TOSHIBA

Preface

Thank you very much for making use of Toshiba microcomputer LSIS. Before use this LSI, refer the section, "Points of Note and Restrictions".

Especially, take care below cautions.

CAUTION
 How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts $=(\overline{\mathrm{NMI}}$, INT0 to 4, INTRTC) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of $f_{\text {FPH }}$) with IDLE1 or STOP mode (IDLE2 is not applicableto this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 16-Bit Microcontrollers
 TMP91CY22IFG

1. Outline and Features

TMP91CY22I is a high-speed 16-bit microcontroller designed for the control of various mid- to large-scale equipment.

TMP91CY22I comes in a 100-pin flat package.

Listed below are the features.
(1) High-speed 16 -bit CPU (900/L1 CPU)

- Instruction mnemonics are upward-compatible with TLCS-90/900
- 16 Mbytes of linear address space
- General-purpose registers and register banks

- 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
- Micro DMA: 4-channels ($593 \mathrm{~ns} / 2$ bytes at 27 MHz)
(2) Minimum instruction execution time: 148 ns at 27 MHz)
(3) Built-in RAM: 16 Kbytes

Built-in ROM: 256 Kbytes

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under anypatent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent etectrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injuiny or damage to property.
In developing you designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the mostrecent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office/equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHHBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Ussage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

Purchase of TOSHIBA $\mathrm{I}^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Snecification as defined bv Philins.
(4) External memory expansion

- Expandable up to 16 Mbytes (shared program/data area)
- Can simultaneously support 8-/16-bit width external data bus \cdots Dynamic data bus sizing
(5) 8 -bit timers: 8 channels
(6) 16 -bit timer/event counter: 2 channels
(7) General-purpose serial interface: 2 channels UART/ Synchronous mode: 2 channels IrDA ver1.0 (115.2 kbps) supported
(8) Serial bus interface: 1 channel
- $\quad \mathrm{I}^{2} \mathrm{C}$ bus mode/clock synchronous Select mode
(9) 10-bit AD converter: 8 channels
(10) Watchdog timer
(11) Special timer for CLOCK
(12) Chip Select/Wait controller: 4 channels
(13) Interrupts: 45 interrupts
- 9 CPU interrupts: Software interrupt instruction and illegalinstruction
- 26 internal interrupts:
- 10 external interrupts:
(14) Input/Output ports: 81 pins
(15) Standby function

Three HALT modes: IDLE2 (programmable), IDEE1, STOP
(16) Triple-clock controller

- Clock Doubler (DFM)
- Clock Gear (fc to fc 116)
- SLOW mode $(\mathrm{fs}=32.768 \mathrm{kHz})$
(17) Operating voltage

- $\quad \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}(\mathrm{fc} \max =27 \mathrm{MHz})$
- $\mathrm{VCC}=1.8 \mathrm{~V}$ to $3.6 \mathrm{~V}(\mathrm{fc} \max =10 \mathrm{MHz})$
(18) Package

100-pin QFP: P-LQFP100-1414-0.50F

Figure 1.1 TMR91CY221 Block Diagram

2. Pin Assignment and Pin Functions

The assignment of input/output pins for the TMP91CY22I, their names and functions are as follows:

2.1 Pin Assignment Diagram

Figure 2.1 .1 shows the pin assignment of the TMP91CY22I.

Figure 2.1.1 Pin assignment diagram (100-pin LQFP)

2.2 Pin Names and Functions

The names of the input/output pins and their functions are described below.
Table 2.2.1 Pin names and functions.
Table 2.2.1 Pin names and functions (1/4)

Pin Name	Number of Pins	I/O	Functions
$\begin{aligned} & \text { P00 to P07 } \\ & \text { AD0 to AD7 } \\ & \hline \end{aligned}$	8	Tri-state	Port 0: I/O port that allows I/O to be selected at the bit level Address and data (lower): Bits 0 to 7 of address and data bus
$\begin{aligned} & \text { P10 to P17 } \\ & \text { AD8 to AD15 } \\ & \text { A8 to A15 } \\ & \hline \end{aligned}$	8	Tri-state Output	Port 1: I/O port that allows I/O to be selected at the bit level Address and data (upper): Bits 8 to 15 for address and data bus Address: Bits 8 to 15 of address bus
P20 to P27 A0 to A7 A16 to A23	8	I/O Output Output	Port 2: I/O port that allows I/O to be selected at the bit level Address: Bits 0 to 7 of address bus Address: Bits 16 to 23 of address bus,
$\begin{aligned} & \hline \text { P30 } \\ & \overline{R D} \end{aligned}$	1	Output Output	Port 30: Output port Read: Strobe signal for reading external memory $R D$ is outputted by setting $P 3<P 30>=0$ and P3FC $<P 30 F>=1$, when reading internal area.
$\begin{gathered} \hline \text { P31 } \\ \overline{W R} \end{gathered}$	1	Output Output	Port 31: Output port Write: Strobe signal for writing data to pins AD0 to AD7
$\begin{aligned} & \hline \text { P32 } \\ & \text { HWR } \\ & \hline \end{aligned}$	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \\ \hline \end{array}$	Port 32: I/O port (with pult-up resistor) High Write: Strabe signalfor writing data to pins,AD8 to AD15
$\begin{aligned} & \hline \text { P33 } \\ & \hline \text { WAIT } \\ & \hline \end{aligned}$	1	$\begin{array}{r} 1 / 0 \\ \text { Input } \end{array}$	Port 33: $1 / \mathrm{O}$ port (with pull-up resistor) Wait: Pin used to request CPU bus wait ($(1+N)$ wait mode)
P34 BUSRQ	1	$\begin{gathered} \hline \text { Input } \\ \text { Inp } \end{gathered}$	Port 34: 1/Oport (with pull-up resistor) Bus Request.) Signal used to request that set ADO~15, A0~23, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \overline{\mathrm{HWR}}$, R/W, $\overline{\mathrm{CSO}}$ ~ CS3 pins to High impedance. (For external DMAC)
$\frac{\text { P35 }}{\text { BUSAK }}$	1		Port 35: I/O port (with pull-up resistor) Bus Acknowledge: Signal used to acknowledge that AD0~15, A0~23, $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, $\overline{H W R}, R / \bar{W}, \overline{\mathrm{CSO}} \sim \overline{\mathrm{CS} 3}$ pins are set to High impedance by receiving $\overline{\mathrm{BUSRQ}}$. (For external DMAC)
$\begin{aligned} & \mathrm{P} 36 \\ & \mathrm{R} / \overline{\mathrm{W}} \\ & \hline \end{aligned}$		output	Port 36: I/O port (with pull-up resistor) Read/Write: 1 represents Read or Dummy cycle; 0 represents Write cycle.
P37	1	1/0	Port 37: NO port (with pull-up resistor)
$\begin{aligned} & \mathrm{P} 40 \\ & \overline{\mathrm{CSO}} \end{aligned}$			Port 40: I/O port (with pull-up resistor) Chip Select 0: Outputs 0 when address is within specified address area
$\frac{\mathrm{P} 41}{\mathrm{CS} 1}$	1		Port 41. ./Oport (with pull-up resistor) Chip Select 1: Outputs 0 if address is within specified address area
$\frac{\mathrm{P} 42}{\mathrm{CS} 2}$	1	$\begin{array}{r} 1 / 0 \\ \text { Output } \\ \hline \end{array}$	Port 42: I/O port (with pull-up resistor) Chip Select 2: Outputs 0 if address is within specified address area
$\frac{\mathrm{P} 43}{\mathrm{CS} 3}$	$\text { D } 1$		Rort 43: I/O port (with pull-up resistor) Chip Select 3: Outputs 0 if address is within specified address area

Table 2.2.1 Pin names and functions (2/4)

Pin Name	Number of Pins	1/O	Functions
P50 to P57 ANO to AN7 ADTRG	8	Input Input Input	Port 5: Pin used to input port Analog input: Pin used to input to AD converter AD Trigger: Signal used to request start of AD converter (Shared with P53)
$\begin{aligned} & \text { P60 } \\ & \text { SCK } \\ & \hline \end{aligned}$	1	$\begin{aligned} & 1 / 0 \\ & 1 / 0 \end{aligned}$	Port 60: I/O port Serial bus interface clock in SIO Mode
$\begin{aligned} & \text { P61 } \\ & \text { SO } \\ & \text { SDA } \\ & \hline \end{aligned}$	1		Port 61: I/O port Serial bus interface output data in SIO Mode Serial bus interface data in $I^{2} \mathrm{C}$ bus Mode. (programmable open-drain)
$\begin{aligned} & \text { P62 } \\ & \text { SI } \\ & \text { SCL } \\ & \hline \end{aligned}$	1	$\begin{array}{r} \hline 1 / \mathrm{O} \\ \text { Input } \\ 1 / \mathrm{O} \\ \hline \end{array}$	Port 62: I/O port Serial bus interface input data in SIO Mode Serial bus interface clock in $I^{2} \mathrm{C}$ bus/Mode. (programmable open-drain)
$\begin{aligned} & \hline \text { P63 } \\ & \text { INTO } \end{aligned}$	1	$\begin{gathered} \text { I/O } \\ \text { Input } \end{gathered}$	Port 63: I/O port Interrupt Request Pin 0: Interrupt request pin with programmable level / rising edge / falling edge
P64 SCOUT	1		Port 64: I/O port System Clock Output: Outputs $f_{E P H}$ or fs clock.
P65	1	$1 / \mathrm{O}$	Port 65: I/O port
P66	1	$1 / \mathrm{O}$	Port 66: $1 / \mathrm{O}$ port
P70 TAOIN	1	$\begin{array}{r} \text { I/O } \\ \text { Input } \\ \hline \end{array}$	Port 70: I/O port 8-bit timer 0 input: Timer AO Input
P71 TA1OUT	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \end{array}$	Port 71: I/O port 8-bit timer 1 output:Timer A1 Output
P72 TA3OUT	1	$\begin{array}{r} \text { I/O } \\ \text { Output } \\ \hline \end{array}$	Port 72: I/Q port 8 -bit timer 3 output: Timer A3 Output
P73 TA4IN	1	$\begin{array}{r} \text { I/O } \\ \text { Input } \\ \hline \end{array}$	Port 73: YOport 8-bit timer 4 input:Timer A4 Input
P74 TA5OUT	1	I/Q Output	Port 74: llo port 8-bit timer 5 output:Timer A5 Qutput
$\begin{aligned} & \hline \text { P75 } \\ & \text { TA7OUT } \\ & \hline \end{aligned}$	1	$\begin{array}{r} 1 / Q \\ \text { Outpot } \end{array}$	Port 75: I/O port 8-bit timer 7 output:Timer A7 Output
P80 TBOINO INT5		$\underbrace{\substack{\text { In }}}_{\substack{\text { Inpout } \\ \text { Input }}}$	Port 80: I/O port 16-bit timer 0 input0;Timer B0 count/capture trigger Input 0 Interrupt Request Pin 5: Interrupt request pin with programmable rising edge / falling edge.
P81 TBOIN1 INT6		$\begin{array}{r} \text { I/O } \\ \text { Input } \\ \text { Input } \\ \hline \end{array}$	Fort 81: l/O port 16-bit timer 0 input1. Timer B0 count/capture trigger Input 1 Interrupt Request Pin 6: Interrupt request on rising edge
P82 TBOOUTO	\Im^{1}	$\begin{array}{r} 1 / \mathrm{O} \\ \text { Output } \\ \hline \end{array}$	Port 82: I/Oport (6-bit timer 0 output 0: Timer B0 Output 0
P83 KBOOUT1		$\begin{array}{r} 1 / Q^{\prime} \\ \text { Output } \end{array}$	Port 83: I/O port 16-bit timer 0 output 1: Timer B0 Output 1
P84 TB1IN0 INT7	1	$\begin{gathered} \text { HoO } \\ \text { Input } \\ \text { Input } \end{gathered}$	Rort 84: I/O port 16-bit timer 1 input0: Timer B1 count/capture trigger Input 0 Interrupt Request Pin 7: Interrupt request pin with programmable rising edge / falling edge.
	1	$\begin{aligned} & 1 / 0 \\ & \text { Input } \\ & \text { Input } \\ & \hline \end{aligned}$	Port 85: I/O port 16-bit timer 1 input 1: Timer B1 count/capture trigger Input 1 Interrupt Request Pin 8: Interrupt request on rising edge
P86 TB1OUT0	1		Port 86: I/O port 16-bit timer 1 output 0: Timer B1 Output 0
P87 TB1OUT1	1	$\begin{array}{r} 1 / 0 \\ \text { Output } \end{array}$	Port 87: I/O port 16-bit timer 1 output 1: Timer B1 Output 1

Table 2.2.1 Pin names and functions (3/4)

Table 2.2.1 Pin names and functions (4/4)

Pin Name	Number of Pins	1/O	Functions
$\begin{array}{r} \text { P97 } \\ \text { XT2 } \\ \hline \end{array}$	1	I/O Output	Port 97: I/O port (open-drain output) Low-frequency oscillator connection pin
PAO to PA3 INT1 to INT4	4	$\begin{gathered} \text { I/O } \\ \text { Input } \end{gathered}$	Ports A0 to A3: I/O ports Interrupt Request Pins 1 to 4: Interrupt request pins with programmable rising edge / falling edge.
PA4 to PA7	4	1/0	Ports A4 to A7: I/O ports
ALE	1	Output	Address Latch Enable (Can be disabled to reduce noise.)
$\overline{\text { NMI }}$	1	Input	Non-Maskable Interrupt Request Pin: Interrupt request pin with programmable falling edge or both edge.
AM0 to AM1	2	Input	Operation mode: Fixed to AM1 = " 1 ", AM0 = " 1 ".
EMU0/EMU1	1	Output	Set to Open pins
RESET	1	Input	Reset: initializes TMP91CY22. (with pull-up resistor)
VREFH	1	Input	Pin for reference voltage inputto $A D$ converter (H$)$ > (
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
AVCC	1		Power supply pin for $A D$ converter
AVSS	1		Power GND pin for AD converter (0 V)
X1/X2	2	1/0	High frequency oscillator connection pins
DVCC	3		Power supply pins (AlRDVCC pins should be connected with the power supply pin.)
DVSS	3		GND pins (a V) (AllDVSS pins should be connected with the GND (0V) pin.)

Note: An external DMA controller cannot accesS the device's built-in memory or built-in I/O devices using the $\overline{\text { BUSRQ }}$ and

3. Operation

This device is a version of expanding its internal mask ROM size to 256 Kbytes and RAM size to 16 Kbytes. The configuration and the functionality of this device are the same as those of the TMP91CW12A. For the functions of this device that are not described here, refer to the TMP91CW12A data sheet.

3.1 Memory Map

Figure 3.1.1 Memory Map

4. Electrical Characteristics

4.1 Maximum Ratings

Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down onits performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no maximum rating value vaillever be exceeded.

Point of note about solderability of lead free products (attach "G" to package name)

Test parameter	Test condition	Note
Solderability	(1) Use of Sn-63Pb solder Bath Solder bath temperature $=230^{\circ} \mathrm{C}$, Dipping time $=5$ seconds The number of times = one, Use of R-type flux (2) Use of Sn -3.0Ag-0.5Cu solder bath Solder bath temperature $=245^{\circ} \mathrm{C}$, Dipping time $=5$ seconds The number of times = one, Use of R-type flux (use of lead free)	Pass: solderability rate until forming $\geq 95 \%$

4.2 DC Characteristics (1/2)

	Parameter	Symbol	Con	ition	Min	Typ. (Note)	Max	Unit	
	r Supply Voltage		$\mathrm{fc}=4$ to 27 MHz		2.7				
(AVs	$s=$ DVss = 0 V)		$\mathrm{fc}=2$ to 10 MHz	34 kHz	1.8				
	P00 to P17 (AD0 to 15)	VIL	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$				$\bigcirc 0.6$		
		VIL	$\mathrm{Vcc}<2.7 \mathrm{~V}$				0.2 Vcc		
	P20 to PA7 (except P63)		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$				0.3 Vcc		
		,	$\mathrm{Vcc}<2.7 \mathrm{~V}$			\checkmark	0.2 Vcc		
	$\overline{\mathrm{RESET}}, \overline{\mathrm{NMI}}, \mathrm{P} 63$ (INTO)		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$				0.25 Vcc		
		VIL2	$\mathrm{Vcc}<2.7 \mathrm{~V}$				0.15 Vcc		
$\stackrel{1}{0}$	AM0, 1		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$				0.3		
¢		VIL3	$\mathrm{Vcc}<2.7 \mathrm{~V}$				0.3		
드	X1		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$				0,2Vcc		
		VIL4	$\mathrm{Vcc}<2.7 \mathrm{~V}$				0.1 VGc		
	P00 to P17 (AD0 to AD15)		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$		2.0		\bigcirc		
			$\mathrm{Vcc}<2.7 \mathrm{~V}$		0.7 Vcc		,		
	P20 to PA7 (except P63)		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$		0.7 Vcc		1		
		VIH1	$\mathrm{Vcc}<2.7 \mathrm{~V}$		0.8 Vcc	λ			
	$\overline{\mathrm{RESET}}, \overline{\mathrm{NMI}}, \mathrm{P} 63$ (INTO)	V	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$		0.75 Vcc				
		V1H2	$\mathrm{Vcc}<2.7 \mathrm{~V}$		0.85 Vcc		.		
$\stackrel{\square}{0}$	AMO, 1		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$		Vcc - 0.3				
$\xrightarrow{\square}$		VIH3	$\mathrm{Vcc}<2,7 \mathrm{~V}$		$\mathrm{Vcc}-0.3$				
ミㅍ	X1		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$		0.8 VEc				
		VIH4	$\mathrm{Vcc}<2.7 \mathrm{~V}$		0.9 Vcc				
Output Low Voltage		V_{OL}	1015	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$			0.45	V	
		$1 \mathrm{OL}=0.4 \mathrm{~mA}$	$\mathrm{Vcc}<2.7 \mathrm{~V}$			0.15 Vcc			
Output High Voltage			V_{OH}	$\mathrm{LOH}=-400 \mu \mathrm{~A}$	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	2.4			
		$1 \mathrm{OH}=-200 \mu \mathrm{~A}$		$\mathrm{Vcc}<2.7 \mathrm{~V}$	0.8 Vcc				

Note: \quad Typical values are for when $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=3.0 \mathrm{~V}$ unless otherwise noted.

and Vcc = 3.0 V unless othervise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note 1)	Max	Unit
Input Leakage Current	ILI	$0.0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{Vcc}$		0.02	± 5	$\mu \mathrm{A}$
Output Leakage Current	ILO	$0.2 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{Vcc}-0.2$		0.05	± 10	
Power Down Voltage (at STOP, RAM back-up)	VSTOP	V IL2 $=0.2 \mathrm{Vcc}$, $\mathrm{VIH} 2=0.8 \mathrm{Vcc}$	1.8		3.6	V
RESET Pull-up Resistor	RRST	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$	100		400	$\mathrm{k} \Omega$
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$	200		1000	
Pin Capacitance	CIO	$\mathrm{fc}=1 \mathrm{MHz}$			10	pF
Schmitt Width	VTH	$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	0.4	1.0		V
$\overline{\text { RESET }}$, $\overline{\text { NMI }}$, INTO		$\mathrm{Vcc}<2.7 \mathrm{~V}$	0.3) 0.8		
Programmable Pull-up Resistor	RKH	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$	100		400	$\mathrm{k} \Omega$
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$	200		1000	
NORMAL (Note 2)	ICC	$\begin{aligned} & \mathrm{Vcc}=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{fc}=27 \mathrm{MHz} \end{aligned}$		10.0	13.0	mA
IDLE2				2.5	3.5	
IDLE1				1.0	1.8	
NORMAL (Note 2)		$\begin{aligned} & \mathrm{Vcc}=2 \mathrm{~V} \pm 10 \% \\ & \mathrm{fc}=10 \mathrm{MHz} \\ & (\text { Typ.: } \mathrm{Vcc}=2.0 \end{aligned}$		1.7	(2,5)	mA
IDLE2				0,6	0.9	
IDLE1				0,25	0.4	
SLOW (Note 2)		$\begin{aligned} & \mathrm{Vcc}=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{fs}=32.768 \mathrm{kHz} \\ & \mathrm{Ta} \leq 70^{\circ} \mathrm{C} \end{aligned}$		11,6	30	$\mu \mathrm{A}$
IDLE2				5.2	19	
IDLE1				$)_{30}$	8	
		$\mathrm{Ta} \leq 85^{\circ} \mathrm{C}$			15	
SLOW (Note 2)		$\begin{aligned} & V c c=2 V \pm 10 \% \\ & \mathrm{fs}=32.768 \mathrm{KHz} \\ & (\text { (Typ.: Vcc }=2.0 \mathrm{~V}) \end{aligned}$		7.7	20	$\mu \mathrm{A}$
IDLE2				3.5	13	
IDLE1				2.0	10	
STOP		$\mathrm{VCC}=1.8 \mathrm{tc} 3.3 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$

Note 1: Typical values are for when $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=3.0 \mathrm{~V}$ unless otherwise noted.
Note 2: Icc measurement conditions (NORMAL, SLOW):
All functions are operating; output pins are open and input pins are fixed.

4.3 AC Characteristics

(1) $\mathrm{Vcc}=3.0 \mathrm{~V} \pm 10 \%$

No.	Parameter	Symbol	Variable		$\mathrm{f}_{\mathrm{FPH}}=27 \mathrm{MHz}$		Unit
			Min	Max	Min	Max	
1	$\mathrm{f}_{\mathrm{FPH}}$ Period ($=x$)	$\mathrm{t}_{\text {FPH }}$	37.0	31250	37.0		ns
2	A0 to A15 Vaild \rightarrow ALE Fall	t_{AL}	$0.5 x-14$		4)	ns
3	ALE Fall \rightarrow A0 to A15 Hold	tLA	$0.5 x-16$		2		ns
4	ALE High Width	tLL	$x-20$		17		ns
5	ALE Fall $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	thC	$0.5 x-14$		4		ns
6	$\overline{\mathrm{RD}}$ Rise \rightarrow ALE Rise	$\mathrm{t}_{\text {CLR }}$	$0.5 x-10$		8		ns
7	WR Rise \rightarrow ALE Rise	tcLW	$x-10$		27		ns
8	A0 to A15 Valid $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$\mathrm{t}_{\text {ACL }}$	$x-23$		14		ns
9	A0 to A23 Valid $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$\mathrm{t}_{\mathrm{ACH}}$	$1.5 x-26$	N	29		ns
10	$\overline{\mathrm{RD}}$ Rise \rightarrow A0 to A23 Hold	tcAR	$0.5 x-13$		5		ns
11	WR Rise \rightarrow A0 to A23 Hold	tcaw	$x-13$	7Δ	24		ns
12	A0 to A15 Valid \rightarrow D0 to D15 Input	$\mathrm{t}_{\text {ADL }}$		(3.0x-38	Δ	73	ns
13	A0 to A23 Valid \rightarrow D0 to D15 Input	$\mathrm{t}_{\text {ADH }}$		3.5x-41		88	ns
14	RD Fall \rightarrow D0 to D15 Input	t_{RD}	\checkmark	2.0x-30		44	ns
15	$\overline{\mathrm{RD}}$ Low Width	t_{RR}	2.0x-15		59		ns
16	RD Rise \rightarrow D0 to A15 Hold	t_{HR}			0		ns
17	RD Rise \rightarrow A0 to A15 Output	$\mathrm{t}_{\text {RAE }}$	x-15		722		ns
18	WR Low Width	${ }_{\text {tww }}$	1.5×15		<40		ns
19	D0 to D15 Valid $\rightarrow \overline{\mathrm{WR}}$ Rise	tow	$1,5 x-35$	\square	20		ns
20	WR Rise \rightarrow D0 to D15 Hold	tWD	x-25		12		ns
21	A0 to A23 Valid \rightarrow WAIT Input [wait Moded	taWt		$3.5 x-60$		69	ns
22	A0 to A15 Valid $\rightarrow \overline{\text { WAIT }}$ Input $\left[\begin{array}{c}\text { wait Mode } \\ \text { M }\end{array}\right.$	tawt		$3.0 x-50$		61	ns
23	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall \rightarrow WAIT Hold (wait Moded	$\mathrm{t}_{\mathrm{c}} \mathrm{w}$	$2.0 x+0$		74		ns
24	A0 to A23 Valid \rightarrow Port Input	taph		$3.5 x-89$		40	ns
25	A0 to A23 Valid \rightarrow Port Hold \rightarrow,	taPH	3.5 x	N	129		ns
26	A0 to A23 Valid \rightarrow Port Valid	t_{AP}		$3.5 x+80$		209	ns

AC Measuring Conditions

- Output Level: High $=0.7 \mathrm{Vcc}$, Low $=0.3 \mathrm{Vcc}, \mathrm{CL} \neq 50 \mathrm{pF}$
- Input Level: High = 0.9 Vcc, Low=0.1 Vcc

Note: " x " used in an expression shows a frequency for the clock $\mathrm{f}_{\mathrm{FPH}}$ selected by SYSCR1<SYSCK>.
the value of " x " changes according to whether a clock gear or a low-speed oscillator is selected.
Anexample value is calculated for fc, with gear=1/fc (SYSCR1<SYSCK, GEAR2 to $0>=0000$).
(2) $\mathrm{Vcc}=2.0 \mathrm{~V} \pm 10 \%$

No.	Parameter	Symbol	Variable		$\mathrm{f}_{\mathrm{FPH}}=10 \mathrm{M} \mathrm{Hz}$		Unit
			Min	Max	Min	Max	
1	$\mathrm{f}_{\mathrm{FPH}}$ Period ($=x$)	$\mathrm{t}_{\text {FPH }}$	100	31250	100		ns
2	A0 to A15 \rightarrow ALE Fall	$\mathrm{t}_{\text {AL }}$	$0.5 x-28$		22		ns
3	ALE Fall \rightarrow A0 to A15 Hold	t LA	$0.5 x-35$		15		ns
4	ALE High Width	tLL	$x-40$		60		ns
5	ALE Fall $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	t LC	0.5x-28		22		ns
6	RD Rise \rightarrow ALE Rise	$\mathrm{t}_{\text {CLR }}$	0.5x-20	-	30		ns
7	WR Rise \rightarrow ALE Rise	$\mathrm{t}_{\text {ACW }}$	$x-20$		80		ns
8	A0 to A15 Valid $\rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall	$\mathrm{t}_{\text {ACL }}$	$x-75$		25		ns
9	A0 to A23 Valid \rightarrow RD / WR Fall	$\mathrm{T}_{\text {ACH }}$	$1.5 x-70$		- 80		ns
10	RD Rise \rightarrow A0 to A23 Hold	tcAR	$0.5 x-30$		20		ns
11	WR Rise \rightarrow A0 to A23 Hold	TCAW	$x-30$		70	\bigcirc	ns
12	A0 to A15 Valid \rightarrow D0 to D15 Input	$\mathrm{t}_{\text {ADL }}$		3.0x-76		224	ns
13	A0 to A23 Valid \rightarrow D0 to D15 Input	$\mathrm{t}_{\text {ADH }}$		(3.5x- 82	\triangle	268	ns
14	$\overline{\mathrm{RD}}$ Fall \rightarrow D0 to D15 Input	T_{RD}		2.0x-60		140	ns
15	RD Low Width	$t_{\text {RR }}$	$2.0 x-30$		170		ns
16	$\overline{\text { RD Rise } \rightarrow \text { D0 to D15 Hold }}$	t_{HR}	\bigcirc		0		ns
17	RD Rise \rightarrow A0 to A15 Output	$t_{\text {RAE }}$	$\frac{x-30}{}$		70		ns
18	WR Low Width	tww	$1.5 x-30$		120		ns
19	D0 to D15 Valid \rightarrow WR Rise	tDW	1.5×20		$\checkmark<80)$		ns
20	WR Rise \rightarrow D0 to D15 Hold	tWD	$x-50$		50		ns
21	A0 to A23 Valid \rightarrow WAIT Input [wait mode] ${ }^{1+n}$	AWH		$3.5 x-120$)	230	ns
22	A0 to A15 Valid $\rightarrow \overline{\text { WAIT }}$ Input [wait mode] ${ }^{1+n}$]	$t_{\text {AWL }}$		$3.0 x-100$	-	200	ns
23	$\overline{\mathrm{RD}} / \overline{\mathrm{WR}}$ Fall $\rightarrow \overline{\mathrm{WAIT}}$ Hold [wait mode] ${ }^{1+\mathrm{n}}$]	$\mathrm{t}_{\text {cW }}$	$2.0 x+0$	Σ	200		ns
24	A0 to A23 Valid \rightarrow Port Input	$\mathrm{t}_{\text {APH }}$		$3.5 x-170$		180	ns
25	A0 to A23 Valid \rightarrow Port Hold	taPH^{2}	3.5x	-	350		ns
26	A0 to A23 Valid \rightarrow Port Valid	t_{AP}	,	$3.5 x+170$		520	ns

AC Measuring Conditions

- Output Level: High $=0.7 \mathrm{Vcc}, L o w=0.3 \mathrm{Vcc}, \mathrm{CL} \Rightarrow 50 \mathrm{pF}$
- Input Level: $\mathrm{High}=0.9 \mathrm{Vcc}$, $\mathrm{Low}=0.1 \mathrm{Vcc}$

Note: "x" used in an expression shows a frequency for the clock frPH selected by SYSCR1<SYSCK>.
The value of "x" changes according to whether a clock gear or a low-speed oscillator is selected
An example value is calculated for fc, with gear=1/fc (SYSCR1<SYSCK,GEAR2 to 0> $=0000$).
(3) Read Cycle

Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

Note: \quad Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

4.4 AD Conversion Characteristics

$\mathrm{AVcc}=\mathrm{Vcc}, \mathrm{AVss}=\mathrm{Vss}$

parameter	Symbol	Condition	Min	Typ.	Max	Unit
Analog Reference Voltage (+)	VREFH	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$	$\mathrm{Vcc}-0.2 \mathrm{~V}$	Vcc	Vcc	V
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$	Vcc	Vcc	Vcc	
Analog Reference Voltage (-)	VREFL	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$	Vss	Vss	Vss + 0.2 V	
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$	Vss	Vss	Vss	
Analog Input Voltage Range	VAIN		$\mathrm{V}_{\text {REFL }}$,	$\mathrm{V}_{\text {REFH }}$	
Analog Current for Analog Reference Voltage$\text { <VREFON> = } 1$	IREF $($ VREFL $=0 \mathrm{~V})$	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$		0.94	$){ }^{1.20}$	mA
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$		0.65	0.90	
<VREFON> = 0		$\mathrm{Vcc}=1.8 \mathrm{~V}$ to 3.3 V		0.02 N	5.0	$\mu \mathrm{A}$
Error (not including quantizing errors)	-	$\mathrm{Vcc}=3 \mathrm{~V} \pm 10 \%$		1.0	± 4.0	
		$\mathrm{Vcc}=2 \mathrm{~V} \pm 10 \%$	\wedge	± 1.0	± 4.0	\square

Note 1: 1 LSB $=($ VREFH - VREFL $) / 1024$ [V]
Note 2: The operation above is guaranteed for $f_{\text {FPH }} \geq 4 \mathrm{MHz}$.
Note 3: The value for $I_{c c}$ includes the current which flows through the AVCCpin.

4.5 Serial Channel Timing (I/O Internal Mode)

(1) SCLK Input Mode

*) SCLK Rinsing/Falling Edge:
The rising edge is used in SCLK RisingMode.
The falling edge is used in SCLK Falling Mode.
Note: Value of 27 MHz and 10 MHz at $\mathrm{t}_{\mathrm{scy}}=16 \mathrm{X}$.
(2) SCLK Output Mode

4.6 Event Counter (TAOIN, TA4IN, TBOIN0, TBOIN1, TB1IN0, TB1IN1)

Parameter	Symbol	Variable		10 MHz		27 MHz		Unit
		Min	Max	Min	Max	Min	Max	
Clock period	tVCK	$8 \mathrm{X}+100$		900	,	396		ns
Clock Low level width	tVCKL	$4 \mathrm{X}+40$		440	,	188		ns
Clock High level width	tVCKH	$4 \mathrm{X}+40$		440		188	>	ns

4.7 Interrupt and Capture

(1) $\overline{\mathrm{NMI}}$, INT0 to INT4 Interrupts

Parameter	Symbol	Variable		10 MHz		27 MHz		Unit
		Min	Max	Min	Max	Min	Max	
$\overline{\text { NMI , INTO to INT4 Low level width }}$	$\mathrm{t}_{\text {INTAL }}$	$4 \mathrm{X}+40$		440		188)	-	ns
$\overline{\text { NMI, }}$ INTO to INT4 High level width	tintah	$4 \mathrm{X}+40$	(1)	440		188		ns

(2) INT5 to INT8 Interrupts, Capture

The INT5 to INT8 input width depends on the system clock andprescaler clock settings.

System Clock Selected <SYSCK>	Prescaler Clock Selected PRCK1:0					Unit
		Variable	Tfeph $=10 \mathrm{MHz}$	(variable)	$\mathrm{f}_{\mathrm{FPH}}=27 \mathrm{MHz}$	
		Min	Min	Min	Min	
0 (fc)	00 (ffPH)	$8 x+100$	396	$8 \mathrm{X}+100$	396	ns
	10 (fc/16)	(128xc +0.1	4.8 -	$128 \mathrm{xc}+0.1$	4.8	$\mu \mathrm{s}$
1 (fs)	00 (ffPH)	8x+0.1	244.3	/8x+0.1	244.3	

Note: $\quad \mathrm{Xc}=$ Period of Clock fc

4.8 SCOUT Pin AC Characteristics

Parameter	Symbol	\checkmark variable		10 MHz		27 MHz		Condition	Unit
		$\square^{\text {Min }}$	Max	(Min)	Max	Min	Max		
Low level width	${ }^{1} \mathrm{SCH}$	0.5T-13		37		5		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	ns
		0.5T-25		25		-		$\mathrm{Vcc}<2.7 \mathrm{~V}$	
High Teve/ / vidth	${ }_{\text {tscL }}$	0.5T-13		37		5		$\mathrm{Vcc} \geq 2.7 \mathrm{~V}$	ns
		0.5T-25		25		-		$\mathrm{Vcc}<2.7 \mathrm{~V}$	ns

4.9 Bus Request/Bus Acknowledge

Note 1: Even if the $\overline{B U S R Q}$ Signal goes Low, the bus will not be released while the $\overline{\text { WAIT signal is Low. The bus will only be released }}$ when $\overline{B U S R Q}$ goes Low while WAIT is High.

Note 2: This line shows only that the output buffer is in the Off state. It does not indicate that the signal level is fixed.
Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefore, to fix the signal level using an external resister during bus release, careful design is necessary, since fixing of the leveris delayed.
The internal programmable pull-up/pull-down resistoris switched between the active and non-active states by the internal signal.

4.10 Recommended Oscillation Circuit

TMP91CY22I has been evaluated by murata manufacturing Co., Ltd. Please refer to murata manufacturing Co., Ltd.

Note: Total loads value of oscillator is sum of external loads (C1 and C2) and floating loads of actual assemble board. There is a possibility of miss-operating. When designing board, it should design minimum length pattern around oscillator. And we recommend that oscillator evaluation try on your actual using board.
(1) Examples of resonator connection

Figure 4.10.1 High-frequency Oscillator Connection

Figure 4.10.2 Low-frequency Oscillator Connection
(2) Recommended ceramic resonators for TMP91CY22I: Murata Manufacturing Co., Ltd.

MCU	Oscillation Frequency [MHZ]		Parameter of Elements			Running Condition	
			$\begin{aligned} & \mathrm{c}_{1} \\ & \mathrm{IpFI} \end{aligned}$	$\begin{gathered} \mathrm{C} 2 \\ {[\mathrm{pF}]} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Rd} \\ & {[\Omega]} \end{aligned}$	Voltage of Power [V]	$\mathrm{Tc}\left[{ }^{\circ} \mathrm{C}\right]$
TMP91C	2.00	CSSTCC2M00G56-R0	(47)	(47)	0	$1.8 \sim 2.2$	$-20 \sim+80$
		CSTCR4M00G55-R0	(39)	(39)		$2.7 \sim 3.3$	
	4.00	CSTLS4M00G56-B0	(47)	(47)			
		CSTCR6M75G55-R0	(39)	(39)			
		CSTLS6M75G56-BQ	(47)	(47)			
	10.00	CSTLS10M0G53-B0	(15)	(15)		$1.8 \sim 2.2$	

- $/$ In CST*** type oscillator, capacitance C1, C2 is built-in.
- The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL;
http://www.murata.co.jp

5. Package Dimensions

