FDG6320C

Dual N \＆P Channel Digital FET

General Description

These dual N \＆P－Channel logic level enhancement mode field effect transistors are produced using Fairchild＇s proprietary，high cell density，DMOS technology．This very high density process is especially tailored to minimize on－state resistance．This device has been designed especially for low voltage applications as a replacement for bipolar digital transistors and small signal MOSFETS．Since bias resistors are not required，this dual digital FET can replace several different digital transistors，with different bias resistor values．

Features

－N－Ch 0．22 A， $25 \mathrm{~V}, \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=4.0 \Omega @ \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$ ，

$$
\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=5.0 \Omega @ \mathrm{~V}_{\mathrm{GS}}=2.7 \mathrm{~V}
$$

－P－Ch $-0.14 \mathrm{~A},-25 \mathrm{~V}, \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=10 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$ ， $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=13 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.7 \mathrm{~V}$.
－Very small package outline SC70－6．
－Very low level gate drive requirements allowing direct operation in 3 V circuits $\left(\mathrm{V}_{\mathrm{GS}(\mathrm{h})}<1.5 \mathrm{~V}\right)$ ．
－Gate－Source Zener for ESD ruggedness （＞6kV Human Body Model）．

SC70－6	SOT－23	SuperSOT $^{T M}-6$	SOT－8	SO－8

Absolute Maximum Ratings $T_{A}=25^{\circ} \mathrm{C}$ unless other wise noted

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Symbol	Parameter	Conditions	Type	Min	Typ	Max	Units
OFF CHARACTERISTICS							
$\mathrm{BV}_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {GS }}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	N-Ch	25			V
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	P-Ch	-25			
$\Delta \mathrm{BV} \mathrm{DSS} / \Delta \mathrm{T}_{\text {J }}$	Breakdown Voltage Temp. Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	$\mathrm{N}-\mathrm{Ch}$		25		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
		$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	P-Ch		-19		
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V},{ }^{\text {, }}$	$\mathrm{N}-\mathrm{Ch}$			1	$\mu \mathrm{A}$
						10	
$\mathrm{I}_{\text {DSs }}$	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}^{\text {a }}$, $\mathrm{T}^{\circ} \mathrm{C}$	P-Ch			-1	$\mu \mathrm{A}$
						-10	
$\mathrm{I}_{\text {Gss }}$	Gate - Body Leakage Current	$\mathrm{V}_{\mathrm{GS}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	N-Ch			100	nA
		$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	P-Ch			-100	nA

ON CHARACTERISTICS (Note 2)

$\mathrm{V}_{\mathrm{GS}(\mathrm{tr})}$	Gate Threshold Voltage	$\mathrm{V}_{\text {DS }}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	N-Ch	0.65	0.85	1.5	V
		$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	P-Ch	-0.65	-0.82	-1.5	
$\Delta \mathrm{V}_{\mathrm{GS}(\mathrm{th})} / \Delta \mathrm{T}_{\mathrm{J}}$	Gate Threshold Voltage Temp. Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	N-Ch		-2.1		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
		$\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$	P-Ch		2.1		
$\mathrm{R}_{\text {DS(ON) }}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.22 \mathrm{~A}$	$\mathrm{N}-\mathrm{Ch}$		2.6	4	Ω
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			5.3	7	
		$\mathrm{V}_{\mathrm{GS}}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.19 \mathrm{~A}$			3.7	5	
		$\mathrm{V}_{\text {GS }}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.14 \mathrm{~A}$	P-Ch		7.3	10	
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			11	17	
		$\mathrm{V}_{\mathrm{GS}}=-2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.05 \mathrm{~A}$			10.4	13	
$\mathrm{I}_{\text {D(ON) }}$	On-State Drain Current	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}$	$\mathrm{N}-\mathrm{Ch}$	0.22			A
		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}$	P-Ch	-0.14			
g_{Fs}	Forward Transconductance	$\mathrm{V}_{\text {DS }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.22 \mathrm{~A}$	N-Ch		0.2		S
		$\mathrm{V}_{\text {DS }}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.14 \mathrm{~A}$	P-Ch		0.12		

DYNAMIC CHARACTERISTICS

$\mathrm{C}_{\text {iss }}$	Input Capacitance	N -Channel	N-Ch	9.5	pF
		$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$,	P-Ch	12	
$\mathrm{C}_{\text {oss }}$	Output Capacitance	$\mathrm{f}=1.0 \mathrm{MHz}$	N-Ch	6	
		P-Channel	P-Ch	7	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance	$\mathrm{V}_{\text {DS }}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$,	N-Ch	1.3	
		$\mathrm{f}=1.0 \mathrm{MHz}$	P-Ch	1.5	

Electrical Characteristics (continued)

SWITCHING CHARACTERISTICS (Note 2)

Symbol	Parameter	Conditions	Type	Min	Typ	Max	Units
$t_{\text {(on) }}$	Turn - On Delay Time	N -Channel$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \end{aligned}$	N-Ch		5	12	nS
			P-Ch		5	12	
t	Turn - On Rise Time		$\mathrm{N}-\mathrm{Ch}$		4.5	10	nS
			P-Ch		8	16	
$t_{\text {(off) }}$	Turn - Off Delay Time	P-Channel$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=50 \Omega \end{aligned}$	N-Ch		4	8	nS
			P-Ch		9	18	
t	Turn - Off Fall Time		N-Ch		3.2	7	nS
			P-Ch		5	12	
Q_{g}	Total Gate Charge	N -Channel $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.22 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \end{aligned}$ P-Channel	$\mathrm{N}-\mathrm{Ch}$		0.29	0.4	nC
			P-Ch		0.22	0.31	
Q_{gs}	Gate-Source Charge		N-Ch		0.12		nC
			P-Ch		0.12		
Q_{gd}	Gate-Drain Charge	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-0.14 \mathrm{~A}$,	N-Ch		0.03		nC
		$\mathrm{V}_{\text {GS }}=-4.5 \mathrm{~V}$	P-Ch		0.05		

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

$\mathrm{I}_{\text {s }}$	Maximum Continuous Drain-Source Diode Forward Current		$\mathrm{N}-\mathrm{Ch}$		0.25	A
			P-Ch		-0.25	
$\mathrm{V}_{\text {SD }}$	Drain-Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.5 \mathrm{~A}$ (Note 2)	N -Ch	0.8	1.2	V
		$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-0.5 \mathrm{~A}$ (Note 2)	P-Ch	-0.8	-1.2	

Notes:

1. $R_{\theta \cdot A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design. $R_{\theta J A}=415^{\circ} \mathrm{C} / \mathrm{W}$ on minimum mounting pad on FR-4 board in still air.
2. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

Typical Electrical Characteristics: N-Channel

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation w ith Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics: N-Channel (continued)

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Typical Electrical Characteristics: P-Channel

Figure 11. On-Region Characteristics.

Figure 13. On-Resistance Variation with Temperature.

Figure 15. Transfer Characteristics.

Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

Figure 16. Body Diode Forw ard Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics: P-Channel (continued)

Figure 17. Gate Charge Characteristics.

Figure 19. Maximum Safe Operating Area.

Figure 18. Capacitance Characteristics.

Figure 20. Single Pulse Maximum Power Dissipation.

Typical Thermal Characteristics: N \& P-Channel (continued)

Figure 21. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in note 1 .
Transient thermalresponse will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
CoolFET ${ }^{\text {Tm }}$	MICROWIRE ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {™ }}$	РОРтм	VCX ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {M }}$	PowerTrench ${ }^{\text {TM }}$	
FACT ${ }^{\text {т }}$	QFET ${ }^{\text {TM }}$	
FACT Quiet Series ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	
FAST ${ }^{\circledR}$	Quiet Series ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
GTO ${ }^{\text {¹ }}$	SuperSOT™-6	
HiSeC ${ }^{\text {¹ }}$	SuperSOT™-8	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

