Twenty-Five Years Of Quality Through Innovation # **U/J/SST308 SERIES** ## SINGLE N-CHANNEL HIGH FREQUENCY JFET AMPLIFIER | FEATURES | | | | | | | | |--|-------------------|--|--|--|--|--|--| | Direct Replacement For SILICONIX U/J/SST308 SERIES | | | | | | | | | OUTSTANDING HIGH FREQUENCY GAIN | $G_{pg} = 11.5dB$ | | | | | | | | LOW HIGH FREQUENCY NOISE | NF = 2.7dB | | | | | | | | ABSOLUTE MAXIMUM RATINGS ¹ | | | | | | | | | @ 25 °C (unless otherwise stated) | | | | | | | | | Maximum Temperatures | | | | | | | | | Storage Temperature | -55 to 150°C | | | | | | | | Junction Operating Temperature | -55 to 150°C | | | | | | | | Maximum Power Dissipation | | | | | | | | | Continuous Power Dissipation (J/SST) ⁴ | 350mW | | | | | | | | Continuous Power Dissipation (U) ⁵ | 500mW | | | | | | | | Maximum Currents | | | | | | | | | Gate Current (J/SST) | 10mA | | | | | | | | Gate Current (U) | 20mA | | | | | | | | Maximum Voltages | | | | | | | | | Gate to Drain | -25V | | | | | | | | Gate to Source | -25V | | | | | | | ## COMMON ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated) | SYMBOL | CHARACTERISTIC | | | TYP | MAX | UNIT | CONDITIONS | | | |---------------------|----------------------------------|------------|-----|------|------|--------|--|--|--| | BV _{GSS} | Gate to Source Breakdown Voltage | | -25 | | | V | $I_G = -1\mu A$, $V_{DS} = 0V$ | | | | $V_{GS(F)}$ | Gate to Source Forward Voltage | | 0.7 | | 1.15 | V | $I_G = 10mA$, $V_{DS} = 0V$ | | | | I _G | Gate Operating Current | | | -15 | | pА | $V_{DG} = 9V, I_{D} = 10mA$ | | | | r _{DS(on)} | Drain to Source On Resistance | | | 35 | | Ω | $V_{GS} = 0V$, $I_D = 1mA$ | | | | en | Equivalent Noise Voltage | | | 6 | | nV/√Hz | $V_{DS} = 10V, I_{D} = 10mA, f = 100Hz$ | | | | NF | Noise Figure | f = 105MHz | | 1.5 | | dB | V _{DS} = 10V, I _D = 10mA | | | | INF | | f = 450MHz | | 2.7 | | | | | | | | Power Gain ² | f = 105MHz | | 16 | | | | | | | G_{pg} | | f = 450MHz | | 11.5 | | | | | | | _ | Forward
Transconductance | f = 105MHz | | 14 | | | VBS = 10 V, 10 = 10.11/V | | | | g fg | | f = 450MHz | | 13 | | mS | | | | | G og | Output Conductance | f = 105MHz | | 0.16 | |]0 | | | | | 909 | | f = 450MHz | | 0.55 | | | | | | | IGSS | Gate Reverse Current | | | | -1 | nA | $V_{GS} = -15V$, $V_{DS} = 0V$ | | | #### SPECIFIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated) | SYM. | CHARACTERISTIC | TYP | J/SST308 | | J/SST309 | | J/SST310 | | UNIT | CONDITIONS | |----------------------|---|-----|----------|------|----------|-----|----------|------|------|---| | STIVI. | CHARACTERISTIC | IIF | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | CONDITIONS | | V _{GS(off)} | Gate to Source Cutoff Voltage | | -1 | -6.5 | -1 | -4 | -2 | -6.5 | V | $V_{DS} = 10V$, $I_D = 1nA$ | | IDSS | Source to Drain Saturation Current ³ | | 12 | 75 | 12 | 30 | 24 | 75 | mΑ | $V_{DS} = 10V$, $V_{GS} = 0V$ | | Ciss | Input Capacitance | 4 | | | | | | | pF | $V_{DS} = 10V, V_{GS} = -10V$
f = 1MHz | | Crss | Reverse Transfer Capacitance | 1.9 | | | | | | | | | | g fs | Forward Transconductance | 14 | 8 | | 10 | | 8 | | mS | $V_{DS} = 10V, I_{D} = 10mA$ | | gos | Output Conductance | 110 | | 250 | | 250 | | 250 | μS | f = 1 kHz | #### SPECIFIC ELECTRICAL CHARACTERISTICS @25 °C (unless otherwise stated) | SYM. | CHARACTERISTIC | ТҮР | U308 | | U309 | | U310 | | UNIT | CONDITIONS | |----------------------|---|-----|------|------|------|-----|------|------|------|---| | | | | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | CONDITIONS | | V _{GS(off)} | Gate to Source Cutoff Voltage | | -1 | -6.5 | -1 | -4 | -2.5 | -6.5 | V | $V_{DS} = 10V$, $I_D = 1nA$ | | I _{DSS} | Source to Drain Saturation Current ³ | | 12 | 75 | 12 | 30 | 24 | 75 | mA | $V_{DS} = 10V$, $V_{GS} = 0V$ | | Ciss | Input Capacitance | 4 | | 5 | | 5 | | 5 | pF | $V_{DS} = 10V, V_{GS} = -10V$
f = 1MHz | | Crss | Reverse Transfer Capacitance | 1.9 | | 2.5 | | 2.5 | | 2.5 | | | | g fs | Forward Transconductance | 14 | 10 | | 10 | | 10 | | mS | $V_{DS} = 10V, I_{D} = 10mA$ | | gos | Output Conductance | 110 | | 250 | | 250 | | 250 | μS | f = 1 kHz | ## **NOTES** - 1. Absolute maximum ratings are limiting values above which serviceability may be impaired. - 2. Measured at optimum input noise match - 3. Pulse test: PW ≤ 300µs, Duty Cycle ≤ 3% - 4. Derate 2.8mW/°C above 25°C - 5. Derate 4mW/°C above 25°C Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems. Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.