Preliminary



Pin Descriptions

| Pin Name | Description |
| :---: | :---: |
| $\overline{\mathrm{OE}}$ | Bus Switch Enable |
| S | Select Input |
| A | Bus A |
| $\mathrm{B}_{1}-\mathrm{B}_{2}$ | Bus B |

## Connection Diagrams

Pin Assignments for QSOP and TSSOP


Pad Assignments for DQFN


Truth Table

| $\mathbf{S}$ | $\overline{\mathbf{O E}}$ | Function |
| :---: | :---: | :---: |
| $X$ | $H$ | Disconnect |
| $L$ | $L$ | $A=B_{1}$ |
| $H$ | $L$ | $A=B_{2}$ |

## Absolute Maximum Ratings(Note 1)

Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
DC Switch Voltage ( $\mathrm{V}_{\mathrm{S}}$ )
DC Input Voltage ( $\mathrm{V}_{\mathrm{IN}}$ ) (Note 2)
DC Input Diode Current ( $\mathrm{I}_{\mathrm{K}}$ ) $\mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$
DC Output (IOUT) Sink Current
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ( $\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$ )
Storage Temperature Range ( $\mathrm{T}_{\mathrm{STG}}$ ) ESD

Human Body Model
-0.5 V to +4.6 V
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.05 \mathrm{~V}$
-0.5 V to +4.6 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-50 \mathrm{~mA}$
128 mA
$\pm 100 \mathrm{~mA}$
Recommended Operating
Conditions (Note 3)
Power Supply Operating ( $\mathrm{V}_{\mathrm{CC}}$ )
3.0 V to 3.6 V

Input Voltage (VIN
OV to $\mathrm{V}_{\mathrm{CC}}$
OV to $\mathrm{V}_{\mathrm{CC}}$
Input Rise and Fall Time ( $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ )

| Switch Control Input | $0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$ |
| :--- | ---: |
| Switch I/O | $0 \mathrm{~ns} / \mathrm{V}$ to DC |
| Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

4 kV Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

## DC Electrical Characteristics

| Symbol | Parameter | $\mathrm{V}_{\mathrm{CC}}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ |  |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$ | Max |  |  |
|  | Analog Signal Range |  | 0 |  | 2.0 | V |  |
| $\mathrm{V}_{\text {IK }}$ | Clamp Diode Voltage | 3.0 |  |  | -1.2 | V | $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ |
| $\mathrm{V}_{\text {IH }}$ | HIGH Level Input Voltage | 3.0-3.6 | 2.0 |  |  | V |  |
| $\mathrm{V}_{\text {IL }}$ | LOW Level Input Voltage | 3.0-3.6 |  |  | 0.8 | V |  |
| $I_{1}$ | Input Leakage Current | 3.6 |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ | $0 \leq \mathrm{V}_{\text {IN }} \leq 3.6 \mathrm{~V}$ |
| IOFF | OFF-STATE Leakage Current | 3.6 |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ | $0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$ |
| $\mathrm{R}_{\mathrm{ON}}$ | Switch On Resistance (Note 5) | 3.0 |  | 5.0 | 7.0 | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{I}}=75 \Omega, \mathrm{I}_{\mathrm{ON}}=13 \mathrm{~mA} \end{aligned}$ |
|  |  | 3.0 |  | 4.5 | 6.0 | $\Omega$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{I}}=75 \Omega, \mathrm{I}_{\mathrm{ON}}=26 \mathrm{~mA} \end{aligned}$ |
| R ${ }_{\text {FLAT(ON) }}$ | On Resistance Flatness (Note 6) | 3.0 |  | 1.0 |  | $\Omega$ | $\mathrm{I}_{\text {OUT }}=13 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {CC }}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent Supply Current | 3.6 |  |  | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$ |
| $\Delta \mathrm{I}_{\mathrm{CC}}$ | Increase in I CC per Input | 3.6 |  |  | 30.0 | uA | One Input at 3.0 V Other Inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |

Note 4: Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two ( A or B ) pins.
Note 6: Flatness is defined as the difference between the maximum and minimum value On Resistance over the specified range of conditions.

| Symbol | Parameter | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | Units | Conditions | Figure Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | $\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 7) } \\ \hline \end{array}$ | Max |  |  |  |
| $\mathrm{t}_{\mathrm{ON}}$ | Turn ON Time S-to-Bus B | 3.0 to 3.6 |  | 4.8 | 7.0 | ns |  | Figures 1,2 |
|  | Output Enable Time OE-to-A or B | 3.0 to 3.6 |  | 4.5 | 6.8 |  |  |  |
| toff | Turn OFF Time S-to-Bus B | 3.0 to 3.6 |  | 2.2 | 4.0 | ns |  | Figures 1, 2 |
|  | Output Disable Time OE-to-A or B | 3.0 to 3.6 |  | 2.2 | 4.0 |  |  |  |
| DG | Differential Gain | 3.0 to 3.6 |  | TBD |  | \% | $\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$ |  |
| DP | Differential Phase | 3.0 to 3.6 |  | TBD |  | Degree | $\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$ |  |
| $\mathrm{O}_{\text {IRR }}$ | Non-Adjacent OFF-Isolation | 3.0 to 3.6 |  | -75.0 |  | dB | $\mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=75 \Omega$ | Figure 3 |
| $\mathrm{X}_{\text {TALK }}$ | Non-Adjacent Channel Crosstalk | 3.0 to 3.6 |  | -75.0 |  | dB | $\mathrm{R}_{\mathrm{L}}=75 \Omega, \mathrm{f}=10 \mathrm{MHz}$ | Figure 4 |
| BW | -3dB Bandwidth | 3.0 to 3.6 |  | 800 |  | MHz | $\mathrm{R}_{\mathrm{L}}=75 \Omega$ | Figure 5 |

## Capacitance

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Typ (Note 8) |  |  |
| $\mathrm{C}_{\text {IN }}$ | Control Pin Input Capacitance | 2.5 | pF | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ |
| $\mathrm{C}_{\mathrm{ON}}$ | A/B ON Capacitance | 12.0 | pF | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}$ |
| $\mathrm{C}_{\text {OFF }}$ | Port B OFF Capacitance | 4.0 | pF | $\mathrm{V}_{\mathrm{CC}}$ and $\overline{\mathrm{OE}}=3.3 \mathrm{~V}$ |
|  | Port A OFF Capacitance | TBD | pF |  |

Note 8: Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

## Preliminary

## AC Loading and Waveforms



FIGURE 1. AC Test Circuit


FIGURE 2. AC Waveforms


FIGURE 3. OFF Isolation Test


FIGURE 4. Crosstalk Test


FIGURE 5. Bandwidth Test

| Tape and Reel Specification Tape Format for DQFN |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Package Designator | Tape Section | Number <br> Cavities | Cavity <br> Status | Cover Tape Status |
| BQ/BQX | Leader (Start End) <br> Carrier <br> Trailer (Hub End) | $\begin{gathered} 125 \text { (typ) } \\ 2500 / 3000 \\ 75 \text { (typ) } \end{gathered}$ | Empty <br> Filled <br> Empty | Sealed <br> Sealed <br> Sealed |

TAPE DIMENSIONS inches (millimeters)


NOTES: unless otherwise specified

1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed $0.008[0.20]$ over 10 pitch span.
2. Smallest allowable bending radius
3. Thru hole inside cavity is centered within cavity
4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12 mm tapes

5 . Ao and Bo measured on a plane $0.120[0.30$ ] above the bottom of the pocket.
6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier
7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
8. Controlling dimension is millimeter. Diemension in inches rounded.

REEL DIMENSIONS inches (millimeters)


| Tape Size | A | B | C | D | N | W1 | W2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 mm | 13.0 | 0.059 | 0.512 | 0.795 | 7.008 | 0.488 | 0.724 |
|  | $(330)$ | $(1.50)$ | $(13.00)$ | $(20.20)$ | $(178)$ | $(12.4)$ | $(18.4)$ |

## Preliminary

Physical Dimensions inches (millimeters) unless otherwise noted


RECOMMENDED LAND PATTERN


NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AB
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP016ErevA


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC16

## Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
