062 • (617) 329-4700 • TWX 710-394-6577