INTERVAL- and WIPE/WASH WIPER CONTROL IC

IK642B

The IK642B is a bi-polar integrated circuit designed for the wiper application in the automotive market. It includes wipe, wash and internal mode.

FEATURES

- Interval Pause: 4 to 20 s
- After-wiping Time: 2 to 20 s
- Wiper Motor's Park Switch

- Wipe/Wash Mode Priority
- One External Capacitor Determines All Time Sequences
- Relay Driver with Z-diode
- Load-dump Protected
- Prewash Delay 300mS
- Interference Protection According to VDE 0839 or ISO/TR 7637/1

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Packing
IK642BN	$T_{A}=-40$ to $+85^{\circ} \mathrm{C}$	DIP8	Tube
IK642BDT		SO8	Tape \& Reel
IK642BD		SO8	Tube

FUNCTIONAL DESCRIPTION

As a convenience feature of the windshield wiper, intermittent and wipe/wash operation functions are implemented in most of the automobiles. The IK642B is a costeffective solution for an accurate timing function control. Wipe/wash mode has priority over interval mode. Interval pause and after-wiping time can be set to fixed values by using resistors in a broad time range. Added value can be provided with an individual, continuous adjustment of the interval pause by a potentiometer which may be built into the stalk. For proper operation, it is mandatory to feed the signal of the wiper motor's park switch into IK642B.

BLOCK DIAGRAM

Figure 1

PIN CONFIGURATION

Figure 2

PIN DESCRIPTION

Pin No.	Symbol	Description
1	GND	Ground
2	INT	Interval switch
3	CT	Timing capacitor C2
4	RT	After-wiping time resistance
5	WASH	Wipe/wash switch
6	PARK	Park switch for wiper motor
7	OUT	Relay control output
8	VS	Supply voltage terminal 15

CIRCUIT DESCRIPTION

Interval Function, Pin 2

By closing the interval switch, S_{2}, to supply voltage, $\mathrm{V}_{\text {Batt, }}$ the relay is activated. The internal current source (pin 3) which holds the capacitor C_{2} in a charged state is switched-off. As soon as there is a positive potential at the park switch (S1), the current source F (see Figure 1 on page 1) charges the capacitor C 2 very quickly. After the wiper operation is finished, S_{1} is again at ground potential, the relay is in the off position - interval pause begins -the capacitor C_{2} is discharged through the current source C , till the voltage at pin 3 is below the threshold of 2 V . Interval pause can be adjusted between 4 s to 20 s with the help of potentiometer R_{3}. Now the relay switches on and the next interval cycle begins. Opening of switch S_{2} causes the current source A to discharge C_{2} immediately and current sources C and F are switched-off.

Wipe/Wash (WIWA) Operation, Pin 5

By closing the WIWA switch, S_{3}, to supply voltage, $\mathrm{V}_{\text {Batt }}$, the water pump starts spraying water on the windshield. During this function, the current source A is switched-off which keeps the capacitor C_{2} in a discharged state. Now the capacitor is charged through the current sources D and F. If (after a time interval of approximately 100 ms) the voltage at the capacitor is greater than 6.5 V , the relay is turned on as long as the switch WIWA is closed.

The after-wiping time begins when the switch is open, the sources D and F are switched off and the source E is activated. Source E discharges the capacitor until the voltage is less than 2.2 V . The relay is off and the wiper-motor is supplied via the park switch until the park position is reached. The after-wiping time is determined by the current source E which can be regulated with the external resistor $\mathrm{R}_{\text {Time }}$. When the after-wiping time has elapsed, the source A discharges the capacitor. The relay switch is independent of the park switch S_{1}.

Interval and WIWA Functions

The interval function is interrupted immediately when the wipe/wash mode is activated. The current source A discharges the capacitor to a value of 2 V , afterwards, the normal wash function starts.

Interval wiping starts immediately when the after-wipe time is over. The switching delays are slightly shorter, because the capacitor is already charged to a value of 2 V .

The wipe/wash function is not interrupted when the interval switch S_{2} is activated. The interval function begins after the WIWA function has elapsed.

Figure 3. Application Circuit with Interval and Wipe/Wash Operation

ABSOLUTE MAXIMUM RATINGS

Parameters	Pin	Symbol	Value	Unit
Supply voltage t $=60 \mathrm{~s}$, terminal 15	8	$V_{\text {Batt }}$	28	V
$\begin{array}{\|l} \hline \text { Supply current } \\ \mathrm{t}=2 \mathrm{~ms} \\ \mathrm{t}=200 \mathrm{~ms} \end{array}$	8	$\begin{aligned} & \mathrm{I}_{8} \\ & \mathrm{I}_{8} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 150 \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~mA} \end{gathered}$
Relay control output current (DC) $\mathrm{t}=200 \mathrm{~ms}$	7	$\begin{aligned} & \mathrm{I}_{7} \\ & \mathrm{I}_{7} \end{aligned}$	$\begin{gathered} 200 \\ 1.2 \end{gathered}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~A} \end{gathered}$
Pulse Current (Control Inputs) $\mathrm{t}=\mathbf{2 0 0} \mathbf{~ m s}$				
Park switch, S_{1} Wipe/Wash switch, S_{3} Interval switch, S_{2}	$\begin{aligned} & 6 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & I_{6} \\ & I_{5} \\ & I_{2} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	mA
Power dissipation $\mathrm{T}_{\text {amb }}=90^{\circ} \mathrm{C}$		$\mathrm{P}_{\text {tot }}$	500	mW
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Ambient temperature range		$\mathrm{T}_{\text {amb }}$	-40 to +85	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Parameter		Symbol	Value	Unit
Junction ambient	DIP8	$\mathrm{R}_{\mathrm{thJA}}$	120	K/W
	SO8	$\mathrm{R}_{\mathrm{thJA}}$	160	K/W

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$V_{\text {Batt }}=12 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$, reference point is pin 8 (see Figure 3 on page 4) unless otherwise specified.

DIAGRAMS

Figure 4. Interval Pause $=f(T) ; C_{t}=22 \mu F$

Figure 5. After-wiping Time $=f(T) ; C_{t}=22 \mu F ; V_{\text {Batt }}=8 \mathrm{~V}$

Figure 6. Interval Pause $=f($ RINT $) ; C_{t}=22 \mu F$

Figure 7. After-wiping Time $=f(T) ; C_{t}=22 \mu F ; V_{\text {Batt }}=16 \mathrm{~V}$

PACKAGE DIMENSION

N SUFFIX PLASTIC DIP

(MS - 001BA)

| $\phi \mid 0.25(0.010)(M)$ | T |
| :--- | :--- | :--- |

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC

（MS－012AA）

$\rightarrow 0.25(0.010)(⿴ 囗 十] \mid \mathrm{C}(\mathbb{1}$

NOTES：

1．Dimensions A and B do not include mold flash or protrusion．
2．Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ；for $\mathrm{B}-0.25 \mathrm{~mm}(0.010)$ per side．

	Dimension，mm	
Symbol	MIN	MAX
\mathbf{A}	4.8	5
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

