

April 2015

HI-1582

MIL-STD-1553 / MIL-STD-1760 3.3V Single Transceiver

DESCRIPTION

The HI-1582 low power CMOS transceiver is designed to meet the requirements of the MIL-STD-1553 and MIL-STD-1760 specifications. It is a pin-compatible, form and fit drop-in replacement for the Data Device Corporation MIL-STD-1553 transceiver, BU-63133L8.

The transmitter section of each bus takes complementary CMOS / TTL Manchester II bi-phase data and converts it to differential voltages suitable for driving the bus isolation transformer. Atransmitter inhibit control signal is provided.

The receiver section converts the 1553 bus bi-phase data to complementary CMOS / TTL data suitable for input to a Manchester decoder. The receiver has a separate enable input pin, STROBE, which, when low, forces the receiver outputs to logic "0".

The HI-1582 is packaged in a 32-pin plastic chip-carrier package (QFN) with an integral exposed heatsink on the package bottom. The heatsink may be soldered to the PCB ground plane for optimal thermal dissipation. The HI-1582 is available in industrial (-40°C to +85°C) or extended (-55°C to +125°C) temperature range options.

FEATURES

- Compliant to MIL-STD-1553A and B, MIL-STD-1760 and ARINC 708A
- 3.3V single supply operation
- Small 7mm x 7mm 32-pin plastic chip-scale package
- Less than 0.5W maximum power dissipation
- Single Transceiver allows full dual redundancy
- Drop in replacement for Data Device Corporation BU-63133L8

PIN CONFIGURATIONS

32 Pin Plastic 7mm x 7mm Chip-scale package

PIN DESCRIPTIONS

PIN	SYMBOL	FUNCTION	DESCRIPTION
1, 29, 31	TX DATA OUT	Analog Output	Inverted transmitter output to MIL-STD-1553 bus isolation transformer. Connect
			all three pins together.
2, 7, 12, 13, 22	VCC	Power Supply	+3.3V power. Connect all five pins.
3, 14, 15, 21	GROUND	Power Supply	Ground. Connect all eight pins.
25, 27, 30, 32			
4	SLEEP	Digital Input	If high, inhibits transmitter. Internal $80 k\Omega$ pull-down
5, 6, 11, 24	-	-	Not connected
8	RX DATA	Digital Output	Receiver Output
9	STROBE	Digital Input	Receiver strobe input. Receiver outputs are both zero if STROBE is low. Internal
			80kΩ pull-up.
10	RX DATA	Digital Output	Inverted receiver output
16	RX DATA IN	Analog Input	Receiver input from MIL-STD-1553 bus isolation transformer
17	RX DATA IN	Analog Input	Inverted receiver input from MIL-STD-1553 bus isolation transformer
18	TX INHIBIT	Digital Input	If high, inhibits transmitter. Internal $80k\Omega$ pull-up
19	TX DATA IN	Digital Input	Inverted transmitter input. Internal $80 k\Omega$ pull-down
20	TX DATA IN	Digital Input	Transmitter input. Internal 80kΩ pull-down
23, 26, 28	TX DATA OUT	Analog Output	Transmitter output to MIL-STD-1553 bus isolation transformer. Connect all three
			pins together.

FUNCTIONAL DESCRIPTION

The HI-1582 data bus transceiver contains differential voltage source drivers and differential receivers. It is intended for applications using a MIL-STD-1553 A/B data bus. The device produces a trapezoidal output waveform during transmission.

TRANSMITTER

Data input to the device's transmitter section is from the complementary CMOS inputs TX DATA IN and TX DATA IN. The transmitter accepts Manchester II bi-phase data and converts it to differential voltages on TX DATA OUT and TX DATA OUT. The transceiver outputs are either direct-coupled or transformer-coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of approximately 7.5 volts peak to peak at the MIL-STD-1553 bus.

The transmitter is automatically inhibited and placed in the high impedance state when both TX DATA IN and TX DATA IN are driven with the same logic input state. A logic "1" applied to the TX INHIBIT or SLEEP input forces the transmitter to the high impedance state, regardless of the state of TX DATA IN and TX DATA IN.

The SLEEP pin is logically ORed with the TX INHIBIT pin. In the obsolete BU-63133L8, the SLEEP pin also reduced idle-state supply current from 30mA to 6mA maximum. The HI-1582 does not require supply current control; its idlestate (receive mode) current is 4 mA nominal, lower than BU-63133L8 sleep current.

RECEIVER

The receiver accepts bi-phase differential data from the MIL-STD-1553 bus through the same direct or transformer coupled interface at the RX DATA IN and $\overline{\text{RX DATA IN}}$ pins. The receiver's differential input stage drives a filter and threshold comparator to produce CMOS data at the RX DATAOUT and $\overline{\text{RX DATAOUT}}$ output pins.

The receiver outputs are forced to a logic "0" when the STROBE pin is low.

MIL-STD-1553 BUS INTERFACE

A direct-coupled interface (see Figure 4) uses a 1:2.5 ratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus. The primary centertap of the isolation transformer must be connected to VDD (3.3V).

In a transformer-coupled interface (see Figure 4), the transceiver is also connected to a 1:2.5 isolation transformer. The far end of the stub cable is connected to a 1:1.4 bus coupling transformer, which requires two coupling resistors equal to 75% of the bus characteristic impedence (Zo) between the coupling transformer and the bus.

Figure 2. Transmit Waveform - Example Pattern

HI-1582

Figure 3. Receive Waveform - Example Pattern

ABSOLUTE MAXIMUM RATINGS

Supply voltage (Vcc)	-0.3 V to +5 V		
Logic input voltage range	-0.3 V dc to +3.6 V		
Driver peak output current	+1.0 A		
Power dissipation at 25°C derate 7mW/°C	1.5 W		
Solder Temperature (reflow)	260°C		
Junction Temperature	175°C		
Storage Temperature	-65°C to +150°C		

RECOMMENDED OPERATING CONDITIONS

Supply Voltage
VDD 3.3V ±10%
Temperature Range
Industrial Screening40°C to +85°C Hi-Temp Screening55°C to +125°C
NOTE: Stresses above absolute maximum atings or outside recommended operating conditions may cause permanent damage to the

conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

DC ELECTRICAL CHARACTERISTICS

VCC = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Voltage	VDD		3.0	3.3	3.6	V
Total Supply Current	ICC1	Not Transmitting		4	10	mA
	ICC2	Transmit @ 100% duty cycle		800	900	mA
		Transformer coupled 70 Ohm resistive load				
Power Dissipation	PD1	Not Transmitting		15	60	mW
	PD2	Transmit @ 100% duty cycle		0.3	0.5	W
		Transformer coupled 70 Ohm resistive load				
Min. Input Voltage (Logic 1)	Viн	Digital inputs	70%			Vcc
Max. Input Voltage (Logic 0)	VIL	Digital inputs			30%	Vcc
Input Current (Logic 1)	Ін	TX DATA IN, TX DATA IN, TX INHIBIT, SLEEP	20		100	μA
		STROBE			20	μA
Max. Input Current (Logic 0)	١L	TX DATA IN, TX DATA IN, TX INHIBIT, SLEEP	-20			μA
		STROBE	-100		-20	μA
Min. Output Voltage (Logic 1)	Vон	louτ = -2.0mA, Digital outputs	VCC - 0.4			V
Max. Output Voltage (Logic 0)	Viн	lout = 2.0mA, Digital outputs			0.4	V
RECEIVER (Measured at Point "AD" in	Figure 5 unles	s otherwise specified)				
Input resistance	Rin	Differential (at chip pins)	20			Kohm
Input capacitance	CIN	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input Level	Vin	Differential			9	Vp-p
Input common mode voltage	Vicм		-10.0		10.0	V-pk
Threshold Voltage - Direct-coupled Detect	Vthd		1.15			Vp-p
Measured at Point "AD" in Figure 5 using		Pulse outputs present				
1 Mhz sinusoid across 35 Ohm load		at RX DATA OUT / RX DATA OUT				
No Detect	Vthnd	No pulse outputs			0.28	Vp-p
		at RX DATA OUT / RX DATA OUT				
Threshold Voltage - Transformer-coupled Detect	Vthd		0.86			Vp-p
Measured at Point "At" in Figure 6 using		Pulse outputs present				
1 Mhz sinusoid across 70 Ohm load		at RX DATA OUT/RX DATA OUT				
No Detect	Vthnd	No pulse outputs			0.20	Vp-p
		at RX DATA OUT / RX DATA OUT				

DC ELECTRICAL CHARACTERISTICS (cont.)

VCC = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

TRANSMITTER	NSMITTER (Measured at Point "AD" in Figure 5 unless otherwise specified)						
Output Voltage	Direct coupled	Vout	35 ohm load (Measured at Point "А <mark>ь</mark> " in Figure 5)	6.0		9.0	Vp-p
	Transformer coupled	Vout	70 ohm load (Measured at Point "Ατ" in Figure 6)	20.0		27.0	Vp-p
Output Noise		Von	Differential, inhibited			10.0	mVp-p
Output Dynamic Off	fset Voltage Direct coupled	Vdyn	35 ohm load (Measured at Point "A <mark>o</mark> " in Figure 5)	-90		90	mV
	Transformer coupled	Vdyn	70 ohm load (Measured at Point "Ατ" in Figure 6)	-250		250	mV
Output resistance		Rout	Differential, not transmitting	10			Kohm
Output Capacitance)	Соит	1 MHz sine wave			15	pF

AC ELECTRICAL CHARACTERISTICS

VCC = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER SYMBOL		TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
RECEIVER (Measured a	t Point "Ατ"	in Figure 6)				
Receiver Delay (Note 1)	tDR	From input signal zero crossing to corresponding			450	ns
		zero crossing in RX DATA OUT or RX DATA OUT			Note 4	
Receiver output pulse width	tew		70			ns
(Note 1)			Note 3			
Receiver gap time (Note 1)	tRG	Spacing between RX DATA OUT	90		430	ns
		and RX DATA OUT pulses	Note 2		Note 3	
Receiver Enable Delay	tren	From STROBE rising or falling edge to RX DATA OUT or RX DATA OUT			40	ns

Note 1. This parameter varies with receive signal amplitude. See Receiver Waveforms, Figure 3.

Note 2. Measured using a 1 MHz sinusoid, 20 V peak to peak, line-to-line at Point "AT" (Guaranteed but not tested.) Note 3. Measured transformer-coupled mode using a 1 MHz sinusoid, 860 mV peak to peak line-to-line at Point "AT" (100% tested).

Note 4. Measured transformer-coupled mode using a 1 MHz sinusoid 860 mV peak to peak, line-to-line at Point "AT".

TRANSMITTER (Measured a	t Point "Ατ" i	n Figure 6)			
Driver Delay	tdт	TX DATA IN, TX DATA IN to		150	ns
		TX DATA OUT, TX DATA OUT			
Rise time	tr	70 ohm resistive load	100	300	ns
Fall Time	tf	70 ohm resistive load	100	300	ns
Transmit Inhibit Delay	tDI-Н	Disable bus output		100	ns
	tDI-L	Enable bus output		150	ns

HI-1582

HOLT INTEGRATED CIRCUITS 7

HEAT SINK - CHIP-SCALE PACKAGE

The HI-1582PCI/T/M uses a 32-pin thermally enhanced QFN package. The package includes a metal heat sink located on the bottom surface of the device. This heat sink may be soldered down to the printed circuit board for optimum thermal dissipation. The heat sink is electrically isolated and may be soldered to any convenient power or ground plane.

APPLICATIONS NOTE

Holt Applications Note AN-500 provides circuit design notes regarding the use of Holt's family of MIL-STD-1553 transceivers. Layout considerations, as well as recommended interface and protection components are included.

THERMAL CHARACTERISTICS

	DACKAGE STVI E		a	JUNCTION TEMPERATURE			
FART NUMBER	PACKAGE STILE	CONDITION	ØJA	T _A =25°C	T _A =85°C	T _A =125°C	
HI-1582PCI / T / M	32-pin Plastic chip- scale package	Heat sink unsoldered	49°C/W	50°C	110°C	150°C	

Data taken at VDD=3.3V, continuous transmission at 1Mbit/s, single transmitter enabled.

RECOMMENDED TRANSFORMERS

The HI-1582 transceiver has been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following transformers. Holt

recommends the Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO	DIMENSIONS
Premier Magnetics	PM-DB2791S	Isolation	Single 1:2.5	.400 x .400 x .185 inches
Premier Magnetics	PM-DB2756	Isolation	Dual 1:2.5	.930 x .575 x .185 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .500 x .250 inches

ORDERING INFORMATION

HI - <u>1582 PC x</u> F

PART NUMBER	LEAD FINISH		
F	NiPdAu (Pb-free	RoHS compli	ant)
PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN
I	-40°C TO +85°C	I	No
Т	-55°C TO +125°C	Т	No
М	-55°C TO +125°C	М	Yes
PART NUMBER	PACKAGE DESCRIPTION		

 NUMBER
 DESCRIPTION

 PC
 32 PIN PLASTIC CHIP-SCALE PACKAGE LPCC (32PCS7)

REVISION HISTORY

Document	Rev.	Date	Description of Change
DS1582	New. A	05/23/14 03/12/15	Initial Release. Change internal pull-down on TX INHIBIT pin from $80k\Omega$ pull-down to $80k\Omega$ pull-up. Clarify Bus labels on Figures 4 and 5.

